Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (643)

Search Parameters:
Keywords = driving smoothness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5963 KB  
Article
A Resource-Efficient Method for Real-Time Flexion–Extension Angle Estimation with an Under-Sensorized Finger Exoskeleton
by Alessia Di Natale, Matilde Gelli, Gherardo Liverani, Alessandro Ridolfi, Benedetto Allotta and Nicola Secciani
Appl. Sci. 2026, 16(3), 1575; https://doi.org/10.3390/app16031575 - 4 Feb 2026
Abstract
Hand exoskeletons are used in rehabilitation together with serious games to enhance patient experience and, possibly, therapy outcomes. To achieve good engagement, a realistic virtual representation of hand motion is needed; however, the relationship between exoskeleton joint motion and anatomical finger kinematics is [...] Read more.
Hand exoskeletons are used in rehabilitation together with serious games to enhance patient experience and, possibly, therapy outcomes. To achieve good engagement, a realistic virtual representation of hand motion is needed; however, the relationship between exoskeleton joint motion and anatomical finger kinematics is rarely obtained using low-cost procedures. This work introduces a mechanical redesign and modeling pipeline that utilizes temporary sensors to identify the exoskeleton–finger mapping, enabling qualitatively realistic virtual hand motion driven solely by the existing on-board sensor. A recently developed hand exoskeleton prototype was redesigned to host two temporary rotary encoders aligned with the MetaCarpoPhalangeal (MCP) and Proximal InterPhalangeal (PIP) joints, in addition to the actuation encoder. Healthy subjects wore the modified device and performed full flexion–extension cycles. Encoder trajectories were processed; then each cycle was approximated by a third-order polynomial in the normalized actuation angle, and a group-level model was obtained by averaging coefficients across valid cycles. Finally, the encoder-based reconstructions of MCP and PIP motion were evaluated against measurements from a gold-standard optical motion capture system. Results indicate that the proposed polynomial model enables joint-angle estimation with sufficient accuracy for interactive rehabilitation scenarios, supporting its use to drive smooth virtual hand motion from the on-board exoskeleton encoder alone. Full article
(This article belongs to the Special Issue Latest Advances and Prospects of Human-Robot Interaction (HRI))
23 pages, 4326 KB  
Article
Closed-Form Safety-Guaranteed Trajectory Tracking Control for Rear- and Front-Wheel-Driven Car-like Vehicles
by Wenxue Zhang, Xuefeng Wu and Dušan M. Stipanović
Actuators 2026, 15(2), 98; https://doi.org/10.3390/act15020098 - 3 Feb 2026
Viewed by 50
Abstract
This paper proposes a closed-form feedback control framework for rear- and front-wheel-drive car-like vehicles, aiming to solve trajectory tracking and collision avoidance tasks operating in complex environments. This method constructs novel risk assessment functions that incorporate motion information, enabling accurate risk assessment and [...] Read more.
This paper proposes a closed-form feedback control framework for rear- and front-wheel-drive car-like vehicles, aiming to solve trajectory tracking and collision avoidance tasks operating in complex environments. This method constructs novel risk assessment functions that incorporate motion information, enabling accurate risk assessment and reducing the conservatism in collision avoidance. Consequently, the proposed framework can effectively handle various on-road situations, including lane-following and obstacle avoidance, parking maneuvers, and navigation through intersections. Lyapunov-based analysis proves the stability of the designed closed-form control scheme. Simulation results in various typical scenarios demonstrate that the proposed method can achieve safe, stable, and smooth trajectory tracking, with improved performance metrics such as reduced tracking error and control effort, verifying its feasibility and effectiveness. Full article
(This article belongs to the Special Issue Motion Planning, Trajectory Prediction, and Control for Robotics)
26 pages, 4986 KB  
Article
Electromechanical Coupling Modeling and Control Characteristics of Permanent Magnet Semi-Direct Drive Scraper Conveyors
by Wenjia Lu, Guangda Liang, Zunling Du, Weibo Huang, Lisha Zhu, Yimin Zhang and Xiaoyu Zhao
Actuators 2026, 15(2), 97; https://doi.org/10.3390/act15020097 - 3 Feb 2026
Viewed by 67
Abstract
To address the challenges of strong electromechanical coupling, nonlinear friction, and poor disturbance rejection in semi-direct-drive scraper conveyor systems under complex coal mining conditions, this paper aims to propose a high-performance drive control strategy that balances dynamic response speed with steady-state operational smoothness. [...] Read more.
To address the challenges of strong electromechanical coupling, nonlinear friction, and poor disturbance rejection in semi-direct-drive scraper conveyor systems under complex coal mining conditions, this paper aims to propose a high-performance drive control strategy that balances dynamic response speed with steady-state operational smoothness. First, an integrated electromechanical coupling dynamic model incorporating Permanent Magnet Synchronous Motor (PMSM) vector control and the time-varying meshing stiffness of a two-stage planetary gear train is established. Subsequently, a Sliding Mode Control (SMC) strategy optimized with a saturation boundary layer is designed and compared with traditional Proportional-Integral (PI) control under multiple operating conditions. Time-frequency domain analysis indicates that SMC significantly enhances the dynamic stiffness of the drive system. Under sudden load change conditions, the speed recovery time is shortened by approximately 76%, and the steady-state error is reduced by 37% compared to PI control. Microscopic characteristic evaluation based on FFT and Total Variation (TV) metrics reveals that SMC achieves active disturbance rejection through spectral broadening of the electromagnetic torque. Crucially, the steady-state cumulative control effort of SMC is equivalent to that of PI, implying no additional mechanical stress burden, while the equivalent dynamic transmission force fluctuation in the mechanical chain is reduced by about 3%. The study confirms that the proposed strategy successfully achieves a synergistic optimization of “macroscopic rapid response” and “microscopic smooth operation,” providing a theoretical basis for the high-precision control of heavy-duty underground transmission equipment. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

22 pages, 4063 KB  
Article
Decoding the Molecular Drivers of Epithelial to Mesenchymal Transition in Breast Cancer: Insights into Epithelial Plasticity and Microenvironment Crosstalk
by Emanuela Peri, Miriam Buttacavoli, Elena Roz, Ida Pucci-Minafra, Salvatore Feo and Patrizia Cancemi
Biology 2026, 15(3), 265; https://doi.org/10.3390/biology15030265 - 1 Feb 2026
Viewed by 171
Abstract
Recent evidence indicates that both epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), are key mechanisms driving breast cancer (BC) metastasis. During EMT, epithelial BC cells acquire mesenchymal traits that enhance motility, invasiveness, and resistance to therapy. A deeper understanding of [...] Read more.
Recent evidence indicates that both epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), are key mechanisms driving breast cancer (BC) metastasis. During EMT, epithelial BC cells acquire mesenchymal traits that enhance motility, invasiveness, and resistance to therapy. A deeper understanding of EMT regulation may therefore unveil novel therapeutic targets to limit disease progression. In this study, we analyzed the expression of key EMT-associated proteins, namely Vimentin, E-cadherin, Cytokeratin-18, and alpha-smooth muscle actin, in a cohort of 95 BC tissue samples and observed marked intra- and inter-tumoral heterogeneity. Notably, we found positive correlations between epithelial and mesenchymal markers, supporting the presence of hybrid epithelial/mesenchymal phenotypes and substantial cellular plasticity, which may contribute to BC heterogeneity. High heterogeneity in marker expression was also detected between tumor tissues and matched adjacent normal tissues. The unexpected complexity uncovered at the protein level prompted us to question whether single markers or limited proteomic panels are sufficient to capture the EMT landscape in BC. Through integrative bioinformatics, we defined a novel EMT gene signature significantly associated with prognosis. Functional enrichment revealed pathways related to extracellular matrix organization, proteoglycans, and intercellular communication, emphasizing the dynamic bidirectional crosstalk between BC cells and the tumor microenvironment. Moreover, we identified a gene cluster linked to cancer stem cell-like features, which may be clinically relevant for patient risk stratification. Overall, our findings underscore the complexity of EMT regulation in BC and introduce a new EMT signature with potential prognostic and therapeutic relevance. Full article
(This article belongs to the Special Issue Advances in Biological Breast Cancer Research (2nd Edition))
Show Figures

Figure 1

20 pages, 45070 KB  
Article
Glide-Snow Avalanche Monitoring and Development of a Site-Specific Glide-Snow Avalanche Warning Model at Planneralm in Styria, Austria
by Ingrid Reiweger, Andreas Eberl, Elisabeth Kindermann and Andreas Gobiet
Appl. Sci. 2026, 16(3), 1426; https://doi.org/10.3390/app16031426 - 30 Jan 2026
Viewed by 103
Abstract
Glide-snow avalanches pose a major challenge for operational forecasting and local avalanche authorities. Although their key prerequisite, a moist interface between the snowpack and smooth ground, is well known, predicting the timing of glide-snow avalanches remains difficult. We analyzed five seasons of avalanche [...] Read more.
Glide-snow avalanches pose a major challenge for operational forecasting and local avalanche authorities. Although their key prerequisite, a moist interface between the snowpack and smooth ground, is well known, predicting the timing of glide-snow avalanches remains difficult. We analyzed five seasons of avalanche monitoring data in the Planneralm area of Styria, Austria. Glide-snow avalanche activity in the study area follows typical temporal patterns, with the highest release probability in the early afternoon and peak activity from mid-March to mid-April. Using meteorological data and avalanche observations as input, we trained machine-learning models to predict hours with glide-snow avalanche release. The most significant predictors were the mean air temperature of the preceding 48h, the day of the winter season, the hour of the day, and the decrease in snow height. The combination of those variables suggests a longer-term predisposition toward glide-snow avalanche release, as well as short-term driving factors. Our decision tree model correctly identified the vast majority of avalanche hours (recall 90%) at the cost of a moderate false alarm rate (15%). Our model could support operational glide-snow avalanche forecasting by identifying hours with elevated glide-snow potential that warrant increased attention and may require warnings or temporary closures by local authorities. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

23 pages, 3346 KB  
Article
Path-Tracking Control for Intelligent Vehicles Based on SAC
by Zhongli Li, Jianhua Zhao, Xianghai Yan, Yu Tian and Haole Zhang
World Electr. Veh. J. 2026, 17(2), 65; https://doi.org/10.3390/wevj17020065 - 30 Jan 2026
Viewed by 107
Abstract
In response to the deterioration of path-tracking accuracy and driving stability encountered by intelligent vehicles under dynamically varying operating conditions, a multi-objective optimization strategy integrating soft actor-critic (SAC) reinforcement learning with variable-parameter Model Predictive Control (MPC) is proposed in this paper to achieve [...] Read more.
In response to the deterioration of path-tracking accuracy and driving stability encountered by intelligent vehicles under dynamically varying operating conditions, a multi-objective optimization strategy integrating soft actor-critic (SAC) reinforcement learning with variable-parameter Model Predictive Control (MPC) is proposed in this paper to achieve online adaptive adjustment of path-tracking controller parameters. Based on a three-degree-of-freedom vehicle dynamics model, a linear time-varying (LTV) MPC controller is constructed to jointly optimize the front wheel steering angle. An SAC agent is developed utilizing the actor-critic framework, with a comprehensive reward function designed around tracking accuracy and control smoothness to enable online tuning of the MPC weighting matrices (lateral error weight, heading error weight, and steering control weight) as well as the prediction horizon parameter, thereby realizing adaptive balance between tracking accuracy and stability under different operating conditions. Based on the simulation results, it can be concluded that under normal operating conditions, the proposed integrated SAC-MPC control scheme demonstrates superior tracking performance, with the maximum absolute lateral error and mean lateral error reduced by 44.9% and 67.2%, respectively, and the maximum absolute heading error reduced by 23.5%. When the system operates under nonlinear conditions during the transitional phase, the proposed control scheme not only enhances tracking accuracy—evidenced by reductions of 43.4% and 23.8% in the maximum absolute lateral error and maximum absolute heading error, respectively—but also significantly improves system stability, as indicated by a 20.7% reduction in the sideslip angle at the center of gravity. Experimental validation further confirms these findings. The experimental results reveal that, compared with the fixed-parameter MPC, the maximum absolute value and mean value of the lateral error are reduced by approximately 36.2% and 78.1%, respectively; the maximum absolute heading angle error is decreased by 24.3%; the maximum absolute yaw rate is diminished by 19.6%; and the maximum absolute sideslip angle at the center of gravity is reduced by 30.8%. Full article
(This article belongs to the Section Automated and Connected Vehicles)
Show Figures

Figure 1

18 pages, 1237 KB  
Article
Real-Time Robotic Navigation with Smooth Trajectory Using Variable Horizon Model Predictive Control
by Guopeng Wang, Guofu Ma, Dongliang Wang, Keqiang Bai, Weicheng Luo, Jiafan Zhuang and Zhun Fan
Electronics 2026, 15(3), 603; https://doi.org/10.3390/electronics15030603 - 29 Jan 2026
Viewed by 178
Abstract
This study addresses the challenges of real-time performance, safety, and trajectory smoothness in robot navigation by proposing an innovative variable-horizon model predictive control (MPC) scheme that utilizes evolutionary algorithms. To effectively adapt to the complex and dynamic conditions during navigation, a constrained multi-objective [...] Read more.
This study addresses the challenges of real-time performance, safety, and trajectory smoothness in robot navigation by proposing an innovative variable-horizon model predictive control (MPC) scheme that utilizes evolutionary algorithms. To effectively adapt to the complex and dynamic conditions during navigation, a constrained multi-objective evolutionary algorithm is used to tune the control parameters precisely. The optimized parameters are then used to dynamically adjust the MPC’s prediction horizon online. To further enhance the system’s real-time performance, warm start and multiple shooting techniques are introduced, significantly improving the computational efficiency of the MPC. Finally, simulation and real-world experiments are conducted to validate the effectiveness of the proposed method. Experimental results demonstrate that the proposed control scheme exhibits excellent navigation performance in differential-drive robot models, offering a novel solution for intelligent mobile robot navigation. Full article
Show Figures

Figure 1

29 pages, 12140 KB  
Article
Integrated Control of Four-Wheel Steering and Direct Yaw Moment Control for Distributed Drive Electric Vehicles Based on Phase Plane
by Tie Xu, Jie Hu, Shijie Zou, Wenxin Sun, Pei Zhang, Yuanyi Huang and Guoqing Sun
Appl. Sci. 2026, 16(3), 1370; https://doi.org/10.3390/app16031370 - 29 Jan 2026
Viewed by 110
Abstract
Distributed drive electric vehicles (DDEVs) offer remarkable advantages in handling stability owing to the independent torque and steering control of each wheel. Traditional in-dependent strategies have the disadvantages of slow response speed and unsmooth control interval switching. To overcome the performance tradeoffs of [...] Read more.
Distributed drive electric vehicles (DDEVs) offer remarkable advantages in handling stability owing to the independent torque and steering control of each wheel. Traditional in-dependent strategies have the disadvantages of slow response speed and unsmooth control interval switching. To overcome the performance tradeoffs of traditional independent strategies, this study proposes an integrated control approach combining four-wheel steering (4WS) and direct yaw moment control (DYC) to achieve coordinated multiobjective optimization. Based on phase-plane theory, the vehicle’s stable domain is divided using a double line method, and speed-dependent control regions and weights are designed to enable smooth switching between control modes. Simulation results demonstrate that, in high-adhesion conditions, compared with the DYC-only strategy, the integrated system reduces the maximum sideslip angle by about 77.8% and the cost function peak by 22.4%. Moreover, it decreases the maximum rear-wheel steering angle by 38.4% and maximum sideslip angle by about 15.4% compared with 4WS-only strategy. Under low-adhesion conditions, compared with the DYC-only strategy, the integrated system reduces the maximum sideslip angle by about 21.1% and the cost function peak by 37.6%. Additionally, the integrated system decreases the maximum rear-wheel steering angle by 60.2% and maximum sideslip angle by about 64.3% compared with 4WS-only strategy. Full article
Show Figures

Figure 1

22 pages, 2204 KB  
Article
Real-Time Speed Regulation of Direct Current Electric Motors Controlled by an Electric Motor Drive System Based on Diverse Power Converter Topologies
by Santiago Elvira-Ceja, Antonio Valderrabano-Gonzalez, Carlos E. Castañeda and Hossam A. Gabbar
Appl. Sci. 2026, 16(3), 1357; https://doi.org/10.3390/app16031357 - 29 Jan 2026
Viewed by 127
Abstract
This paper presents a systematic approach for designing an electric motor drive system (EMDS) for a permanent magnet DC motor to achieve precise speed regulation using a classical PID controller. Smooth voltage trajectory planning based on Bézier curves is employed to mitigate high [...] Read more.
This paper presents a systematic approach for designing an electric motor drive system (EMDS) for a permanent magnet DC motor to achieve precise speed regulation using a classical PID controller. Smooth voltage trajectory planning based on Bézier curves is employed to mitigate high voltage and current peaks during step speed transitions, improving dynamic performance, reducing electrical stress, and making the control system physically realizable. A comparative evaluation of inverting buck–boost, positive buck–boost, and quadratic DC–DC converters is conducted using the same motor and controller, enabling the identification of the most suitable controller–converter pairing. Experimental results demonstrate that, with an appropriate converter topology and voltage trajectory, peak voltages and currents are significantly reduced, resulting in a smoother control action and reliable speed regulation without the need for complex control schemes. Full article
(This article belongs to the Special Issue Optimization, Navigation and Automatic Control of Intelligent Systems)
Show Figures

Figure 1

18 pages, 1153 KB  
Article
The Glutamine-α-Ketoglutarate Metabolic Axis Controls Vascular Smooth Muscle Cell Function
by Kelly J. Peyton, Xiao-Ming Liu, Giovanna L. Durante and William Durante
Cells 2026, 15(3), 230; https://doi.org/10.3390/cells15030230 - 26 Jan 2026
Viewed by 291
Abstract
Glutamine is a known regulator of vascular smooth muscle cell (VSMC) function, but the molecular pathways underlying this response remain incompletely understood. This study investigated how glutamine metabolism influences VSMC behavior and identified the responsible enzymes and metabolites. Glutamine deprivation markedly reduced VSMC [...] Read more.
Glutamine is a known regulator of vascular smooth muscle cell (VSMC) function, but the molecular pathways underlying this response remain incompletely understood. This study investigated how glutamine metabolism influences VSMC behavior and identified the responsible enzymes and metabolites. Glutamine deprivation markedly reduced VSMC proliferation, migration, and collagen synthesis, while modestly decreasing viability. Pharmacological inhibition of glutaminase-1 (GLS1) or aminotransferases (AT) similarly suppressed these cellular functions, whereas inhibiting glutamate dehydrogenase 1 (GLUD1) had no effect. Metabolite analysis revealed that glutamine deprivation or AT inhibition, but not GLUD1 inhibition, reduced intracellular α-ketoglutarate (αKG) concentrations, establishing AT as the primary enzyme converting glutamine-derived glutamate to αKG. To identify which metabolite drives VSMC responses, glutamine-starved cells were supplemented with various glutamine-derived molecules. The cell-permeable αKG analog dimethyl-αKG significantly restored VSMC proliferation, migration, collagen synthesis, and survival, while ammonia only enhanced viability, demonstrating αKG’s primary role in mediating glutamine-dependent functions. These findings establish that glutamine metabolism via the GLS1-AT-αKG pathway is a critical driver of VSMC activation and survival. Targeting this glutamine-αKG metabolic axis through GLS1 inhibition, AT blockade, or downstream αKG disruption offers a compelling therapeutic strategy for ameliorating fibroproliferative vascular diseases, including atherosclerosis, post-angioplasty restenosis, and pulmonary hypertension. Full article
(This article belongs to the Special Issue New Insights into Vascular Biology in Health and Disease)
Show Figures

Figure 1

25 pages, 1515 KB  
Review
Integrating GPCR Regulation and Calcium Dynamics in Airway Smooth Muscle Function: A Comprehensive Review
by Saptarshi Roy, Vijaya Kumar Gangipangi, Pravesh Sharma, Rebecca E. Hancock and Pawan Sharma
Cells 2026, 15(2), 203; https://doi.org/10.3390/cells15020203 - 21 Jan 2026
Viewed by 248
Abstract
Asthma is a heterogeneous disease that varies in clinical presentation, severity, and underlying biology but consistently involves airway remodeling (AR) and airway hyperresponsiveness (AHR), which is characterized by excessive airway narrowing in response to various stimuli. Airway smooth muscle (ASM) cells are primary [...] Read more.
Asthma is a heterogeneous disease that varies in clinical presentation, severity, and underlying biology but consistently involves airway remodeling (AR) and airway hyperresponsiveness (AHR), which is characterized by excessive airway narrowing in response to various stimuli. Airway smooth muscle (ASM) cells are primary contributors to airway hyperresponsiveness and bronchoconstriction. This review focuses on ASM cells and their role in asthma. We discuss the mechanisms by which ASM mediates AHR, increases airway thickness, and contributes to AR. Signaling through G protein-coupled receptors (GPCRs) regulates many ASM functions, including contraction, growth, and the synthetic activities that drive airway inflammation and remodeling. GPCR-dependent calcium flux serves as a key signaling axis controlling the contractile responses of ASM. Here we provide a comprehensive summary of the major GPCRs as well as other non-GPCRs identified in ASM cells. GPCR-induced calcium mobilization, downstream signaling and how it has been linked to specific ASM functions are also discussed. Furthermore, we highlight the clinical significance of targeting GPCRs in asthma therapy as well as recent development of novel therapeutics in the management of asthma. Thus, this review provides a comprehensive overview of airway smooth muscle in the context of asthma pathophysiology. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

45 pages, 4315 KB  
Review
A Comprehensive Review of Epigenetic Regulation of Vascular Smooth Muscle Cells During Development and Disease
by Lautaro Natali, Benjamín de la Cruz-Thea, Andrea Godino, Cecilia Conde, Victor I. Peinado and Melina M. Musri
Biomolecules 2026, 16(1), 173; https://doi.org/10.3390/biom16010173 - 21 Jan 2026
Viewed by 623
Abstract
Vascular smooth muscle cells (VSMCs) in the tunica media are essential for maintaining the structure and function of the arterial wall. These cells regulate vascular tone and contribute to vasculogenesis and angiogenesis, particularly during development. Proper control of VSMC differentiation ensures the correct [...] Read more.
Vascular smooth muscle cells (VSMCs) in the tunica media are essential for maintaining the structure and function of the arterial wall. These cells regulate vascular tone and contribute to vasculogenesis and angiogenesis, particularly during development. Proper control of VSMC differentiation ensures the correct size and patterning of vessels. Dysregulation of VSMC behaviour in adulthood, however, is linked to serious cardiovascular diseases, including aortic aneurysm, coronary artery disease, atherosclerosis and pulmonary hypertension. VSMCs are characterised by their phenotypic plasticity, which is the capacity to transition from a contractile to a synthetic, dedifferentiated state in response to environmental cues. This phenotypic switch plays a central role in vascular remodelling, a process that drives the progression of many vascular pathologies. Epigenetic mechanisms, which are defined as heritable but reversible changes in gene expression that do not involve alterations to the DNA sequence, have emerged as key regulators of VSMC identity and behaviour. These mechanisms include DNA methylation, histone modifications, chromatin remodelling, non-coding RNA and RNA modifications. Understanding how these epigenetic processes influence VSMC plasticity is crucial to uncovering the molecular basis of vascular development and disease. This review explores the current understanding of VSMC biology, focusing on epigenetic regulation in health and pathology. Full article
Show Figures

Figure 1

40 pages, 7546 KB  
Article
Hierarchical Soft Actor–Critic Agent with Automatic Entropy, Twin Critics, and Curriculum Learning for the Autonomy of Rock-Breaking Machinery in Mining Comminution Processes
by Guillermo González, John Kern, Claudio Urrea and Luis Donoso
Processes 2026, 14(2), 365; https://doi.org/10.3390/pr14020365 - 20 Jan 2026
Viewed by 317
Abstract
This work presents a hierarchical deep reinforcement learning (DRL) framework based on Soft Actor–Critic (SAC) for the autonomy of rock-breaking machinery in surface mining comminution processes. The proposed approach explicitly integrates mobile navigation and hydraulic manipulation as coupled subprocesses within a unified decision-making [...] Read more.
This work presents a hierarchical deep reinforcement learning (DRL) framework based on Soft Actor–Critic (SAC) for the autonomy of rock-breaking machinery in surface mining comminution processes. The proposed approach explicitly integrates mobile navigation and hydraulic manipulation as coupled subprocesses within a unified decision-making architecture, designed to operate under the unstructured and highly uncertain conditions characteristic of open-pit mining operations. The system employs a hysteresis-based switching mechanism between specialized SAC subagents, incorporating automatic entropy tuning to balance exploration and exploitation, twin critics to mitigate value overestimation, and curriculum learning to manage the progressive complexity of the task. Two coupled subsystems are considered, namely: (i) a tracked mobile machine with a differential drive, whose continuous control enables safe navigation, and (ii) a hydraulic manipulator equipped with an impact hammer, responsible for the fragmentation and dismantling of rock piles through continuous joint torque actuation. Environmental perception is modeled using processed perceptual variables obtained from point clouds generated by an overhead depth camera, complemented with state variables of the machinery. System performance is evaluated in unstructured and uncertain simulated environments using process-oriented metrics, including operational safety, task effectiveness, control smoothness, and energy consumption. The results show that the proposed framework yields robust, stable policies that achieve superior overall process performance compared to equivalent hierarchical configurations and ablation variants, thereby supporting its potential applicability to DRL-based mining automation systems. Full article
(This article belongs to the Special Issue Advances in the Control of Complex Dynamic Systems)
Show Figures

Figure 1

28 pages, 14788 KB  
Article
A Practical Case of Monitoring Older Adults Using mmWave Radar and UWB
by Gabriel García-Gutiérrez, Elena Aparicio-Esteve, Jesús Ureña, José Manuel Villadangos-Carrizo, Ana Jiménez-Martín and Juan Jesús García-Domínguez
Sensors 2026, 26(2), 681; https://doi.org/10.3390/s26020681 - 20 Jan 2026
Viewed by 244
Abstract
Population aging is driving the need for unobtrusive, continuous monitoring solutions in residential care environments. Radio-frequency (RF)-based technologies such as Ultra-Wideband (UWB) and millimeter-wave (mmWave) radar are particularly attractive for providing detailed information on presence and movement while preserving privacy. Building on a [...] Read more.
Population aging is driving the need for unobtrusive, continuous monitoring solutions in residential care environments. Radio-frequency (RF)-based technologies such as Ultra-Wideband (UWB) and millimeter-wave (mmWave) radar are particularly attractive for providing detailed information on presence and movement while preserving privacy. Building on a UWB–mmWave localization system deployed in a senior living residence, this paper focuses on the data-processing methodology for extracting quantitative mobility indicators from long-term indoor monitoring data. The system combines a device-free mmWave radar setup in bedrooms and bathrooms with a tag-based UWB positioning system in common areas. For mmWave data, an adaptive short-term average/long-term average (STA/LTA) detector operating on an aggregated, normalized radar energy signal is used to classify micro- and macromovements into bedroom occupancy and non-sedentary activity episodes. For UWB data, a partially constrained Kalman filter with a nearly constant velocity dynamics model and floor-plan information yields smoothed trajectories, from which daily gait- and mobility-related metrics are derived. The approach is illustrated using one-day samples from three users as a proof of concept. The proposed methodology provides individualized indicators of bedroom occupancy, sedentary behavior, and mobility in shared spaces, supporting the feasibility of combined UWB and mmWave radar sensing for longitudinal routine analysis in real-world elderly care environments. Full article
(This article belongs to the Special Issue Development and Challenges of Indoor Positioning and Localization)
Show Figures

Figure 1

17 pages, 768 KB  
Review
The Role of the NF-κB Signaling Pathway in Atherosclerotic Plaque Rupture and Targeted Therapeutic Strategies
by Lihui Yin, Xuehua Wang, Ni Xiong, Jinjie Xiong, Qianyi Liu, Han Li, Yanling Huang, Jiaxi Lv, Yan Wang and Zhaohui Wang
Biomedicines 2026, 14(1), 201; https://doi.org/10.3390/biomedicines14010201 - 16 Jan 2026
Viewed by 336
Abstract
Atherosclerosis (AS) is a disease characterized by chronic vascular wall inflammation and lipid deposition. Although lipid-lowering drugs such as statins have significantly reduced cardiovascular event rates, “residual inflammatory risk” remains a key factor driving disease progression and plaque rupture. As a central regulator [...] Read more.
Atherosclerosis (AS) is a disease characterized by chronic vascular wall inflammation and lipid deposition. Although lipid-lowering drugs such as statins have significantly reduced cardiovascular event rates, “residual inflammatory risk” remains a key factor driving disease progression and plaque rupture. As a central regulator of the inflammatory response, the nuclear factor-κappaB (NF-κB) signaling network comprises both canonical pro-inflammatory pathways and functionally more complex non-canonical pathways. Increasing evidence in recent years indicates that abnormal and sustained activation of the non-canonical NF-κB signaling pathway plays a pivotal role in driving plaque rupture. This review first elaborates on the shift in AS strategies from “lipid-lowering” to “anti-inflammatory” approaches, followed by an in-depth analysis of the molecular activation mechanisms of the NF-κB signaling pathway and its distinctiveness in the AS pathological process, along with its epigenetic regulation. It emphasizes how this pathway drives pathological angiogenesis and regulates vascular smooth muscle cell (VSMC) phenotypic switching and macrophage function, thereby forming a vicious cycle that amplifies inflammation and structural damage, ultimately leading to acute cardiovascular events. Finally, we systematically summarize current progress and challenges in drug development targeting the NF-κB pathway (e.g., targeting key kinases like NIK and IKKα), aiming to provide theoretical foundations and future directions for novel therapeutic strategies to stabilize coronary plaques and prevent acute coronary syndromes. Full article
Show Figures

Figure 1

Back to TopTop