Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = droplet evaporation characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10371 KB  
Article
Numerical Simulation of Gas-Liquid Two-Phase Flow in a Downhole Multistage Axial Compressor Under Different Inlet Conditions
by Mingchen Cao, Wei Pang, Huanle Liu, Shifan Su, Yufan Wang and Weihao Zhang
Energies 2026, 19(1), 275; https://doi.org/10.3390/en19010275 - 5 Jan 2026
Viewed by 224
Abstract
During natural gas field extraction, downhole compressors frequently encounter gas-liquid two-phase flow conditions, yet the internal flow characteristics and performance evolution mechanisms remain insufficiently understood. This paper investigates a small-scale, low-pressure-ratio five-stage axial compressor using a multiphase numerical simulation method based on the [...] Read more.
During natural gas field extraction, downhole compressors frequently encounter gas-liquid two-phase flow conditions, yet the internal flow characteristics and performance evolution mechanisms remain insufficiently understood. This paper investigates a small-scale, low-pressure-ratio five-stage axial compressor using a multiphase numerical simulation method based on the Euler-Lagrange framework. The study systematically examines the effects of different inlet pressures (0.1 MPa, 1 MPa, 8 MPa) and liquid mass fraction (0%, 5%, 10%) on its overall and stage-by-stage performance, droplet evolution, and flow field structure. The results indicate that the inlet pressure exerts a decisive influence on the overall efficiency trend of wet compression. The stage efficiency response displays a trend of an initial decrease in the front stages followed by an increase in the rear stages, showing significant variation under different inlet pressures. Flow field analysis reveals that increased inlet pressure intensifies droplet aerodynamic breakup, leading to higher flow losses in the compressor. Simultaneously, under high-pressure conditions, the cumulative cooling effect resulting from droplet heat transfer and evaporation effectively enhances the flow stability in the rear stages. This research elucidates the interstage interaction mechanisms of gas-liquid two-phase flow in low-pressure-ratio multistage compressors and highlights the competing influences of droplet breakup and evaporation effects on performance under different pressure conditions, providing a theoretical basis for the optimal design of downhole wet gas compression technology. Full article
Show Figures

Figure 1

17 pages, 4789 KB  
Article
Flash-Boiling Effect on Water–Methanol Blends Sprays Generated Under Low Injection Pressure
by Łukasz Boruc and Łukasz Jan Kapusta
Appl. Sci. 2026, 16(1), 106; https://doi.org/10.3390/app16010106 - 22 Dec 2025
Viewed by 205
Abstract
This study presents experimental research on the injection of water–methanol mixtures under both subcooled and superheated conditions. Injecting superheated liquid results in the formation of flash-boiling sprays, generating smaller droplets compared to non-superheated conditions. This improved atomisation leads to a decrease in spray [...] Read more.
This study presents experimental research on the injection of water–methanol mixtures under both subcooled and superheated conditions. Injecting superheated liquid results in the formation of flash-boiling sprays, generating smaller droplets compared to non-superheated conditions. This improved atomisation leads to a decrease in spray penetration and evaporation time. The mixture of water and methanol is a non-azeotropic mixture, meaning it exhibits different bubble and dew points. Non-azeotropic mixtures are the most common type of mixture. This study investigates the atomisation characteristics of water–methanol mixtures injected under low pressure (0.5 MPa) into a quiescent ambience. The experiments were conducted in an open environment at 1-atm absolute pressure and 22 °C temperature. Five different compositions were tested, including pure water, pure methanol (99.9%), and mixtures with water–methanol volume ratios of 75/25, 50/50, and 25/75. Using laser shadowgraphy with long-distance microscopy, droplet size distributions were measured at four distinct locations. Under high superheat conditions, the droplet distribution was similar for all mixtures. The Sauter mean diameter (SMD) rapidly decreased for all liquids when subjected to superheated injection. This led to the conclusion that the composition of non-azeotropic substances has little significance in terms of droplet diameter at high superheat. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

16 pages, 2804 KB  
Article
Experimental Investigation on Spray Characteristics of Polymethoxy Dimethyl Ether as a Sustainable Fuel Applied to Diesel Engine
by Fuquan Nie, Junjie Niu, Huaiyu Wang and Cheng Shi
Sustainability 2025, 17(24), 11323; https://doi.org/10.3390/su172411323 - 17 Dec 2025
Viewed by 268
Abstract
As global efforts to combat climate change and promote sustainable development intensify, PODEn, as an innovative type of clean, sustainable fuel, has gained growing attention for its potential to support eco-friendly energy transitions, especially concerning the spray characteristics of its blended fuels. Environmental [...] Read more.
As global efforts to combat climate change and promote sustainable development intensify, PODEn, as an innovative type of clean, sustainable fuel, has gained growing attention for its potential to support eco-friendly energy transitions, especially concerning the spray characteristics of its blended fuels. Environmental conditions are crucial in the fuel spraying process, which is essential for optimizing combustion efficiency and reducing emissions—key elements of sustainable energy use and climate action. In this study, the parameters of spray morphology, droplet size distribution, and velocity were accurately measured using a constant-volume combustor and high-speed photography. The results demonstrate that as ambient pressure increases, both the spray cone angle and boundary gas entrainment volume increase, while the spray penetration distance and spray volume decrease. These changes, driven by pressure differences and variations in gas density that influence droplet movement and fragmentation, are critical for optimizing fuel injection strategies to enhance combustion efficiency and reduce environmental impact. This aligns closely with the Sustainable Development Goals focused on clean energy, responsible consumption, and climate mitigation. Conversely, as ambient temperature rises, the penetration distance and spray volume increase, whereas the entrainment volume decreases and the spray cone angle narrows. This phenomenon results from the combined effects of temperature on gas density, viscosity, evaporation rate, and convective flow, underscoring the need for adaptive engine designs that leverage these characteristics to improve fuel efficiency and reduce carbon emissions—an essential step toward sustainable development in the energy and automotive sectors. Full article
(This article belongs to the Special Issue Technology Applications in Sustainable Energy and Power Engineering)
Show Figures

Figure 1

17 pages, 1558 KB  
Article
Experimental Characterization of Water Droplet Dynamics in Sprinkler Irrigation Using High-Speed Photography
by Joseph Kwame Lewballah, Xingye Zhu, Peng Li and Alexander Fordjour
Water 2025, 17(24), 3460; https://doi.org/10.3390/w17243460 - 5 Dec 2025
Viewed by 408
Abstract
A clear understanding of water droplet formation and distribution dynamics is fundamental to improving the hydraulic performance and operational efficiency of sprinkler irrigation systems. This study presents an experimental investigation of droplet characteristics using high-speed photography under controlled laboratory conditions. The objective was [...] Read more.
A clear understanding of water droplet formation and distribution dynamics is fundamental to improving the hydraulic performance and operational efficiency of sprinkler irrigation systems. This study presents an experimental investigation of droplet characteristics using high-speed photography under controlled laboratory conditions. The objective was to analyze droplet diameter, ellipticity, frequency, and velocity at working pressures of 0.2, 0.25, and 0.3 MPa. Median droplet diameters measured at 6–8 m from the nozzle were 2.79 mm, 3.41 mm, and 3.68 mm at 0.2 MPa, with a reduction of up to 17.7% as pressure increased to 0.3 MPa. Smaller droplets were predominantly concentrated near the nozzle and decreased with radial distance, influencing water application uniformity. Morphological parameters such as uniformity (1.3), ellipticity (2.13), and circularity (0.81) were quantified. Cumulative frequency curves revealed 12% droplet fragmentation at 7–8 m under higher pressures, illustrating the dynamic nature of droplet breakup. A strong linear correlation between droplet diameter and calibrated reference diameter confirmed the reliability of the measurement technique. These findings demonstrate that high-speed photography is a robust method for droplet characterization and provides accurate, repeatable data essential for optimizing sprinkler designs to reduce water loss due to evaporation and wind drift. The study contributes to precision irrigation research by offering a detailed understanding of droplet behavior under varying operating pressures. Full article
Show Figures

Figure 1

19 pages, 3257 KB  
Article
Influence of Retinol Dermal Delivery Formulation on Its Stability Characteristics
by Ioana Lavinia Lixandru Matei, Bogdan Alexandru Sava, Codruta Sarosi, Cristina Maria Dușescu-Vasile, Andreea Iuliana Ionescu, Abeer Baioun, Marian Băjan, Gheorghe Brănoiu, Daniela Roxana Popovici, Andra-Ioana Stănică and Dorin Bomboș
Gels 2025, 11(12), 935; https://doi.org/10.3390/gels11120935 - 21 Nov 2025
Viewed by 608
Abstract
New cosmeceuticals formulas (direct emulsion, inverse emulsion and hydrogel), that synergistically combine bioglass with retinol, were prepared and characterized in order to attenuate the irritant potential of retinoids and prolong their therapeutic efficacy. The study evaluates the physicochemical, microbiological and stability characteristics of [...] Read more.
New cosmeceuticals formulas (direct emulsion, inverse emulsion and hydrogel), that synergistically combine bioglass with retinol, were prepared and characterized in order to attenuate the irritant potential of retinoids and prolong their therapeutic efficacy. The study evaluates the physicochemical, microbiological and stability characteristics of these formulations. Thus, TGA and DSC analyses revealed stronger interactions between water molecules and those of other organic compounds, with much more being observed in the case of emulsions than in the case of hydrogel, materialized by the delay in water evaporation. The stability of the three types of formulations has been evaluated in two ways: by determining the backscattering variation with the height of the container and analyzing the sample for 6 h and by counting the fraction of small droplets. Both methods demonstrated high stability in the three types of formulations. Full article
Show Figures

Figure 1

29 pages, 10522 KB  
Article
Numerical Simulation of Hot Air Anti-Icing Characteristics for Intake Components of Aeronautical Engine
by Shuliang Jing, Yaping Hu and Weijian Chen
Aerospace 2025, 12(9), 753; https://doi.org/10.3390/aerospace12090753 - 22 Aug 2025
Cited by 1 | Viewed by 776
Abstract
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual [...] Read more.
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual engine operating parameters. The simulation integrated multi-physics modules, including air-supercooled water droplet two-phase flow around components, water film flow and heat transfer on anti-icing surfaces, solid heat conduction within structural components, hot air flow dynamics in anti-icing cavities, and their coupled heat transfer interactions. Simulation results indicate that water droplet impingement primarily localizes at the leading edge roots and pressure surfaces of struts, as well as the leading edges and pressure surfaces of guide vanes. The peak water droplet collection coefficient reaches 4.2 at the guide vane leading edge. Except for the outlet end wall of the axial flow casing, all anti-icing surfaces of intake components maintain temperatures above the freezing point, demonstrating effective anti-icing performance. The anti-icing characteristics of the intake components are governed by two critical factors: cumulative heat loss along the hot air flow path and heat load consumption for heating and evaporating impinging water droplets. The former induces a 53.9 °C temperature disparity between the first and last struts in the heating sequence. For zero-stage guide vanes, the latter factor exerts a more pronounced influence. Notable temperature reductions occur on the trailing edges of three struts downstream of the hot air flow and at the roots of zero-stage guide vanes. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Graphical abstract

13 pages, 3072 KB  
Article
Effects of Biodiesel–Ethanol–Graphene Droplet Volume and Graphene Content on Microexplosion: Distribution, Velocity and Acceleration of Secondary Droplets
by Jing Shi, Changhao Wang, Wei Zhang and Kesheng Meng
Processes 2025, 13(8), 2646; https://doi.org/10.3390/pr13082646 - 21 Aug 2025
Viewed by 693
Abstract
Under the continuous tightening of global carbon emission policies, the search for sustainable low-emission energy sources is of great significance to reduce the reliance on the use of fossil fuels and to save energy and reduce emissions. Biodiesel–ethanol–graphene mixed fuel has high combustion [...] Read more.
Under the continuous tightening of global carbon emission policies, the search for sustainable low-emission energy sources is of great significance to reduce the reliance on the use of fossil fuels and to save energy and reduce emissions. Biodiesel–ethanol–graphene mixed fuel has high combustion efficiency and low emission characteristics, and an in-depth study of its evaporation and microexplosion characteristics during the heating process can help to better understand the characteristics of this fuel. In this paper, the evaporation, microexplosion, sub-droplet distribution and kinematic properties of biodiesel–ethanol–graphene droplets under different temperatures, volumes and mixing ratios were investigated by simulating the air atmosphere using a modified tube furnace experimental platform. It was found that the BD50E50 (1%G) droplet produced a weak microexplosion under 600 °C, and three secondary droplets were formed, with the largest secondary droplet area reaching 5.28 mm2. The BD50E50 (1%G) droplet produced strong microexplosion under 800 °C conditions, and 10 secondary droplets were formed, with the largest secondary droplet area of 3.02 mm2. Different intensities of microexplosion and ejection phenomena produced by the biodiesel–ethanol–graphene droplets during the heating process were found, and it was found that the temperature and droplet volume determine whether the microexplosion of the mixed droplets can occur or not, while the intensity of the microexplosion determines the number of secondary droplets and the speed of movement. Additionally, the velocity and acceleration of secondary droplets produced by ejection were significantly greater than those produced by microexplosion. These studies provide a theoretical basis for the application of this fuel. Full article
(This article belongs to the Special Issue Advances in Engineering Thermodynamics and Numerical Simulation)
Show Figures

Figure 1

18 pages, 3393 KB  
Article
An Investigation of the Characteristics of the Mei–Yu Raindrop Size Distribution and the Limitations of Numerical Microphysical Parameterization
by Zhaoping Kang, Zhimin Zhou, Yinglian Guo, Yuting Sun and Lin Liu
Remote Sens. 2025, 17(14), 2459; https://doi.org/10.3390/rs17142459 - 16 Jul 2025
Viewed by 770
Abstract
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR [...] Read more.
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR) are slightly underestimated relative to RG measurements. Both observations and simulations identify 1–3 mm raindrops as the dominant precipitation contributors, though the model overestimates small and large drop contributions. At low RR, decreased small-drop and increased large-drop concentrations cause corresponding leftward and rightward RSD shifts with decreasing altitude—a pattern well captured by simulations. However, at elevated rainfall rates, the simulated concentration of large raindrops shows no significant increase, resulting in negligible rightward shifting of RSD in the model outputs. Autoconversion from cloud droplets to raindrops (ATcr), collision and breakup between raindrops (AGrr), ice melting (MLir), and evaporation of raindrops (VDrv) contribute more to the number density of raindrops. At 0.1 < RR < 1 mm·h−1, ATcr dominates, while VDrv peaks in this intensity range before decreasing. At higher intensities (RR > 20 mm·h−1), AGrr contributes most, followed by MLir. When the RR is high enough, the breakup of raindrops plays a more important role than collision, leading to a decrease in the number density of raindrops. The overestimation of raindrop breakup from the numerical parameterization may be one of the reasons why the RSD does not shift significantly to the right toward the surface under the heavy RR grade. The RSD near the surface varies with the RR and characterizes surface precipitation well. Toward the surface, ATcr and VDrv, but not AGrr, become similar when precipitation approaches. Full article
Show Figures

Figure 1

20 pages, 9695 KB  
Article
Numerical Investigation on Flow and Thermal Characteristics of Spray Evaporation Process in Boiler Desuperheater
by Jianqing Wang, Baoqing Liu, Bin Du, Kaifei Wu, Qi Lin, Bohai Liu and Minghui Cheng
Energies 2025, 18(14), 3734; https://doi.org/10.3390/en18143734 - 15 Jul 2025
Viewed by 698
Abstract
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid [...] Read more.
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid dynamics (CFDs) was applied to numerically investigate the flow and thermal characteristics. The Eulerian–Lagrangian approach was used to describe the two-phase flow characteristics. Both primary and secondary droplet breakup, the coupling effect of gas–liquid and stochastic collision and coalescence of droplets were considered in the model. The plain-orifice atomizer model was applied to simulate the atomization process. The numerical model was validated with the plant data. The spray tube structure was found to greatly affect the flow pattern, resulting in the uneven velocity distribution, significant temperature difference, and local reverse flow downstream of the orifices. The velocity and temperature distributions tend to be more uniform due to the complete evaporation and turbulent mixing. Smaller orifices are beneficial for generating smaller-sized droplets, thereby promoting the mass and heat transfer between the steam and droplets. Under the same operating conditions, the desuperheating range of cases with 21, 15, and 9 orifices is 33.7 K, 32.0 K, and 29.8 K, respectively, indicating that the desuperheater with more orifices (i.e., with smaller orifices) shows better desuperheating ability. Additionally, a venturi-type desuperheater was numerically studied and compared with the straight liner case. By contrast, discernible differences in velocity and temperature distribution characteristics can be observed in the venturi case. The desuperheating range of the venturi and straight liner cases is 38.1 K and 35.4 K, respectively. The velocity acceleration through the venturi throat facilitates the droplet breakup and improves mixing, thereby achieving better desuperheating ability and temperature uniformity. Based on the investigation of the spray evaporation process, the complex droplet behaviors and fluid–thermal coupling characteristics in an industrial boiler desuperheater under high temperature and high pressure can be better understood, and effective guidance for the process and design optimizations can be provided. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) for Heat Transfer Modeling)
Show Figures

Figure 1

20 pages, 2709 KB  
Article
Study on the Characteristics of High-Temperature and High-Pressure Spray Flash Evaporation for Zero-Liquid Discharge of Desulfurization Wastewater
by Lanshui Zhang and Zhong Liu
Energies 2025, 18(12), 3180; https://doi.org/10.3390/en18123180 - 17 Jun 2025
Viewed by 1070
Abstract
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the [...] Read more.
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the high-temperature and high-pressure spray flash evaporation process within a flash tank were conducted using the Discrete Phase Model (DPM) and a self-developed heat and mass transfer model for superheated droplets under depressurization conditions. The effects of feedwater temperature, pressure, nozzle spray angle, and mass flow rate on spray flash evaporation characteristics were systematically analyzed. Key findings reveal that (1) feedwater temperature is the dominant factor, with the vaporization rate significantly increasing from 19.78% to 55.88% as temperature rises from 240 °C to 360 °C; (2) higher pressure reduces equilibrium time (flash evaporation is complete within 6 ms) but shows negligible impact on final vaporization efficiency (stabilized at 33.93%); (3) increasing the spray angle provides limited improvement to water recovery efficiency (<1%); (4) an optimal mass flow rate exists (0.2 t/h), achieving a peak vaporization rate of 42.6% due to balanced evaporation space utilization. This work provides valuable insights for industrial applications in desulfurization wastewater treatment. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 6176 KB  
Article
Study of Ignition Process in an Aero Engine Combustor Based on Droplet Evaporation Characteristics Analyses
by Lei Sun, Rui Feng, Fangliang Wang and Xiwei Wang
Energies 2025, 18(12), 3130; https://doi.org/10.3390/en18123130 - 14 Jun 2025
Viewed by 833
Abstract
To study the coupling mechanism between droplet evaporation characteristics and flame propagation, in this paper, the ignition process in a single dome lean direct injection combustor is simulated by the Large Eddy Simulation (LES) method. A new concept, i.e., available droplet, and a [...] Read more.
To study the coupling mechanism between droplet evaporation characteristics and flame propagation, in this paper, the ignition process in a single dome lean direct injection combustor is simulated by the Large Eddy Simulation (LES) method. A new concept, i.e., available droplet, and a new parameter, i.e., available equivalence ratio, are innovatively introduced to accurately quantify fuel–air mixing characteristics and reveal flame propagation mechanisms. Simulation results show that the temporal variations in the locally available equivalence ratio during the ignition process can serve as a reliable indicator to identify the flame propagation direction. Moreover, the results show that during the ignition process, available droplets are mainly distributed in the regions where temperatures range from 650 K to 1200 K. The number percentage of available droplets in the combustor increases approximately exponentially to about 2.5% after 40 ms from the ignition. Additionally, the temperature fields and distributions of the available equivalence ratio at different moments during the ignition are also computed and analyzed. The results show that the volume percentage of flammable regions gradually increases from the ignition and eventually stabilizes at about 10% after 8 ms from the ignition. This result shows that during the ignition, the increase in regions whose available equivalence ratios fit flammability is a critical factor for ensuring stable flame development. The available droplet and available equivalence ratio can bridge the gap between droplet-scale evaporation and combustor-scale ignition dynamics, offering an analytical tool for optimizing ignition criteria in aero engine combustors. By analyzing the distributions and evolutions of available fuel rather than fuel vapor, this work can be utilized in design strategies for reliable ignition in extreme conditions. Full article
(This article belongs to the Special Issue Heat and Mass Transfer: Theory, Methods, and Applications)
Show Figures

Figure 1

20 pages, 13076 KB  
Article
Enhancement of a Magnetically Controlled Cathodic Arc Source for the Deposition of Multi-Component Hard Nitride Coatings
by Van-Tien Tang, Yin-Yu Chang and Yi-Ru Chen
Materials 2025, 18(10), 2276; https://doi.org/10.3390/ma18102276 - 14 May 2025
Cited by 1 | Viewed by 1175
Abstract
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. [...] Read more.
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. Furthermore, this approach provides precise control over the chemical composition and thickness of the coating, ensuring consistent quality across the entire surface. However, uneven evaporation and ejection of molten metal droplets from the cathode during cathode arc deposition produce particles and droplets, resulting in an uneven coating surface. This study presents a new design for a magnetically controlled cathode arc source to effectively reduce particles and droplets during the cathodic arc deposition of multi-component alloy targets for nitride-based hard coatings. The study compares the performance of a new source with a conventional magnetic-controlled arc source for depositing TiAlNbSiN and AlCrSiN films. In the conventional source, the magnetic field is generated by a permanent magnet (PM), whereas in the new source, it is generated and controlled using an electromagnet (EM). Both films are produced using multi-component alloy targets (TiAlNbSi and AlCrSi) with identical composition ratios. The plasma characteristics of the two different arc sources are investigated using an optical emission spectrometer (OES), and the surface morphology, structural characteristics, deposition rate, uniformity, and surface roughness (Sa) are examined using scanning electron microscopy (SEM). When the EM was applied to have high plasma density, the hardness of the TiAlNbSiN film deposited with the novel arc source measured 31.2 ± 1.9 GPa, which is higher than that of the PM arc source (28.3 ± 1.4 GPa). In contrast, the AlCrSiN film created using a typical arc source exhibited a hardness of only 25.5 ± 0.6 GPa. This lower hardness may be due to insufficient ion kinetic energy to enhance stress blocking and increase hardness, or the presence of the h-AlN phase in the film, which was not detected by XRD. The electromagnet arc source, with its adequate ion bombardment velocity, facilitated a complementary effect between grain growth and stress blocking, leading to a remarkable hardness of 32.6 ± 0.5 GPa. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

12 pages, 2575 KB  
Article
Visualization Investigation of Heat Transfer Behavior in a Flat-Tube Shaped Heat Pipe
by Jue Li, Ruofan Wang, Ting Xia and Haijun Chen
Energies 2025, 18(5), 1219; https://doi.org/10.3390/en18051219 - 2 Mar 2025
Cited by 1 | Viewed by 1289
Abstract
Unveiling the heat transfer behavior of solar collectors in concentrating solar thermochemical energy storage is crucial for harnessing full-spectrum solar light. In this study, a glass Flat Tube-Shaped Heat Pipe (FT-SHP) was developed, and a visualization experimental platform was established to investigate its [...] Read more.
Unveiling the heat transfer behavior of solar collectors in concentrating solar thermochemical energy storage is crucial for harnessing full-spectrum solar light. In this study, a glass Flat Tube-Shaped Heat Pipe (FT-SHP) was developed, and a visualization experimental platform was established to investigate its internal operation mechanisms and heat transfer characteristics. The results revealed that the liquid filling ratio (FR) significantly affects the heat transfer performance, with an optimal value identified as 25%. As the heat flow temperature in the evaporation section increased, both the Bubble Growing Frequency (BGF) and Droplet Condensation Reflux Period (DCRP) decreased, leading to a reduction in thermal resistance. Conversely, an increase in the cooling flow rate resulted in opposite trends in BGF and DCRP within the tube, while both the Reynolds (Re) number and thermal resistance decreased. As such, an empirical correlation between thermal resistance and Re number was derived, demonstrating a nonlinear relationship between thermal resistance, BGF, and DCRP. These findings provide important insights for the design of heat pipes, with the potential to enhance the efficiency and reliability of solar collectors. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

17 pages, 3687 KB  
Article
Ignition and Puffing Characteristics of Kerosene Droplets with Addition of Boron Particles and Water/Ethanol Under Sub-Atmospheric Pressure
by Jie Huang, Hongkun Lv, Jing Nie, Liwei Ding, Xinrui Xiong, Kang Zhang, Jiaying Chen, Zhenya Lai and Zhihua Wang
Energies 2025, 18(5), 1025; https://doi.org/10.3390/en18051025 - 20 Feb 2025
Viewed by 1014
Abstract
To address the problems of the reduced evaporation rate and increased ignition time of kerosene droplets at sub-atmospheric pressures and high temperatures, boron and ethanol/water were selected as additives to be blended with RP-3 kerosene, respectively. The effects of different types of blended [...] Read more.
To address the problems of the reduced evaporation rate and increased ignition time of kerosene droplets at sub-atmospheric pressures and high temperatures, boron and ethanol/water were selected as additives to be blended with RP-3 kerosene, respectively. The effects of different types of blended fuels on the evaporation, micro-explosion, and spontaneous ignition characteristics of RP-3 kerosene droplets were tested and compared using an independently designed, high-temperature, controlled-pressure experimental droplet system. A low-pressure environment (0.4 bar) promoted the high-intensity micro-explosion of RP-3/B and RP-3/water/ethanol droplets while reducing the number of puffing events. A comparative study of RP-3/B and RP-3/ethanol/water found that ethanol/water blended fuels had a higher micro-explosion intensity (1000–10,000 vs. 0.2–15 mm/s) and shorter droplet lifetimes and self-ignition times at low pressure. The 30%water fuel (30 vol.%water in water/ethanol sub-droplet) had the shortest ignition/breakup time, with an ignition time of 0.5715 s at 0.8 bar, 26.92% shorter than RP-3’s 0.782 s. This 30%water fuel mixture can increase the release rate of combustible vapors prior to ignition by inducing puffing and micro-explosions at high temperatures. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

12 pages, 11964 KB  
Article
Evaporation of Nanofluid Sessile Droplets Under Marangoni and Buoyancy Effects: Internal Convection and Instability
by Yuequn Tao and Zhiqiang Zhu
Nanomaterials 2025, 15(4), 306; https://doi.org/10.3390/nano15040306 - 17 Feb 2025
Cited by 2 | Viewed by 1575
Abstract
Previous research has studied the evolution of patterns during the evaporation of sessile droplets of pure liquid, although there is a lack of reports focusing on the transition of flow regimes and flow stability of nanofluids. In this study, we investigate the evaporation [...] Read more.
Previous research has studied the evolution of patterns during the evaporation of sessile droplets of pure liquid, although there is a lack of reports focusing on the transition of flow regimes and flow stability of nanofluids. In this study, we investigate the evaporation of sessile droplets of Al2O3-ethanol nanofluid to elucidate the dynamic characteristics of the evaporation process from the perspective of internal convection. As the temperature increases, internal convection intensifies, significantly accelerating the evaporation rate. Three distinct convection flow patterns are observed under the combined influence of the Marangoni effect and buoyancy during evaporation: initially, two macroscopic convection cells form, followed by the periodic generation and propagation of hydrothermal waves (HTWs) near the contact line. Subsequently, Bénard–Marangoni (BM) convection cells gradually emerge and ultimately dominate the flow dynamics. The deposition patterns, which differ in part from the classic coffee-ring pattern, are closely related to the flow patterns of HTWs and BM convection cells during the pinning stage of droplet evaporation. Furthermore, the critical Marangoni (Ma) and Rayleigh (Ra) numbers for the onset of convection flow instability increase with rising substrate heating temperature. Full article
Show Figures

Figure 1

Back to TopTop