Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,524)

Search Parameters:
Keywords = drug evidence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

32 pages, 1991 KiB  
Review
Synthetic Small-Molecule Ligands Targeted to Adenosine Receptors: Is There Potential Towards Ischemic Heart Disease?
by Qi Xu, Yaw Nana Opoku, Kalwant S. Authi and Agostino Cilibrizzi
Cells 2025, 14(15), 1219; https://doi.org/10.3390/cells14151219 - 7 Aug 2025
Abstract
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This [...] Read more.
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This review examines essential cell biology aspects of adenosine receptors (ARs), along with the effects of known synthetic small-molecule AR ligands, to provide an up-to-date view on the therapeutic potential towards IHD treatment. In particular, we report here advancements made on a selection of AR synthetic ligands that have demonstrated efficacy in pre-clinical or clinical studies, thereby holding promise as new therapeutic candidates in the field of IHD. Although this work adds further evidence that clinically valid small-molecule therapeutic agents targeting ARs exist, their use represents an emerging area, with most drug prototypes still in the pre-clinical developmental stage and many lacking large-scale clinical trials. The future lies in identifying improved AR synthetic ligands with enhanced efficacy and selectivity, as well as reduced adverse side effects, along with establishing a platform of specific and diversified pre-clinical tests, to inform in turn the resulting clinical investigations. Full article
Show Figures

Figure 1

26 pages, 2011 KiB  
Review
Substance Abuse and Cognitive Decline: The Critical Role of Tau Protein as a Potential Biomarker
by Liliana Rebolledo-Pérez, Jorge Hernández-Bello, Alicia Martínez-Ramos, Rolando Castañeda-Arellano, David Fernández-Quezada, Flavio Sandoval-García and Irene Guadalupe Aguilar-García
Int. J. Mol. Sci. 2025, 26(15), 7638; https://doi.org/10.3390/ijms26157638 - 7 Aug 2025
Abstract
Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases [...] Read more.
Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD). Emerging evidence suggests that similar Tau-related alterations may occur in individuals with chronic exposure to psychoactive substances. This review compiles experimental, clinical, and postmortem findings that collectively indicate a substance-specific influence on Tau dynamics. Alcohol and opioids, for instance, promote Tau hyperphosphorylation and fragmentation through the activation of kinases such as GSK-3β and CDK5, as well as proteases like caspase-3, leading to neuroinflammation and microglial activation. Stimulants and dissociatives disrupt insulin signaling, increase oxidative stress, and impair endosomal trafficking, all of which can exacerbate Tau pathology. In contrast, cannabinoids and psychedelics may exert protective effects by modulating kinase activity, reducing inflammation, or enhancing neuroplasticity. Psychedelic compounds such as psilocybin and harmine have been demonstrated to decrease Tau phosphorylation and facilitate cognitive restoration in animal models. Although the molecular mechanisms differ across substances, Tau consistently emerges as a convergent target altered in substance-related cognitive disorders. Understanding these pathways may provide not only mechanistic insights into drug-induced neurotoxicity but also identify Tau as a valuable biomarker and potential therapeutic target for the prevention or treatment of cognitive decline associated with substance use. Full article
(This article belongs to the Special Issue Neurobiological Mechanisms of Addictive Disorders)
Show Figures

Figure 1

17 pages, 1852 KiB  
Article
Overall Survival Associated with Real-World Treatment Sequences in Patients with CLL/SLL in the United States
by Joanna M. Rhodes, Naleen Raj Bhandari, Manoj Khanal, Dan He, Sarang Abhyankar, John M. Pagel, Lisa M. Hess and Alan Z. Skarbnik
Cancers 2025, 17(15), 2592; https://doi.org/10.3390/cancers17152592 - 7 Aug 2025
Abstract
Background/Objectives: This study compared overall survival (OS) associated with common real-world treatment sequences in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in the United States. Methods: Utilizing the nationwide Flatiron Health electronic health record-derived de-identified database, adult CLL/SLL patients who initiated [...] Read more.
Background/Objectives: This study compared overall survival (OS) associated with common real-world treatment sequences in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in the United States. Methods: Utilizing the nationwide Flatiron Health electronic health record-derived de-identified database, adult CLL/SLL patients who initiated systemic therapy (JAN2016-NOV2023) and received at least two lines of therapy (LoTs) were analyzed. Treatment regimens were categorized based on drug class, and most frequent (n ≥ 50) sequences (first LoT followed by [→] second LoT) were compared. OS from initiation of the first LoT was compared using multivariable Cox proportional hazard models, and adjusted hazard ratios with 95% CIs were reported. Results: Among 2354 eligible patients, n = 1711 (73%) received the 16 most frequent treatment sequences. Sequencing chemoimmunotherapy (CIT) → CIT (HR: 2.29 [1.23–4.28]), anti-CD20 monoclonal antibody (anti-CD20mab) monotherapy → CIT (1.95 [1.03–3.69]), and covalent Bruton tyrosine kinase inhibitor (cBTKi) monotherapy → anti-CD20mab monotherapy (2.00 [1.07–3.74]) were associated with worse OS compared to patients treated with cBTKi monotherapy → B-cell lymphoma 2 inhibitors (BCL2i) + anti-CD20mab (reference). Conclusions: OS associated with other sequences were not significantly different from the reference sequence in adjusted analyses, suggesting a lack of evidence for the optimal standard of care for sequencing the first two LoTs in real-world settings. Future research should reassess sequencing outcomes as novel treatments become adopted into clinical practice. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

22 pages, 9750 KiB  
Article
SIK2 Drives Pulmonary Fibrosis by Enhancing Fibroblast Glycolysis and Activation
by Jianhan He, Ruihan Dong, Huihui Yue, Fengqin Zhang, Xinran Dou, Xuan Li, Hui Li and Huilan Zhang
Biomedicines 2025, 13(8), 1919; https://doi.org/10.3390/biomedicines13081919 - 6 Aug 2025
Abstract
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates [...] Read more.
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates glycolytic pathways in oncogenesis, its specific contributions to fibroblast activation and therapeutic potential in PF pathogenesis remain undefined. This study elucidates the functional role of SIK2 in PF and assesses its viability as a therapeutic target. Methods: SIK2 expression/localization in fibrosis was assessed by Western blot and immunofluorescence. Fibroblast-specific Sik2 KO mice evaluated effects on bleomycin-induced fibrosis. SIK2’s role in fibroblast activation and glucose metabolism impact (enzyme expression, metabolism assays, metabolites) were tested. SIK2 inhibitors were screened and evaluated therapeutically in fibrosis models. Results: It demonstrated significant SIK2 upregulation, specifically within activated fibroblasts of fibrotic lungs from both PF patients and murine models. Functional assays demonstrated that SIK2 is crucial for fibroblast activation, proliferation, and migration. Mechanistically, SIK2 enhances fibroblast glucose metabolism by increasing the expression of glycolysis-related enzymes. Additionally, this study demonstrated that the SIK2 inhibitor YKL06-061 effectively inhibited PF in both bleomycin and FITC-induced PF mouse models with the preliminary safety profile. Furthermore, we identified a novel therapeutic application for the clinically approved drug fostamatinib, demonstrating it inhibits fibroblast activation via SIK2 targeting and alleviates PF in mice. Conclusions: Our findings highlight SIK2 as a promising therapeutic target and provide compelling preclinical evidence for two distinct anti-fibrotic strategies with significant potential for future PF treatment. Full article
(This article belongs to the Special Issue New Insights in Respiratory Diseases)
Show Figures

Figure 1

19 pages, 1628 KiB  
Review
The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers
by Ammar Ansari, Aleksandra Szczesnowska, Natalia Haddad, Ahmed Elbediwy and Nadine Wehida
Non-Coding RNA 2025, 11(4), 61; https://doi.org/10.3390/ncrna11040061 - 6 Aug 2025
Abstract
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the [...] Read more.
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the cancer, there is a pressing need for alternative treatments. Recent research has highlighted the promising role of non-coding RNAs (ncRNA) in regulating these issues and providing more targeted approaches to suppressing key cancer pathways. This review explores the involvement of the various types of non-coding RNAs in regulating key oncogenic pathways, namely, the MAPK, PI3K/Akt/mTOR, Wnt/β-catenin and p53 pathways, in a range of female cancers such as breast, cervical, ovarian and endometrial cancers. Evidence from a multitude of studies suggests that non-coding RNAs function as double-edged swords, serving as both oncogenes and tumour suppressors, depending on their expression and cellular interactions. By mapping and investigating these regulatory interactions, this review demonstrates the complexity and dual functionality of ncRNAs in cancer. Understanding these complex mechanisms is essential for the development of new and effective ncRNA-based diagnostic methods and targeted therapies in female cancer treatment. Full article
Show Figures

Figure 1

55 pages, 2103 KiB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 - 6 Aug 2025
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Figure 1

32 pages, 2377 KiB  
Review
Antiplatelet Monotherapies for Long-Term Secondary Prevention Following Percutaneous Coronary Intervention
by Claudio Laudani, Daniele Giacoppo, Antonio Greco, Luis Ortega-Paz, Georges El Khoury, Davide Capodanno and Dominick J. Angiolillo
J. Clin. Med. 2025, 14(15), 5536; https://doi.org/10.3390/jcm14155536 - 6 Aug 2025
Abstract
In patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI), antiplatelet therapy is the cornerstone of treatment for secondary prevention. Although dual antiplatelet therapy (DAPT) consisting of aspirin and a P2Y12 inhibitor is the current standard of care, being, respectively, [...] Read more.
In patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI), antiplatelet therapy is the cornerstone of treatment for secondary prevention. Although dual antiplatelet therapy (DAPT) consisting of aspirin and a P2Y12 inhibitor is the current standard of care, being, respectively, recommended for 6 and 12 months in patients with chronic and acute coronary syndrome without a need for oral anticoagulation, the continuous improvement in PCI technology and pharmacology have significantly reduced the need for long-term DAPT. Mounting evidence supports the administration of P2Y12 inhibitor monotherapy, particularly ticagrelor, after a short period of DAPT following PCI as a strategy to reduce bleeding without a trade-off in ischemic events compared to standard DAPT. In addition, there is a growing literature supporting P2Y12 inhibitor monotherapy also for long-term secondary prevention of ischemic events. However, the data to this extent are not as robust as compared to the first-year post-PCI period, with aspirin monotherapy still remaining the mainstay of treatment for most patients. This review aims to summarize the rationale for long-term antiplatelet therapy, the pharmacology of current antiplatelet drugs tested for long-term administration as monotherapy, and current evidence on the available comparisons between different long-term antiplatelet monotherapies in patients with CAD. Full article
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
16 pages, 5358 KiB  
Article
Oxidative Ferritin Destruction: A Key Mechanism of Iron Overload in Acetaminophen-Induced Hepatocyte Ferroptosis
by Kaishuo Gong, Kaiying Liang, Hui Li, Hongjun Luo, Yingtong Chen, Ke Yin, Zhixin Liu, Wenhong Luo and Zhexuan Lin
Int. J. Mol. Sci. 2025, 26(15), 7585; https://doi.org/10.3390/ijms26157585 - 5 Aug 2025
Abstract
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the [...] Read more.
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the mechanisms of APAP hepatotoxicity in primary mouse hepatocytes (PMHs) by using integrated methods (MTT assay, HPLC analysis for glutathione (GSH), Calcein-AM for labile iron pool detection, confocal microscopy for lipid peroxidation and mitochondrial superoxide measurements, electron microscopy observation, and Western blot analysis for ferritin), focusing on the role of iron dysregulation under oxidative stress. Our results showed that 20 mM APAP treatment induced characteristic features of ferroptosis, including GSH depletion, mitochondrial dysfunction, and iron-dependent lipid peroxidation. Further results showed significant ferritin degradation and subsequent iron releasing. Iron chelator deferoxamine (DFO) and N-acetylcysteine (NAC) could alleviate APAP-induced hepatotoxicity, while autophagy inhibitors did not provide a protective effect. In vitro experiments confirmed that hydrogen peroxide directly damaged ferritin structure, leading to iron releasing, which may aggravate iron-dependent lipid peroxidation. These findings provide evidence that APAP hepatotoxicity involves a self-amplifying cycle of oxidative stress and iron-mediated oxidative damaging, with ferritin destruction playing a key role as a free iron source. This study offers new insights into APAP-induced liver injury beyond conventional cell death classifications, and highlights iron chelation as a potential therapeutic strategy alongside traditional antioxidative treatment with NAC. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 459 KiB  
Article
Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study
by Olivieri Silvia, Sara Mazzanti, Gabriele Gelo Signorino, Francesco Pallotta, Andrea Ficola, Benedetta Canovari, Vanessa Di Muzio, Michele Di Prinzio, Elisabetta Cerutti, Abele Donati, Andrea Giacometti, Francesco Barchiesi and Lucia Brescini
Antibiotics 2025, 14(8), 797; https://doi.org/10.3390/antibiotics14080797 - 5 Aug 2025
Viewed by 40
Abstract
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted [...] Read more.
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted across four Intensive Care Units (ICUs) in three hospitals in the Marche region of Italy. The primary objective was to evaluate the 30-day clinical outcomes and identify risk factors associated with 30-day clinical failure—defined as death, microbiological recurrence, or persistence within 30 days after discontinuation of therapy—in critically ill patients treated with CAZ-AVI. Methods: The study included all adult critically ill patients admitted to the participating ICUs between January 2020 and September 2023 who received CAZ-AVI for at least 72 h for the treatment of a confirmed or suspected Gram-negative bacterial (GNB) infection. Results: Among the 161 patients included in the study, CAZ-AVI treatment resulted in a positive clinical outcome (i.e., clinical improvement and 30-day survival) in 58% of cases (n = 93/161), while the overall mortality rate was 24% (n = 38/161). Relapse or persistent infection occurred in a substantial proportion of patients (25%, n = 41/161). Notably, acquired resistance to CAZ-AVI was observed in 26% of these cases, likely due to suboptimal use of the drug in relation to its pharmacokinetic/pharmacodynamic (PK/PD) properties in critically ill patients. Furthermore, treatment failure was more frequent among immunosuppressed individuals, particularly liver transplant recipients. Conclusions: This study demonstrates that the mortality rate among ICU patients treated with this novel antimicrobial combination is consistent with findings from other studies involving heterogeneous populations. However, the rapid emergence of resistance underscores the need for vigilant surveillance and the implementation of robust antimicrobial stewardship strategies. Full article
Show Figures

Figure 1

20 pages, 1772 KiB  
Review
The Binding and Effects of Boron-Containing Compounds on G Protein-Coupled Receptors: A Scoping Review
by José M. Santiago-Quintana, Alina Barquet-Nieto, Bhaskar C. Das, Rafael Barrientos-López, Melvin N. Rosalez, Ruth M. Lopez-Mayorga and Marvin A. Soriano-Ursúa
Receptors 2025, 4(3), 15; https://doi.org/10.3390/receptors4030015 - 5 Aug 2025
Viewed by 74
Abstract
Boron-containing compounds (BCCs) have emerged as potential drugs. Their drug-like effects are mainly explained by their mechanisms of action in enzymes. Nowadays, some experimental data support the effects of specific BCCs on GPCRs, provided there are crystal structures that show them bound to [...] Read more.
Boron-containing compounds (BCCs) have emerged as potential drugs. Their drug-like effects are mainly explained by their mechanisms of action in enzymes. Nowadays, some experimental data support the effects of specific BCCs on GPCRs, provided there are crystal structures that show them bound to G protein-coupled receptors (GPCRs). Some BCCs are recognized as potential ligands of GPCRs—the drug targets of many diseases. Objective: The aim of this study was to collecte up-to-date data on the interactions of BCCs with GPCRs. Methods: Data were collected from the National Center of Biotechnology Information, PubMed, Global Health, Embase, the Web of Science, and Google Scholar databases and reviewed. Results: Some experimental reports support the interactions of BCCs with several GPCRs, acting as their labels, agonists, or antagonists. These interactions can be inferred based on in silico and in vitro results if there are no available crystal structures for validating them. Conclusions: The actions of BCCs on GPCRs are no longer hypothetical, as the existing evidence supports BCCs’ interactions with and actions on GPCRs. Full article
(This article belongs to the Collection Receptors: Exceptional Scientists and Their Expert Opinions)
Show Figures

Figure 1

13 pages, 774 KiB  
Review
Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors
by Lara Colby, Caroline Preskitt, Jennifer S. Ho, Karl Balsara and Dee Wu
Int. J. Mol. Sci. 2025, 26(15), 7541; https://doi.org/10.3390/ijms26157541 - 5 Aug 2025
Viewed by 174
Abstract
Brain metastases are a common and deadly complication of many primary tumors. The progression of these tumors is poorly understood, and treatment options are limited. Two important components of tumor growth are hypoxia and angiogenesis. We conducted a review to look at the [...] Read more.
Brain metastases are a common and deadly complication of many primary tumors. The progression of these tumors is poorly understood, and treatment options are limited. Two important components of tumor growth are hypoxia and angiogenesis. We conducted a review to look at the possibility of a symbiotic relationship between two transcription factors, Hypoxia-Inducible Factor 1α (HIF1α) and Vascular Endothelial Growth Factor (VEGF), and the role they play in metastasis to the brain. We delve further into this possible relationship by examining commonly used chemotherapeutic agents and their targets. Through an extensive literature review, we identified articles that provided evidence of a strong connection between these transcription factors and the growth of brain metastases, many highlighting a symbiotic relationship. Further supporting this, combinations of chemotherapeutic drugs with varying targets have increased the efficacy of treatment. Angiogenesis and hypoxia have long been known to play a large role in the invasion, growth, and poor outcomes of tumors. However, it is not fully understood how these factors influence one another during metastases. While prior studies have investigated the effects separately, we specifically delve into the synergistic and compounding effects that may exist between them. Our findings underscore the need for greater research allocation to investigate the possible symbiotic relationship between angiogenesis and hypoxia in brain metastasis. Full article
(This article belongs to the Special Issue Molecular Research on Tumor Metastasis and Inhibition)
Show Figures

Figure 1

15 pages, 8600 KiB  
Article
A Small-Molecule Compound Targeting Canine Mammary Cancer Regulates CXCL10 and MECOM Transcripts via Histone Modifications in CMT-N7
by Rongrong Wang, Chuyang Zhu, Xiaoyue Yuan, Cuipeng Zhu, Saber Y. Adam, Haoyu Liu, Demin Cai and Jiaguo Liu
Animals 2025, 15(15), 2274; https://doi.org/10.3390/ani15152274 - 4 Aug 2025
Viewed by 153
Abstract
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with [...] Read more.
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with a relative incidence rate of 46.71% for CMT in China over the past five years, severely threatening the life and health of dogs. Therefore, the search for novel drugs targeting canine mammary cancer is of great significance. This study aims to investigate how the RORγ inhibitors W6134 and XY018 affect the expression of inflammatory genes through histone modifications in CMT-N7 cells. These results show that W6134 and XY018 can upregulate signaling pathways related to inflammation and apoptosis and influence the expression of associated genes. The close link between RORγ and inflammation-related genes further confirms that RORγ may serve as a therapeutic target for canine cancer. Additionally, ChIP-qPCR was used to detect the enrichment of histone markers such as P300, H3K27ac, H3K4me1, H3K9la, and H3K9bhb at the target loci of CXCL10 and MECOM genes. Collectively, our findings provide molecular evidence for the protective role of RORγ in canine mammary cancer, potentially by regulating inflammatory pathways via histone modifications, offering new insights for improving the cure rate and survival of affected dogs. Full article
(This article belongs to the Special Issue Nutrition, Physiology and Metabolism of Companion Animals)
Show Figures

Figure 1

33 pages, 1872 KiB  
Review
Exploring the Epidemiologic Burden, Pathogenetic Features, and Clinical Outcomes of Primary Liver Cancer in Patients with Type 2 Diabetes Mellitus (T2DM) and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Scoping Review
by Mario Romeo, Fiammetta Di Nardo, Carmine Napolitano, Claudio Basile, Carlo Palma, Paolo Vaia, Marcello Dallio and Alessandro Federico
Diabetology 2025, 6(8), 79; https://doi.org/10.3390/diabetology6080079 - 4 Aug 2025
Viewed by 217
Abstract
Background/Objectives: Primary liver cancer (PLC), encompassing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), constitutes a growing global health concern. Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) and Type 2 diabetes mellitus (T2DM) represent a recurrent epidemiological overlap. Individuals with MASLD and T2DM (MASLD-T2DM) are [...] Read more.
Background/Objectives: Primary liver cancer (PLC), encompassing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), constitutes a growing global health concern. Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) and Type 2 diabetes mellitus (T2DM) represent a recurrent epidemiological overlap. Individuals with MASLD and T2DM (MASLD-T2DM) are at a higher risk of PLC. This scoping review highlights the epidemiological burden, the classic and novel pathogenetic frontiers, and the potential strategies optimizing the management of PLC in MASLD-T2DM. Methods: A systematic search of the PubMed, Medline, and SCOPUS electronic databases was conducted to identify evidence investigating the pathogenetic mechanisms linking MASLD and T2DM to hepatic carcinogenesis, highlighting the most relevant targets and the relatively emerging therapeutic strategies. The search algorithm included in sequence the filter words: “MASLD”, “liver steatosis”, “obesity”, “metabolic syndrome”, “body composition”, “insulin resistance”, “inflammation”, “oxidative stress”, “metabolic dysfunction”, “microbiota”, “glucose”, “immunometabolism”, “trained immunity”. Results: In the MASD-T2DM setting, insulin resistance (IR) and IR-induced mechanisms (including chronic inflammation, insulin/IGF-1 axis dysregulation, and autophagy), simultaneously with the alterations of gut microbiota composition and functioning, represent crucial pathogenetic factors in hepatocarcinogenesis. Besides, the glucose-related metabolic reprogramming emerged as a crucial pathogenetic moment contributing to cancer progression and immune evasion. In this scenario, lifestyle changes, simultaneously with antidiabetic drugs targeting IR-related effects and gut-liver axis, in parallel with novel approaches modulating immunometabolic pathways, represent promising strategies. Conclusions: Metabolic dysfunction, classically featuring MASLD-T2DM, constitutes a continuously expanding global issue, as well as a critical driver in PLC progression, demanding integrated and personalized interventions to reduce the future burden of disease. Full article
Show Figures

Figure 1

Back to TopTop