Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = down drought air conduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1118 KiB  
Article
Effects of Extreme Combined Abiotic Stress on Yield and Quality of Maize Hybrids
by Dario Iljkić, Mirta Rastija, Domagoj Šimić, Zdenko Lončarić, Luka Drenjančević, Vladimir Zebec, Ionel Samfira, Catalin Zoican and Ivana Varga
Agronomy 2025, 15(6), 1440; https://doi.org/10.3390/agronomy15061440 - 13 Jun 2025
Viewed by 540
Abstract
Maize is one of the top five field crops worldwide and is indispensable as animal feed, serves as a raw material in many industries, and is a staple for human food. However, its production is under increasing pressure mainly due to abiotic stress. [...] Read more.
Maize is one of the top five field crops worldwide and is indispensable as animal feed, serves as a raw material in many industries, and is a staple for human food. However, its production is under increasing pressure mainly due to abiotic stress. Drought and excessive precipitation, air temperature fluctuations, and reduced soil fertility due to inadequate soil pH reactions are among the biggest challenges that must be overcome. Therefore, the goal of this study was to determine the effects of these combined stressful abiotic conditions on maize grain yield and quality and to determine the genetic-specific response of maize genotypes in such conditions. The experiment was set up in eastern Croatia according to the randomized complete block design in four replications. A total of 10 maize hybrids of different FAO maturity groups were evaluated across four diverse environments, each subjected to one or two abiotic stresses (extreme precipitation, drought, high air temperatures, and acidic soil). Analysis of variance revealed that all treatment effects were statistically significant, except for the effect of hybrids on grain yield. Depending on the effect of abiotic stress, the variations among environments were up to 51.4% for yield and up to 12.1%, 18.9%, and 0.81% for protein, oil, and starch content, respectively. Differences among hybrids were less pronounced for yield (7.9%), while for protein (13.5%), oil (17.3%), and starch content (1.5%) were similar. However, the largest variation was found for the interaction effect. In the conducted research, ENV2 recorded the highest grain yield, along with the highest oil and starch content, as well as the second-highest protein content, while the hybrid effect remained unclear. Generally, ENV4 had the greatest negative impact due to the combined effects of extreme abiotic stresses, including soil acidity, drought, and high air temperatures. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 3124 KiB  
Article
Response of Soil Temperature to Soil Moisture Content and Meteorological Elements with Gravel-Sand Mulching
by Gengzhe Han, Junli Tan, Xina Wang, Hao Li, Qian Shang and Juncang Tian
Land 2025, 14(4), 853; https://doi.org/10.3390/land14040853 - 14 Apr 2025
Cited by 1 | Viewed by 732
Abstract
Soil gravel–sand mulching—an ancient farming method in arid areas—is used to cope with drought by conserving water and improving soil temperature, the latter being a key factor affecting agricultural production. The objective of this study is to ascertain the influence of soil water [...] Read more.
Soil gravel–sand mulching—an ancient farming method in arid areas—is used to cope with drought by conserving water and improving soil temperature, the latter being a key factor affecting agricultural production. The objective of this study is to ascertain the influence of soil water content and meteorological elements on soil temperature under gravel–sand mulching conditions. Field experiments, analysis of variance, Pearson correlation analysis, and other statistical methods were used to study the effects of varying soil moisture content on soil temperature at 0–25 cm depth under gravel–sand mulching conditions, and to analyze the relationships between meteorological factors and soil temperature during the temperature measurement period. In the 0–20 cm soil layer, the soil accumulated temperature decreased with an increase in soil moisture content, while the change rate of temperature increased. In the test range, the temperature conductivity of 10–15 cm soil increased with the increase in soil water content in the 20–40 cm layer. Under gravel–sand mulching conditions, soil temperature was not only related to air temperature but also positively related to water vapor pressure. When the soil moisture content was high, the soil temperature decreased with an increase in atmospheric evaporation capacity. When the soil moisture conditions were poor, the meteorological factors had an effect of increasing the soil temperature. Under gravel–sand mulching conditions, soil moisture content exhibits a significant negative correlation with both soil temperature and accumulated temperature. Higher soil moisture enhances vertical heat conduction, facilitating heat transfer from the surface to deeper layers. The 10–15 cm soil layer acts as a thermal buffer zone, regulating temperature fluctuations and mitigating extreme heat variations. However, higher air temperature leads to greater heat accumulation, while, in wetter soils, enhanced heat conduction and evaporative cooling lower soil temperature. Full article
Show Figures

Figure 1

21 pages, 6718 KiB  
Review
Early Warning Signs in Tree Crowns as a Response to the Impact of Drought
by Goran Češljar, Ilija Đorđević, Saša Eremija, Miroslava Marković, Renata Gagić Serdar, Aleksandar Lučić and Nevena Čule
Forests 2025, 16(3), 405; https://doi.org/10.3390/f16030405 - 24 Feb 2025
Cited by 1 | Viewed by 848
Abstract
The interaction between trees’ water needs during drought and the signals that appear in their canopies is not fully understood. The first visually detectable signs, which we describe as early warning signals in tree canopies, are often not noticeable at first glance. When [...] Read more.
The interaction between trees’ water needs during drought and the signals that appear in their canopies is not fully understood. The first visually detectable signs, which we describe as early warning signals in tree canopies, are often not noticeable at first glance. When these signs become widely apparent, tree decline is already underway. In this study, we focus on identifying early visible signs of drought stress in the tree crowns, such as very small leaves, premature needle/leaf discolouration and abscission, and defoliation. We provide guidance on recognising initial signs, offer specific examples, and comprehensively analyse each signal. Our focus is on signs in the tree crowns that appear during intense and prolonged droughts, which we confirmed by calculating the Standardised Precipitation Evapotranspiration Index (SPEI). Our findings are based on 20 years (2004–2024) of continuous fieldwork and data collection from permanent sample plots in Serbia, which was conducted as part of the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). We also conducted a comprehensive review of the literature and key findings related to the early signs we address. This research was further motivated by the signs observed in the tree crowns during the summer of 2024 due to extreme climatic events, which classify this year as one of the hottest recorded in Serbia. However, we still cannot conclusively determine which specific trees will die back based solely on these early warning signals, as some trees manage to withstand severe drought conditions. Nonetheless, the widespread appearance of these indicators is a clear warning of significant ecosystem instability, potentially leading to the decline of individual trees or larger groups. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species)
Show Figures

Figure 1

16 pages, 6145 KiB  
Article
Real-Time Scanning Curve of Soil–Water Characteristic Curve for Sustainability of Residual Soil Slopes
by Abdulroqeeb Mofeyisope Daramola, Alfrendo Satyanaga, Babatunde David Adejumo, Yongmin Kim, Zhai Qian and Jong Kim
Sustainability 2025, 17(5), 1803; https://doi.org/10.3390/su17051803 - 20 Feb 2025
Cited by 3 | Viewed by 872
Abstract
The scanning curve of the soil–water characteristic curve (SWCC) represents the intermediate paths followed by soil as it transitions between the initial drying and main wetting cycles. The alternating occurrence of climatic conditions, such as rainfall and evaporation in different regions globally, provides [...] Read more.
The scanning curve of the soil–water characteristic curve (SWCC) represents the intermediate paths followed by soil as it transitions between the initial drying and main wetting cycles. The alternating occurrence of climatic conditions, such as rainfall and evaporation in different regions globally, provides a valuable framework for understanding how these dynamics influence the scanning curve. Monitoring the scanning curve can provide valuable insights for managing water resources and mitigating the impacts of drought, contributing to environmental sustainability by enabling more precise agricultural practices, promoting water conservation, and supporting the resilience of ecosystems in the face of climate change. It enhances sustainability by enabling data-driven designs that minimize resource use, reduce environmental impact, and increase the resilience of slopes to natural hazards like landslides and flooding. Available studies to determine the scanning curve of SWCC are limited and mostly conducted in the laboratory. This study aims to determine the real-time measurement of the scanning curve of SWCC for unsaturated soil. The research focuses on assessing the hysteresis behavior of residual soil slope from old alluvium through a combination of field instrumentation and laboratory testing. The pore size distribution was derived from the initial drying and main wetting SWCC. Field monitoring (scanning curve) indicates measurable deviations from the experimental results, including a 10% lower saturated water content and a 25% lower air-entry value. This study demonstrates the potential for field-based determination of scanning curves. It highlights their role in improving the prediction of the hydraulic behavior of residual slopes during varying climatic conditions. Full article
(This article belongs to the Special Issue Disaster Prevention, Resilience and Sustainable Management)
Show Figures

Figure 1

21 pages, 2112 KiB  
Article
Climatic Factors Influencing Aleppo Pine Sap Flow in Orographic Valleys Under Two Contrasting Mediterranean Climates
by Ana M. Sabater, José Antonio Valiente, Juan Bellot and Alberto Vilagrosa
Hydrology 2025, 12(1), 6; https://doi.org/10.3390/hydrology12010006 - 6 Jan 2025
Viewed by 1336
Abstract
Global climate change projections highlight the Mediterranean Basin as one of the most susceptible areas to the effects of intense and prolonged droughts, as well as increasing air temperatures. Accordingly, the productivity and survival of forests in this area will depend on their [...] Read more.
Global climate change projections highlight the Mediterranean Basin as one of the most susceptible areas to the effects of intense and prolonged droughts, as well as increasing air temperatures. Accordingly, the productivity and survival of forests in this area will depend on their ability to resist and adapt to increasingly drier conditions. Different climatic conditions across the Mediterranean Basin could drive differences in forest functioning, requiring trees to acclimate to them. Sea breeze dynamics along orographic valleys can also influence climatic conditions, accentuating differences between inland and coastal forests. However, there is limited information on whether the climatic factors regulating tree transpiration in Aleppo pine forest in orographic valleys vary according to climate. This study aims to identify and compare the climatic factors that regulate tree transpiration along a gradient and determine the thresholds at which these factors affect transpiration rates. This study was carried out by means of sap flow gauges, since this technique is a key feature for quantifying and understanding tree transpiration. It was conducted in two Aleppo pine dry sub-humid forests (inland and coastal, 750 and 675 trees ha−1, respectively) and in two pine semi-arid forests (inland and coastal, 600 and 400 trees ha−1, respectively) in the western Mediterranean basin during January–November of 2021. No significant rainfall events or droughts were recorded during the period of study, indicating a standard climatic condition in these areas. The main findings demonstrated that the variability in sap flow could be attributed to the interaction between soil water content and vapour pressure deficit in all the forests studied. However, the highest threshold values of these climatic factors in relation to the increase or decrease in maximum sap flow (i.e., less sensitivity) were exhibited in semi-arid forests, highlighting the adaptability of Aleppo pine to more limiting climatic conditions. These findings are relevant for the consequences of the predicted increase in harsh climatic conditions and the balance among vapour pressure deficit, temperature and soil water availability. Future research will be essential to confirm forest acclimatisation in the transitional dry to semi-arid forest ecosystems predicted by global climate change projections, given their potential to strongly alter ecosystem function and water cycles. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

20 pages, 3102 KiB  
Article
Effect of Flowering Shading on Grain Yield and Quality of Durum Wheat in a Mediterranean Environment
by Giancarlo Pagnani, Alfredo Lorenzo, Nausicaa Occhipinti, Lisa Antonucci, Sara D’Egidio, Fabio Stagnari and Michele Pisante
Plants 2025, 14(1), 76; https://doi.org/10.3390/plants14010076 - 29 Dec 2024
Cited by 2 | Viewed by 1131
Abstract
The phenomenon known as “dimming” or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in [...] Read more.
The phenomenon known as “dimming” or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.7% per decade in areas between 25° N and 45° N. In particular, in Mediterranean regions, the production of durum wheat (Triticum turgidum L. subsp. Durum) is increasingly constrained by abiotic factors, such as spring/summer heat stress and drought, as well as reductions in solar radiation. Field experiments were conducted in Mosciano Sant’Angelo, Italy, over two cropping seasons (2016–2017 and 2017–2018) to evaluate the effects of photosynthetically active radiation (PAR) availability and nitrogen (N) fertilization on durum wheat. A split-plot design was used with two PAR levels (100% and 20% PAR) and three N rates (0, 100, and 250 kg ha−1). Results highlighted that full sunlight (NoSh) significantly increased grain yield (+25%), thousand kernel weight (+46%), and total gluten fractions (+16%) compared to shaded conditions (Sh). Chlorophyll content and NDVI values were highest under Sh combined with 250 kg N ha−1. Rainfall patterns strongly influenced productivity, with better vegetative growth in 2016–2017 and improved grain filling in 2017–2018. Nitrogen application significantly enhanced grain protein content, particularly under arid conditions. These findings emphasize the interaction between light availability and nitrogen management, suggesting that optimizing these factors can improve yield and quality in durum wheat under Mediterranean conditions. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

24 pages, 16030 KiB  
Article
Prominent Increase in Air Temperatures on Two Small Mediterranean Islands, Lastovo and Lošinj, Since 1998 and Its Effect on the Frequency of Extreme Droughts
by Ognjen Bonacci, Ana Žaknić-Ćatović and Tanja Roje-Bonacci
Water 2024, 16(22), 3175; https://doi.org/10.3390/w16223175 - 6 Nov 2024
Cited by 5 | Viewed by 1172
Abstract
The article analyzes the development of air temperatures and precipitation on two remote islands in the Adriatic Sea from 1961 to 2023, examining annual and monthly time scales. Lastovo Island is located in the southern Adriatic, and Lošinj Island is situated 277 km [...] Read more.
The article analyzes the development of air temperatures and precipitation on two remote islands in the Adriatic Sea from 1961 to 2023, examining annual and monthly time scales. Lastovo Island is located in the southern Adriatic, and Lošinj Island is situated 277 km north, and both exhibit a sharp rise in air temperatures since 1998, though precipitation series show no significant trends of an increase or decrease. Using the New Drought Index (NDI) method, this study calculated drought intensities for the period 1961–2023. The analyses conducted in this study undoubtedly indicate a rising frequency and intensity of droughts, with severe droughts doubling and extreme droughts increasing fourfold in the recent period (1998–2023) compared to the previous one (1961–1997). The most pronounced increase in severe and extreme droughts occurs specifically from June to August. This trend is likely applicable to many small Mediterranean Islands, which number over 10,000 and have a permanent population of more than 1.6 million people, with numbers significantly rising during the tourist season. The increased water demand for agriculture and daily use, combined with increased drought risk, not only exacerbates the potential for forest fires but also threatens social structures and ecological conditions. This is particularly critical as the combination of drier conditions and increased fire risk poses a significant challenge, endangering natural landscapes and valuable historical sites that are integral to the islands’ identity and heritage. This study’s findings indicate a dangerous trend likely to persist and worsen with continued increases in air temperatures in the Mediterranean region. Full article
Show Figures

Figure 1

19 pages, 4172 KiB  
Article
Drought-Induced Alterations in Carbon and Water Dynamics of Chinese Fir Plantations at the Trunk Wood Stage
by Yijun Liu, Li Zhang, Wende Yan, Yuanying Peng, Hua Sun and Xiaoyong Chen
Plants 2024, 13(20), 2937; https://doi.org/10.3390/plants13202937 - 20 Oct 2024
Viewed by 1240
Abstract
Over the past three decades, China has implemented extensive reforestation programs, primarily utilizing Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) in southern China, to mitigate greenhouse gas emissions and counter extreme climate events. However, the effects of drought on the carbon sequestration capacity [...] Read more.
Over the past three decades, China has implemented extensive reforestation programs, primarily utilizing Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) in southern China, to mitigate greenhouse gas emissions and counter extreme climate events. However, the effects of drought on the carbon sequestration capacity of these forests, particularly during the trunk wood stage, remain unclear. This study, conducted in Huitong, Hunan, China, from 2008 to 2013, employed the eddy covariance method to measure carbon dioxide (CO2) and water fluxes in Chinese fir forests, covering a severe drought year in 2011. The purpose was to elucidate the dynamics of carbon and water fluxes during a drought year and across multi-normal year averages. The results showed that changes in soil water content (−8.00%), precipitation (−18.45%), and relative humidity (−5.10%), decreases in air temperature (−0.09 °C) and soil temperature (−0.79 °C), and increases in vapor pressure deficit (19.18%) and net radiation (8.39%) were found in the drought year compared to the normal years. These changes in environmental factors led to considerable decreases in net ecosystem exchange (−40.00%), ecosystem respiration (−13.09%), and gross ecosystem productivity (−18.52%), evapotranspiration (−12.50%), and water use efficiency (−5.83%) in the studied forests in the drought year. In this study, the occurrence of seasonal drought due to uneven precipitation distribution led to a decrease in gross ecosystem productivity (GEP) and evapotranspiration (ET). However, the impact of drought on GEP was greater than its effect on ET, resulting in a reduced water use efficiency (WUE). This study emphasized the crucial role of water availability in determining forest productivity and suggested the need for adjusting vegetation management strategies under severe drought conditions. Our results contributed to improving management practices for Chinese fir plantations in response to changing climate conditions. Full article
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer
by Dimitrios Kalachanis, Christos Chondrogiannis and Yiola Petropoulou
Plants 2024, 13(20), 2867; https://doi.org/10.3390/plants13202867 - 14 Oct 2024
Viewed by 1016
Abstract
Fruit photosynthesis occurs in an internal microenvironment seldom encountered by a leaf (hypoxic and extremely CO2-enriched) due to its metabolic and anatomical features. In this study, the anatomical and photosynthetic traits of fully exposed green fruits of Quercus coccifera L. were [...] Read more.
Fruit photosynthesis occurs in an internal microenvironment seldom encountered by a leaf (hypoxic and extremely CO2-enriched) due to its metabolic and anatomical features. In this study, the anatomical and photosynthetic traits of fully exposed green fruits of Quercus coccifera L. were assessed during the period of fruit production (summer) and compared to their leaf counterparts. Our results indicate that leaf photosynthesis, transpiration and stomatal conductance drastically reduced during the summer drought, while they recovered significantly after the autumnal rainfalls. In acorns, gas exchange with the surrounding atmosphere is hindered by the complete absence of stomata; hence, credible CO2 uptake measurements could not be applied in the field. The linear electron transport rates (ETRs) in ambient air were similar in intact leaves and pericarps (i.e., when the physiological internal atmosphere of each tissue is maintained), while the leaf NPQ was significantly higher, indicating enhanced needs for harmless energy dissipation. The ETR measurements performed on leaf and pericarp discs at different CO2/O2 partial pressures in the supplied air mixture revealed that pericarps displayed significantly lower values at ambient gas levels, yet they increased by ~45% under high CO2/O2 ratios (i.e., at gas concentrations simulating the fruit’s interior). Concomitantly, NPQ declined gradually in both tissues as the CO2/O2 ratio increased, yet the decrease was more pronounced in pericarps. Furthermore, net CO2 assimilation rates for both leaf and pericarp segments were low in ambient air and increased almost equally at high CO2, while pericarps exhibited significantly higher respiration. It is suggested that during summer, when leaves suffer from photoinhibition, acorns could contribute to the overall carbon balance, through the re-assimilation of respiratory CO2, thereby reducing the reproductive cost. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 10423 KiB  
Article
Simulating the Potential Evapotranspiration of Egypt Using the RegCM4: Sensitivity to the Land Surface and Boundary Layer Parameterizations
by Samy A. Anwar and Christiana F. Olusegun
Hydrology 2024, 11(8), 121; https://doi.org/10.3390/hydrology11080121 - 15 Aug 2024
Cited by 2 | Viewed by 1850
Abstract
Assessing the daily water requirements of crops and understanding the severity of drought necessitates precise estimation of potential evapotranspiration (PET), particularly in regions with arid climates such as Egypt. In the present study, the RegCM4 regional climate model was used to investigate the [...] Read more.
Assessing the daily water requirements of crops and understanding the severity of drought necessitates precise estimation of potential evapotranspiration (PET), particularly in regions with arid climates such as Egypt. In the present study, the RegCM4 regional climate model was used to investigate the sensitivity of the PET of Egypt to two land surface schemes and boundary layer parameterizations. The land surface schemes are the Biosphere Atmosphere Transfer System (BATS) and the Community Land Model version 4.5 (CLM45). The boundary layer schemes considered are the HOLTSLAG (HOLT) and University of Washington (UW). To accomplish this task, four 32-year simulations were conducted spanning from 1979 to 2010, with the first two years considered as spin up. The ERA-Interim reanalysis was used to downscale the RegCM4 model. The simulated PET was evaluated with respect to the high-resolution ERA5-land PET-based product (hPET). The results showed that the BATS showed a bias of −0.8 to −1.8 mm day−1, while the CLM45 showed a bias of −0.8 to −3 mm day−1. Also, fine-tuning the coefficient of the daily mean air temperature succeeded in reducing the PET bias. Additionally, the UW had a lower PET bias than that noted in HOLT. To further reduce the PET bias, the linear-scaling (LS) bias-correction method was used. The LS showed its potential skills in reducing the mean bias of the PET from −2.2 to +0.4 mm day−1 in the evaluation period and to ±0.2 mm day−1 in the validation period. Furthermore, the added value of the LS was confirmed concerning the climatological annual cycle in different locations representing different climate zones of Egypt. In conclusion, accurate estimation of the PET can be ensured using the BATS, the UW schemes, and the LS technique in the present climate or under different warming scenarios. Full article
(This article belongs to the Section Hydrology–Climate Interactions)
Show Figures

Figure 1

12 pages, 852 KiB  
Review
Exploring the Nexus of Climate Change and Substance Abuse: A Scoping Review
by Luca Tomassini, Massimo Lancia, Angela Gambelunghe, Abdellah Zahar, Niccolò Pini and Cristiana Gambelunghe
Int. J. Environ. Res. Public Health 2024, 21(7), 896; https://doi.org/10.3390/ijerph21070896 - 9 Jul 2024
Cited by 2 | Viewed by 2523
Abstract
Introduction: The increase in average air temperature and multiple extreme weather events, such as heatwaves and droughts, pose significant health risks to humans. This scoping review aims to examine the current state of the existing literature concerning the potential relationship between substance abuse [...] Read more.
Introduction: The increase in average air temperature and multiple extreme weather events, such as heatwaves and droughts, pose significant health risks to humans. This scoping review aims to examine the current state of the existing literature concerning the potential relationship between substance abuse and climate change, along with the aspects it encompasses. Material and methods: The review followed PRISMA guidelines for methodological rigor, aiming to identify studies on drug abuse. Searches were conducted across the primary databases using specific search strings. Quality assessment involved evaluating the research question’s clarity, search strategy transparency, consistency in applying the inclusion/exclusion criteria, and reliability of data extraction. Results: Most studies were conducted in the USA. They included observational and retrospective quantitative studies, as well as qualitative and prospective observational ones. Research examined the correlation between extreme weather and some substance abuse. All studies analyzed the adverse effects of climate change, especially heatwaves, on both physiological and pathological levels. Conclusions: The scoping review notes the scarcity of studies about the correlation between substance abuse and climate change, and emphasizes the threats faced by individuals with substance abuse and mental health disorders due to climate change. Full article
(This article belongs to the Special Issue Global Climate Change and Public Health)
Show Figures

Figure 1

17 pages, 2133 KiB  
Article
Arbuscular Mycorrhizal Fungi Improve the Performance of Tempranillo and Cabernet Sauvignon Facing Water Deficit under Current and Future Climatic Conditions
by Daria Kozikova, Inmaculada Pascual and Nieves Goicoechea
Plants 2024, 13(8), 1155; https://doi.org/10.3390/plants13081155 - 22 Apr 2024
Cited by 4 | Viewed by 2008
Abstract
Climate change (CC) threatens Mediterranean viticulture. Rhizospheric microorganisms may be crucial for the adaptation of plants to CC. Our objective was to assess whether the association of two grapevine varieties with arbuscular mycorrhizal fungi (AMF) increases grapevine’s resilience to environmental conditions that combine [...] Read more.
Climate change (CC) threatens Mediterranean viticulture. Rhizospheric microorganisms may be crucial for the adaptation of plants to CC. Our objective was to assess whether the association of two grapevine varieties with arbuscular mycorrhizal fungi (AMF) increases grapevine’s resilience to environmental conditions that combine elevated atmospheric CO2, increased air temperatures, and water deficit. Tempranillo (T) and Cabernet Sauvignon (CS) plants, grafted onto R110 rootstocks, either inoculated (+M) or not (−M) with AMF, were grown in temperature-gradient greenhouses under two environmental conditions: (i) current conditions (ca. 400 ppm air CO2 concentration plus ambient air temperature, CATA) and (ii) climate change conditions predicted by the year 2100 (700 ppm of CO2 plus ambient air temperature +4 °C, CETE). From veraison to maturity, for plants of each variety, inoculation treatment and environmental conditions were also subjected to two levels of water availability: full irrigation (WW) or drought cycles (D). Therefore, the number of treatments applied to each grapevine variety was eight, resulting from the combination of two inoculation treatments (+M and −M), two environmental conditions (CATA and CETE), and two water availabilities (WW and D). In both grapevine varieties, early drought decreased leaf conductance and transpiration under both CATA and CETE conditions and more markedly in +M plants. Photosynthesis did not decrease very much, so the instantaneous water use efficiency (WUE) increased, especially in drought +M plants under CETE conditions. The increase in WUE coincided with a lower intercellular-to-atmospheric CO2 concentration ratio and reduced plant hydraulic conductance. In the long term, mycorrhization induced changes in the stomatal anatomy under water deficit and CETE conditions: density increased in T and decreased in CS, with smaller stomata in the latter. Although some responses were genotype-dependent, the interaction of the rootstock with AMF appeared to be a key factor in the acclimation of the grapevine to water deficit under both current and future CO2 and temperature conditions. Full article
(This article belongs to the Topic Effects of Climate Change on Viticulture (Grape))
Show Figures

Figure 1

16 pages, 1736 KiB  
Article
A Comparison of the Chronologies of Introduced versus Native Coniferous Tree Species Growing in Northwestern Poland during the Period of Global Warming
by Anna Cedro and Grzegorz Nowak
Sustainability 2024, 16(5), 2215; https://doi.org/10.3390/su16052215 - 6 Mar 2024
Cited by 3 | Viewed by 1549
Abstract
The ongoing climatic changes are causing the extinction of numerous species or their withdrawal from previously occupied areas. The environmental and economic significance of introduced species may increase. The aim of the present study was to examine the rate of growth of coniferous [...] Read more.
The ongoing climatic changes are causing the extinction of numerous species or their withdrawal from previously occupied areas. The environmental and economic significance of introduced species may increase. The aim of the present study was to examine the rate of growth of coniferous species growing in northwestern Poland and to analyze the tree ring width–climate relationships. Six tree species were selected for this study. Two of these species have natural occurrences in Poland: Pinus sylvestris and Larix decidua. The remaining four species were introduced from North America: Chamaecyparis lawsoniana, Thuja plicata, Pseudotsuga menziesii, and Pinus strobus. Samples were collected from 131 trees using a Pressler borer at 1.3 m above ground. Tree ring widths were measured down to 0.01 mm. Climatic data were retrieved from a weather station located 23 km from the study plot. The average tree ring width reaches the lowest value for the P. sylvestris chronology (1.62 mm/year) and for P. strobus (1.69 mm/year), and the highest value is reached for T. plicata (2.80 mm/year) and P. menziesii (2.56 mm/year). The analysis of weather conditions in the designated pointer years and the response function analysis indicate that winter and early spring air temperature is the factor responsible for the formation of wide tree rings in the following species studied: P. sylvestris, C. lawsoniana, P. menziesii, and T. plicata. For L. decidua and P. strobus, the climate–growth relationships are different: weather conditions in the previous growth year are important, and it is the weather in the late spring and summer months. Two of the investigated introduced species (T. plicata and P. menziesii) are characterized by very good acclimatization and are best adapted to the new habitat during the current climate changes. These tree species can constitute a basis for replacing native species, which, due to increasingly severe droughts and higher temperatures, are doing less and less well in their current habitats. Foresters wanting to conduct sustainable forest management will look for replacement species that are well adapted to new habitat conditions in order to maintain the continuity of forest cover. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

14 pages, 3794 KiB  
Article
Genotypic Differences in Morphological, Physiological and Agronomic Traits in Wheat (Triticum aestivum L.) in Response to Drought
by Qingqing Wang, Yi Wu, Suleiman Fatimoh Ozavize, Cheng-Wei Qiu, Paul Holford and Feibo Wu
Plants 2024, 13(2), 307; https://doi.org/10.3390/plants13020307 - 20 Jan 2024
Cited by 6 | Viewed by 2564
Abstract
Drought is one of the main environmental factors affecting crop growth, and breeding drought-tolerant cultivars is one of the most economic and effective ways of increasing yields and ensuring sustainable agricultural production under drought stress. To facilitate the breeding of drought-tolerant wheat, this [...] Read more.
Drought is one of the main environmental factors affecting crop growth, and breeding drought-tolerant cultivars is one of the most economic and effective ways of increasing yields and ensuring sustainable agricultural production under drought stress. To facilitate the breeding of drought-tolerant wheat, this study was conducted to evaluate genotypic differences in the drought tolerance of 334 wheat genotypes collected from China and Australia with the aim of screening for drought-tolerant and -sensitive genotypes and to elucidate the corresponding physiological mechanisms. A hydroponic-air experiment (roots exposed to air for 7 h/d and continued for 6 d) showed significant genotypic differences in shoot and root dry weights among the genotypes. The relative shoot and root dry weights, expressed as the percentage of the control, showed a normal distribution, with variation ranges of 20.2–79.7% and 32.8–135.2%, respectively. The coefficients of variation were in the range of 18.2–22.7%, and the diversity index was between 5.71 and 5.73, indicating a rich genetic diversity among the wheat genotypes for drought tolerance. Using phenotypic differences in relative dry weights in responses to drought stress, 20 of each of the most drought-tolerant and drought-sensitive genotypes were selected; these were further evaluated in pot experiments (watering withheld until the soil moisture content reached four percent). The results showed that the trends in drought tolerance were consistent with the hydroponic-air experiment, with genotypes W147 and W235 being the most drought-tolerant and W201 and W282 the most sensitive. Significant genotypic differences in water use efficiency in response to drought were observed in the pot experiment, with the drought-tolerant genotypes being markedly higher and the two sensitive genotypes being no different from the control. A marked increase in bound water content in the drought stress plants was observed in the two drought-tolerant genotypes, while a decrease occurred in the free water. The reductions in photochemical efficiencies of PSII, transpiration rates, net photosynthesis rates, chlorophyll contents and stomatal conduction in the drought-sensitive genotypes W201 and W282 under drought stress were higher than the two tolerant genotypes. This study provides a theoretical guide and germplasm for the further genetic improvement of drought tolerance in wheat. Full article
(This article belongs to the Special Issue Cereal Crop Breeding)
Show Figures

Figure 1

14 pages, 1471 KiB  
Article
The Decreased Availability of Soil Moisture and Canopy Conductance Dominate Evapotranspiration in a Rain-Fed Maize Ecosystem in Northeastern China
by Hui Zhang, Tianhong Zhao, Ruipeng Ji, Shuting Chang, Quan Gao and Ge Zhang
Agronomy 2023, 13(12), 2941; https://doi.org/10.3390/agronomy13122941 - 29 Nov 2023
Cited by 4 | Viewed by 1802
Abstract
Evapotranspiration (ET) determines the crop productivity in rain-fed agriculture. Global climate change alters the trade-off between soil water supply and atmospheric demand, energy partitioning, and community biophysical and structural properties; however, the interactive effects of these biotic and abiotic factors on ET and [...] Read more.
Evapotranspiration (ET) determines the crop productivity in rain-fed agriculture. Global climate change alters the trade-off between soil water supply and atmospheric demand, energy partitioning, and community biophysical and structural properties; however, the interactive effects of these biotic and abiotic factors on ET and its components remain unclear. ET was measured in 2005–2020 in a rain-fed maize ecosystem in northeastern China using the eddy covariance method. By decomposing ET into transpiration (T) and evaporation (E) with the Shuttleworth–Wallace model, we investigated the abiotic and biotic interactive effects on ET and its components at annual levels. Results showed that available energy and albedo exhibited no significant time-series trends, but the Bowen ratio exhibited an increasing trend. Precipitation exhibited no significant trends; however, soil water content (SWC) decreased with time, accompanied by significantly increased air temperature (Ta) and a vapor pressure deficit (VPD). The ET decline was controlled by T, rather than E. The T decline was mainly controlled by canopy conductance and SWC. CO2 concentrations and the VPD exhibited indirect effects on T by reducing canopy conductance, while Ta and precipitation had indirect effects on T by reducing SWC. Our results indicated that decreasing ET may be more severe with crop physiological adaptability for a decreased SWC. Aiming to enhance water resource efficiency, the practice of returning crop residues to the field to reduce soil evaporation, coupled with adjusting the sowing time to mitigate the risk of seasonal droughts during critical growth stages, represents an effective strategy in agricultural water resource management. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

Back to TopTop