Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = donor–π–acceptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4297 KB  
Article
Synthesis of Lignin-Derived Hierarchical Porous Carbon via Hydrothermal–Phosphoric Acid Synergistic Activation for Enhanced Adsorption of Tetracycline
by Xin Li, Yipeng Li, Yuhan Li, Mengyu Zhang and Jundong Zhu
Molecules 2026, 31(3), 447; https://doi.org/10.3390/molecules31030447 - 27 Jan 2026
Abstract
Tetracycline is a low-cost broad-spectrum antibiotic and widely used in medicine and aquaculture. Its residues are usually released into the environment through wastewater, which may lead to the spread of antibiotic resistance genes and pose ecological risks. To address this environmental issue, a [...] Read more.
Tetracycline is a low-cost broad-spectrum antibiotic and widely used in medicine and aquaculture. Its residues are usually released into the environment through wastewater, which may lead to the spread of antibiotic resistance genes and pose ecological risks. To address this environmental issue, a hierarchical lignin-derived porous carbon (LPHC) was synthesized using renewable biomass lignin as the precursor through a combined phosphoric acid-activated hydrothermal pretreatment. The resulting LPHC was used to effectively remove tetracycline from aqueous solutions. Characterization results indicated that LPHC had a high specific surface area (1157.25 m2·g−1), a well-developed micro-mesoporous structure, and abundant surface oxygen-containing functional groups, which enhanced its interaction with target pollutants. Adsorption experiments showed that LPHC exhibited excellent adsorption performance for tetracycline, with a maximum adsorption capacity of 219.81 mg·g−1. The adsorption process conformed to the Langmuir isotherm model, indicating that monolayer chemical adsorption was dominant. Mechanism analysis further confirmed that the adsorption process was controlled by multiple synergistic interactions, including pore filling, π-π electron donor–acceptor interactions, hydrogen bonding, and electrostatic attraction. This work proposes a feasible strategy to convert waste biomass into high-performance and environmentally friendly adsorbents, which provides technical feasibility for sustainable water purification technologies. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

43 pages, 6989 KB  
Review
Multi- and All-Acceptor Polymers for High-Performance n-Type Polymer Field Effect Transistors
by Ganapathi Bharathi and Seongin Hong
Polymers 2026, 18(1), 80; https://doi.org/10.3390/polym18010080 - 27 Dec 2025
Viewed by 396
Abstract
Multi-acceptor and all-acceptor polymers solve the fundamental challenge of achieving unipolar electron transport without compromising stability in n-type polymer field-effect transistors. By systematically replacing electron-rich donors with acceptor units, these architectures push LUMO levels below −4.0 eV and HOMO levels below −5.7 eV. [...] Read more.
Multi-acceptor and all-acceptor polymers solve the fundamental challenge of achieving unipolar electron transport without compromising stability in n-type polymer field-effect transistors. By systematically replacing electron-rich donors with acceptor units, these architectures push LUMO levels below −4.0 eV and HOMO levels below −5.7 eV. Consequently, electron mobilities exceeding 7 cm2 V−1 s−1, on/off ratios approaching 107, and months-long ambient operation can be achieved. This review connects the molecular architecture to device function. We assert that short-range π-aggregation matters more than crystallinity—tight π-stacking over 5–10 molecules drives transport in rigid backbones. Device optimization through interface engineering (e.g., amine-functionalized self-assembled monolayers reduce the threshold voltages to 1–5 V), contact resistance minimization, and controlled processing transform the intrinsic material potential into working transistors. Current challenges, such as balancing the operating voltage against stability, scaling synthetic yields, and reducing contact resistance, define near-term research directions toward complementary circuits, thermoelectrics, and bioelectronics. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Energy Storage Applications)
Show Figures

Figure 1

20 pages, 4456 KB  
Article
Enhanced Adsorption of Metformin Using Cu and ZnO Nanoparticles Anchored on Carboxylated Graphene Oxide
by Abeer H. Aljadaani, Amr A. Yakout and Hany Abdel-Aal
Polymers 2026, 18(1), 71; https://doi.org/10.3390/polym18010071 - 26 Dec 2025
Viewed by 384
Abstract
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and [...] Read more.
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and efficiency. In this work, a ternary nanocomposite of Cu- and ZnO-decorated carboxylated graphene oxide (Cu/ZnO@CGO) was synthesized and utilized for highly efficient and ultrafast removal of the antidiabetic drug metformin from aqueous environments. The adsorption mechanism arises from a synergistic combination of surface complexation on Cu nanoparticles, cation–π and π–π electron donor–acceptor interactions with the CGO aromatic structure, and hydrogen bonding through the amino groups of metformin and the oxygen-rich functional moieties of ZnO and CGO. The nanocomposite was thoroughly characterized using FTIR, XPS, XRD, SEM, HRTEM, and TGA analyses, confirming its well-defined hybrid structure. Unlike conventional single-phase or binary systems, the Cu/ZnO@CGO nanocomposite demonstrated remarkable cooperative effects that enhanced its performance through the integration of metal–ligand coordination, π–π stacking, cation–π forces, and hydrogen bonding. These interactions contributed to an outstanding adsorption capacity of 232.56 mg·g−1 and an exceptionally fast equilibrium time of only 25 min. Moreover, the material maintained excellent reusability, with merely a 4.1% decline in efficiency after five regeneration cycles, and achieved almost complete removal of metformin (99.7 ± 3.4%) from several real water samples, namely river, tap, and bottled water. The unique structural design of Cu/ZnO@CGO prevents CGO aggregation and facilitates efficient contaminant capture even at trace concentrations, establishing it as a highly competitive and sustainable adsorbent for pharmaceutical wastewater treatment. Overall, this study highlights a novel and rationally engineered nanocomposite whose synergistic surface chemistry bridges adsorption and detoxification, providing valuable insight into the next generation of multifunctional graphene-based materials for environmental remediation. Full article
(This article belongs to the Special Issue Polymeric Materials Based on Graphene Derivatives and Composites)
Show Figures

Figure 1

14 pages, 1672 KB  
Article
Tuning of Thermally Activated Delayed Fluorescence Properties in the N,N-Diphenylaminophenyl–Phenylene–Quinoxaline D–π–A System
by Masaki Nagaoka, Hiroaki Chihara, Shintaro Kodama, Takeshi Maeda, Shin-ichiro Kato and Shigeyuki Yagi
Compounds 2025, 5(4), 59; https://doi.org/10.3390/compounds5040059 - 16 Dec 2025
Viewed by 361
Abstract
Thermally activated delayed fluorescence (TADF) often achieves high device efficiencies in organic light-emitting diodes. Here we develop TADF dyes, 1-H and 1-Me, based on an N,N-diphenylaminophenyl–phenylene–quinoxaline donor–π–acceptor system, which contains an unsubstituted 1,4-phenylene and a 2,5-dimethyl-1,4-phenylene π-spacer, respectively. In [...] Read more.
Thermally activated delayed fluorescence (TADF) often achieves high device efficiencies in organic light-emitting diodes. Here we develop TADF dyes, 1-H and 1-Me, based on an N,N-diphenylaminophenyl–phenylene–quinoxaline donor–π–acceptor system, which contains an unsubstituted 1,4-phenylene and a 2,5-dimethyl-1,4-phenylene π-spacer, respectively. In UV–vis absorption spectra in toluene at room temperature, 1-H showed a relatively intense shoulder band at 400 nm, whereas 1-Me had a weak, blue-shifted shoulder at 386 nm, indicating 1-Me adopts a more twisted π-conjugation system. On the other hand, the photoluminescence (PL) wavelength of 1-MePL; 558 nm) under the same conditions was slightly red-shifted in comparison with that of 1-HPL; 552 nm), due to larger structural relaxation of 1-Me. From PL lifetime measurements, both the dyes showed TADF in 10 wt%-doped poly(methyl methacrylate) film, and their PL quantum yields were moderate (ΦPL; ca. 0.5 at 300 K). As for the photokinetics, 1-Me exhibited larger rate constants for intersystem crossing and reverse intersystem crossing than 1-H due to the small excited-state singlet–triplet energy gap (ΔEST) of 1-Me. Furthermore, theoretical calculations indicated the triplet state of 1-Me is destabilized by localization of the spin density, resulting in the reduced ΔEST to facilitate TADF. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

18 pages, 4921 KB  
Article
Multi-State Photoluminescence of Donor–π–Acceptor Tetrafluorinated Tolane Mesogenic Dimers in Solution, Crystal, and Liquid-Crystalline Phases
by Sorato Inui, Yuto Eguchi, Masato Morita, Motohiro Yasui, Tsutomu Konno and Shigeyuki Yamada
Crystals 2025, 15(12), 1050; https://doi.org/10.3390/cryst15121050 - 11 Dec 2025
Viewed by 395
Abstract
Photoluminescent liquid crystals with photoluminescence (PL) and liquid-crystalline (LC) properties have attracted attention as PL-switching materials owing to their thermally induced phase transitions, such as crystal → smectic A/nematic → isotropic phase transitions. Our group previously developed tetrafluorinated tolane mesogenic dimers linked by [...] Read more.
Photoluminescent liquid crystals with photoluminescence (PL) and liquid-crystalline (LC) properties have attracted attention as PL-switching materials owing to their thermally induced phase transitions, such as crystal → smectic A/nematic → isotropic phase transitions. Our group previously developed tetrafluorinated tolane mesogenic dimers linked by flexible alkylene-1,n-dioxy spacers, demonstrating that the position of the tetrafluorinated aromatic ring critically influences the LC behavior. However, these compounds exhibited very weak fluorescence owing to an insufficient D–π–A character of the π-conjugated mesogens, which facilitated internal conversion from emissive ππ* to non-emissive πσ* states. We designed and synthesized derivatives in which the mesogen–spacer linkage was modified from ether to ester, thereby enhancing the D–π–A character. Thermal and structural analyses revealed spacer-length parity effects: even-numbered spacers induced nematic phases, whereas odd-numbered spacers stabilized smectic A phases. Photophysical studies revealed multi-state PL across solution, crystal, and LC phases. Strong blue PL (ΦPL = 0.39–0.48) was observed in solution, while crystals exhibited aggregation-induced emission enhancement (ΦPL = 0.48–0.77) with spectral diversity. In LC states, ΦPL values up to 0.36 were maintained, showing reversible intensity and spectral shifts with phase transitions. These findings establish design principles that correlate spacer parity, phase behavior, and PL properties, enabling potential applications in PL thermosensors and responsive optoelectronic devices. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

17 pages, 3533 KB  
Article
Ferroelectric Properties and Ambipolar Carrier Transport of 9-Fluorenone-Based Liquid Crystals
by Sou-un Doi, Syota Yamada, Ken’ichi Aoki and Atsushi Seki
Crystals 2025, 15(12), 1021; https://doi.org/10.3390/cryst15121021 - 28 Nov 2025
Viewed by 541
Abstract
The functional integration of chiral liquid crystals and π-conjugated compounds has great potential for creating novel exotic materials. A series of chiral donor–acceptor (D–A)-type fluorenone derivatives was synthesized to investigate the influence of molecular structure upon their liquid-crystalline phase-transition behavior, ferroelectricity, photophysical properties, [...] Read more.
The functional integration of chiral liquid crystals and π-conjugated compounds has great potential for creating novel exotic materials. A series of chiral donor–acceptor (D–A)-type fluorenone derivatives was synthesized to investigate the influence of molecular structure upon their liquid-crystalline phase-transition behavior, ferroelectricity, photophysical properties, and photoconductive properties. Polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analyses revealed that several D–A-type fluorenone derivatives exhibited liquid crystal (LC) phases. These chiral LC fluorenone derivatives exhibited polarization hysteresis in the chiral smectic C (SmC*) phase. Among the four fluorenone-based ferroelectric liquid crystals (FLCs), (R,R)-2a exhibited the largest spontaneous polarization (over 3.0 × 102 nC cm−2). The formation of intramolecular charge-transfer (ICT) states in each compound was evidenced by the UV–vis absorption spectroscopy. Ambipolar carrier transport in the SmC* phases of the fluorenone-based FLCs was elucidated by the time-of-flight (TOF) method. The mobilities of holes and electrons in the SmC* phases were on the order of 10−5 cm2 V−1 s−1, which is on par with the carrier mobilities of low-ordered smectic phases in conventional LC semiconductors. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

17 pages, 3404 KB  
Article
Photoresponsive Ru Complex–Gold Nanoparticle Hybrids for Theranostics: A Theoretical Study of Electronic Structure and Luminescence-Based Detection
by Niq Catevas and Athanassios Tsipis
Molecules 2025, 30(22), 4432; https://doi.org/10.3390/molecules30224432 - 16 Nov 2025
Viewed by 501
Abstract
Photoactivatable nitric oxide donors (photoNORMs) are promising agents for controlled NO release and real-time optical tracking in biomedical theranostics. Here, we report a comprehensive density functional theory (DFT) and time-dependent DFT (TDDFT) study on a series of hybrid ruthenium–gold nanocluster systems of the [...] Read more.
Photoactivatable nitric oxide donors (photoNORMs) are promising agents for controlled NO release and real-time optical tracking in biomedical theranostics. Here, we report a comprehensive density functional theory (DFT) and time-dependent DFT (TDDFT) study on a series of hybrid ruthenium–gold nanocluster systems of the general formula [(L)Ru(NO)(SH)@Au20], where L = salen, bpb, porphyrin, or phthalocyanine. Structural and bonding analyses reveal that the Ru–NO bond maintains a formal {RuNO}6 configuration with pronounced Ru → π*(NO) backbonding, leading to partial reduction of the NO ligand and an elongated N–O bond. Natural Bond Orbital (NBO), Natural Energy Decomposition Analysis (NEDA), and Extended Transition State–Natural Orbitals for Chemical Valence (ETS–NOCV) analyses confirm that Ru–NO bonding is dominated by charge-transfer and polarization components, while Ru–S and Au–S linkages exhibit a delocalized, donor–acceptor character coupling the molecular chromophore with the metallic cluster. TDDFT results reproduce visible–near-infrared (NIR) absorption features arising from mixed metal-to-ligand and cluster-mediated charge-transfer transitions. The calculated zero–zero transition and reorganization energies predict NIR-II emission (1.8–3.8 μm), a region of high biomedical transparency, making these systems ideal candidates for luminescence-based NO sensing and therapy. This study establishes fundamental design principles for next-generation Ru-based photoNORMs integrated with plasmonic gold nanoclusters, highlighting their potential as multifunctional, optically trackable theranostic platforms. Full article
Show Figures

Graphical abstract

40 pages, 8122 KB  
Review
Rational Design of Covalent Organic Frameworks for Enhanced Reticular Electrochemiluminescence and Biosensing Applications
by Bing Sun and Lin Cui
Biosensors 2025, 15(11), 760; https://doi.org/10.3390/bios15110760 - 16 Nov 2025
Viewed by 1168
Abstract
Electrochemiluminescence (ECL) has evolved into a powerful analytical technique due to its ultra-high sensitivity, low background noise, and precise electrochemical control. The development of efficient ECL emitters is central to advancing this technology for practical applications. Covalent organic frameworks (COFs) have recently emerged [...] Read more.
Electrochemiluminescence (ECL) has evolved into a powerful analytical technique due to its ultra-high sensitivity, low background noise, and precise electrochemical control. The development of efficient ECL emitters is central to advancing this technology for practical applications. Covalent organic frameworks (COFs) have recently emerged as promising candidates for constructing high-performance ECL systems. The tunable porosity, ordered π-conjugated structures, and versatile modular functionalities of COFs provide fast massive transport, effective electron transfer, rapid interfacial electrochemical reaction, and enhanced ECL emission performance. This review provides a comprehensive overview of the rational design strategies and structural engineering for COF-based ECL materials at the molecular level. Linkage chemistry, monomer selection (luminophores and π-conjugated non-ECL motifs), precise framework regulation, post-synthetic modification, composite formation, and other ECL enhancement strategies were discussed for developing COF-based ECL emitter. Both the incorporation of aggregation-induced emission and intramolecular charge transfer mechanisms are included to enhance ECL efficiency. Donor–acceptor conjugation, heteroatom element content, isomerism, substitution, and dimensional direction were regarded as effective strategies to regulate the electronic structure and band diagrams for designing high-performance ECL systems. The role of COFs as both active emitters and functional scaffolds for signal amplification is critically examined. Furthermore, their diverse analytical applications across biosensing, food safety, environmental monitoring, and chiral recognition are highlighted. By correlating structural features with ECL performance, this review offers insights into the design principles of next-generation reticular ECL materials and outlines future directions for their practical deployment in sensitive and selective sensing platforms. Full article
(This article belongs to the Special Issue Progress in Electrochemiluminescence Biosensors)
Show Figures

Figure 1

13 pages, 1771 KB  
Article
Tuning Excited-State Properties in Pyrrolo[3,2-b]pyrrole-Based Donor–Acceptor Emitters via Molecular Conformation and Conjugation Control
by Taotao Gan, Jie Su, Feiyang Li, Qiuxia Li and Chao Shi
Molecules 2025, 30(21), 4228; https://doi.org/10.3390/molecules30214228 - 29 Oct 2025
Viewed by 534
Abstract
Nitrogen-fused conjugated heterocycles have attracted growing interest owing to their tunable electronic properties and potential in organic optoelectronics. In this study, two centrosymmetric donor–acceptor-type emitters PP-6F and PPA-3F were designed by incorporating trifluorophenyl and anthracene acceptor units into a pyrrolo[3,2-b]pyrrole (PP) [...] Read more.
Nitrogen-fused conjugated heterocycles have attracted growing interest owing to their tunable electronic properties and potential in organic optoelectronics. In this study, two centrosymmetric donor–acceptor-type emitters PP-6F and PPA-3F were designed by incorporating trifluorophenyl and anthracene acceptor units into a pyrrolo[3,2-b]pyrrole (PP) framework. The experimental and theoretical results reveal that subtle modulations in molecular conformation and π-conjugation pathways strongly affect the excited-state characteristics. PP-6F, featuring a nearly coplanar donor–acceptor configuration, exhibits efficient π-electron delocalization and a dominant local excitation (LE) emission with a large oscillator strength. In contrast, the bulky anthracene in PPA-3F increases the donor–acceptor dihedral angle, reduces conjugation coupling, and promotes orbital separation, leading to a hybrid intramolecular charge transfer and local excitation (ICT/LE) excited state. The rigid anthracene framework suppresses structural reorganization and nonradiative decay, allowing PPA-3F to retain a relatively high oscillator strength despite its charge-transfer nature. This work demonstrates that fine-tuning donor–acceptor dihedral angles and conjugation continuity within PP-based systems is an effective strategy for balancing LE and ICT emissions and developing high-efficiency nitrogen-fused organic emitters and scintillators. Full article
Show Figures

Graphical abstract

20 pages, 3922 KB  
Article
Both Benzannulation and Heteroatom-Controlled Photophysical Properties in Donor–π–Acceptor Ionic Dyes: A Combined Experimental and Theoretical Study
by Przemysław Krawczyk and Beata Jędrzejewska
Materials 2025, 18(20), 4676; https://doi.org/10.3390/ma18204676 - 12 Oct 2025
Viewed by 709
Abstract
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- [...] Read more.
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- and six-membered heterocyclic rings as electron-donating and electron-withdrawing units, respectively. The influence of the dye structure, i.e., (a) the systematically varied heteroatom (NMe, S and O) in donor moiety, (b) benzannulation of the acceptor part and (c) position of the donor vs. acceptor, on the photophysical properties was evaluated by steady-state and time-resolved spectroscopy across solvents of varying polarity. To probe solvatochromic behavior, the Reichardt parameters and the Catalán four-parameter scale, including polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) parameters, were applied. Emission dynamics were further analyzed through time-resolved fluorescence spectroscopy employing multi-exponential decay models to accurately describe fluorescence lifetimes. Time-dependent density functional theory (TDDFT) calculations supported the experimental findings by elucidating electronic structures, charge-transfer character, and dipole moments in the ground and excited states. The experimental results show the introduction of O or S instead of NMe causes substantial hypsochromic shifts in the absorption and emission bands. Benzannulation enhances the photoinduced charge transfer and causes red-shifted absorption spectra to be obtained without deteriorating the emission properties. Hence, by introducing an appropriate modification, it is possible to design materials with tunable photophysical properties for practical applications, e.g., in opto-electronics or sensing. Full article
Show Figures

Figure 1

18 pages, 1534 KB  
Article
Synthesis of Polyfluorinated Aromatic Selenide-Modified Polysiloxanes: Enhanced Thermal Stability, Hydrophobicity, and Noncovalent Modification Potential
by Kristina A. Lotsman, Sofia S. Filippova, Vadim Yu. Kukushkin and Regina M. Islamova
Polymers 2025, 17(20), 2729; https://doi.org/10.3390/polym17202729 - 11 Oct 2025
Viewed by 1245
Abstract
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study [...] Read more.
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study introduces a fundamentally new approach to polysiloxane functionalization by incorporating cooperative noncovalent interaction centers: selenium-based chalcogen bonding donors and polyfluoroaromatic π-hole acceptors into a single polymer platform. We developed an efficient nucleophilic substitution strategy using poly((3-chloropropyl)methylsiloxane) as a platform for introducing Se-containing groups with polyfluoroaromatic substituents. Three synthetic approaches were evaluated; only direct modification of Cl-PMS-2 proved successful, avoiding catalyst poisoning and crosslinking issues. The optimized methodology utilizes mild conditions and achieved high substitution degrees (74–98%) with isolated yields of 60–79%. Comprehensive characterization using 1H, 13C, 19F, 77Se, and 29Si NMR, TGA, and contact angle measurements revealed significantly enhanced properties. Modified polysiloxanes demonstrated improved thermal stability (up to 37 °C higher decomposition temperatures, 50–60 °C shifts in DTG maxima) and increased hydrophobicity (water contact angles from 69° to 102°). These systems potentially enable chalcogen bonding and arene–perfluoroarene interactions, providing foundations for materials with applications in biomedicine, electronics, and protective coatings. This dual-functionality approach opens pathways toward adaptive materials whose properties can be tuned through supramolecular modification while maintaining the inherent advantages of polysiloxane platforms—flexibility, biocompatibility, and chemical inertness. Full article
(This article belongs to the Special Issue Post-Functionalization of Polymers)
Show Figures

Figure 1

12 pages, 8239 KB  
Article
Impact of Molecular π-Bridge Modifications on Triphenylamine-Based Donor Materials for Organic Photovoltaic Solar Cells
by Duvalier Madrid-Úsuga, Omar J. Suárez and Alfonso Portacio
Condens. Matter 2025, 10(4), 52; https://doi.org/10.3390/condmat10040052 - 25 Sep 2025
Viewed by 1012
Abstract
This study presents a computational investigation into the design of triphenylamine-based donor chromophores incorporating 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit. Three molecular architectures (System-1 to System-3) were developed by introducing distinct thiophene-derived π-bridges to modulate their electronic and optical characteristics for potential application [...] Read more.
This study presents a computational investigation into the design of triphenylamine-based donor chromophores incorporating 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit. Three molecular architectures (System-1 to System-3) were developed by introducing distinct thiophene-derived π-bridges to modulate their electronic and optical characteristics for potential application in bulk heterojunction organic solar cells (OSCs). Geometrical optimizations were performed at the B3LYP/6-31+G(d,p) level, while excited-state and absorption properties were evaluated using TD-DFT with the CAM-B3LYP functional. Frontier orbital analysis revealed efficient charge transfer from donor to acceptor moieties, with System-3 showing the narrowest HOMO–LUMO gap (1.96 eV) and the lowest excitation energy (2.968 eV). Charge transport properties, estimated from reorganization energies, indicated that System-2 exhibited the most favorable balance for ambipolar transport, featuring the lowest electron reorganization energy (0.317 eV) and competitive hole mobility. Photovoltaic parameters calculated with PC61BM as acceptor predicted superior Voc, Jsc, and fill factor values for System-2, resulting in the highest theoretical power conversion efficiency (10.95%). These findings suggest that π-bridge engineering in triphenylamine-based systems can significantly enhance optoelectronic performance, offering promising donor materials for next-generation OSC devices. Full article
(This article belongs to the Section Condensed Matter Theory)
Show Figures

Figure 1

12 pages, 855 KB  
Article
DFT Study of Functionalized Benzoxazole-Based D–π–A Architectures: Influence of Ionic Fragments on Optical Properties and Their Potential in OLED and Solar Cell Devices
by Edwin Rivera, Ronal Ceballo, Oscar Neira, Oriana Avila and Ruben Fonseca
Molecules 2025, 30(18), 3737; https://doi.org/10.3390/molecules30183737 - 15 Sep 2025
Viewed by 1011
Abstract
This theoretical work investigates the linear (absorption and emission) and nonlinear (first hyperpolarizability and TPA) optical properties of donor–π–acceptor (D–π–A) molecular architectures based on functionalized benzoxazoles, with potential applications in optoelectronic technologies such as OLEDs and solar cells. Four [...] Read more.
This theoretical work investigates the linear (absorption and emission) and nonlinear (first hyperpolarizability and TPA) optical properties of donor–π–acceptor (D–π–A) molecular architectures based on functionalized benzoxazoles, with potential applications in optoelectronic technologies such as OLEDs and solar cells. Four π-conjugated compounds were studied in the gas phase and in polar (methanol) and nonpolar (toluene) solvents, employing DFT with the B3LYP and CAM-B3LYP functionals and the 6-311++G(d,p) basis set, as implemented in Gaussian and Dalton. The results reveal that the chemical environment induces spectral shifts and modulates the intensity of electronic transitions. In particular, the compound 2-((4-((5-nitro-2-oxo-1,3-benzoxazol-3(2H)-yl)amino)phenyl)methyl)-1,3-benzoxazole exhibited outstanding behavior in methanol, with a significant increase in dipole moment, polarizability, and first hyperpolarizability (static and dynamic at 1064 nm), reaching a TPA cross-section close to 150 GM. These findings highlight the key role of ionic substituents in tuning the optical response of π-conjugated systems and underscore their potential as functional materials for high-performance light-emitting and energy-conversion devices. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

15 pages, 2026 KB  
Article
Bis-Homoleptic Metal Complexes of a Tridentate Ligand with a Central Anionic Sulfonamide Donor
by Mathias L. Skavenborg and Christine J. McKenzie
Molecules 2025, 30(16), 3378; https://doi.org/10.3390/molecules30163378 - 14 Aug 2025
Viewed by 912
Abstract
Redox-active manganese, iron, and nickel complexes of pyridin-2-ylsulfonyl-quinolin-8-yl-amide (psq) provide information for assessing the electronic and structural properties of this new tridentate ligand. Single-crystal X-ray structures show that psq coordinates in a meridional mode with a trigonal geometry for the central deprotonated sulfonamide [...] Read more.
Redox-active manganese, iron, and nickel complexes of pyridin-2-ylsulfonyl-quinolin-8-yl-amide (psq) provide information for assessing the electronic and structural properties of this new tridentate ligand. Single-crystal X-ray structures show that psq coordinates in a meridional mode with a trigonal geometry for the central deprotonated sulfonamide N donor. With the structures described here, there are now five structures known for hexacoordinated bis-homoleptic complexes of psq. All show the same geometry. No fac isomer, although feasible, has been structurally characterized. The geometrical parameters for [M(psq)2]0/+ are surprisingly close to those for archetypical [M(terpy)2]2+/3+ (terpy =2,2′:6′,2″-terpyridine) complexes, with octahedral distortion parameters indicating a geometry that is slightly closer to a regular octahedral. The Fe(II) complex, however, bucks this trend, consistent with the magnetic susceptibility measurements indicating a high-spin S = 5/2 state, which stands in contrast to low-spin [Fe(terpy)2]2+. This is rationalized by the trans secondary sulfonamide donors being weaker π acceptors compared to central terpy pyridine donors. An overall two-integer reduced charge for the complexes is consistent with the CoII/CoI, MIII/MII M = Mn, Fe, Co, and MnIV/MnIII redox events being ca. 600–900 mV more cathodic compared to the corresponding events for [M(terpy)2]2+. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

21 pages, 2838 KB  
Article
Reactivity of Ammonia in 1,2-Addition to Group 13 Imine Analogues with G13–P–Ga Linkages: The Electronic Role of Group 13 Elements
by Zheng-Feng Zhang and Ming-Der Su
Molecules 2025, 30(15), 3222; https://doi.org/10.3390/molecules30153222 - 31 Jul 2025
Viewed by 652
Abstract
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature [...] Read more.
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H2N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

Back to TopTop