Bis-Homoleptic Metal Complexes of a Tridentate Ligand with a Central Anionic Sulfonamide Donor
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Magnetic Susceptibility
2.3. Electrochemistry
2.4. UV/Vis Spectrophotometry
3. Methods and Materials
3.1. General
3.2. Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAN | Ceric ammonium nitrate |
CCDC | Cambridge Crystallographic Data Centre |
CV | Cyclic voltammetry |
DCM | Dichloromethane |
Fc | Ferrocene |
HQSQ | N-(quinolin-8-yl)quinolin-8-sulfonamide |
MeCN | Acetonitrile |
Mer | Meridional |
fac | Facial |
SI | Supporting Information |
Psq | Pyridin-2-ylsulfonyl-quinolin-8-yl-amide |
TBAPF6 | Tetrabutylammonium hexafluorophosphate |
terpy | 2,2′:6′,2″-Terpyridine |
THF | Tetrahydrofuran |
References
- Peris, E.; Crabtree, R.H. Key factors in pincer ligand design. Chem. Soc. Rev. 2018, 47, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.A.; Green, K.A.; Nelson, P.N.; Lorraine, S.C. Pincer ligands—Tunable, versatile and applicable. Polyhedron 2018, 143, 11–27. [Google Scholar] [CrossRef]
- Skavenborg, M.L.; McPherson, J.N.; Pasadakis-Kavounis, A.; Hjelm, J.; Waite, T.D.; McKenzie, C.J. Leveraging coordination chemistry in the design of bipolar energy storage materials for redox flow batteries. Sustain. Energy Fuels 2022, 6, 2179–2190. [Google Scholar] [CrossRef]
- Yao, S.-Y.; Villa, M.; Zheng, Y.; Fiorentino, A.; Ventura, B.; I Ivlev, S.; Ceroni, P.; Meggers, E. Cobalt catalyst with exclusive metal-centered chirality for asymmetric photocatalysis. Nat. Commun. 2025, 16, 6635. [Google Scholar] [CrossRef]
- Skavenborg, M.L.; Møller, M.S.; McKenzie, C.J. Dimeric Copper(I) Complex with a Disulfonamide-Bridged Core. Inorg. Chem. 2024, 63, 24122–24132. [Google Scholar] [CrossRef]
- Skavenborg, M.L.; Møller, M.S.; Mossin, S.; Waite, T.D.; McKenzie, C.J. Sulfonamido-Pincer Complexes of Cu(II) and the Electrocatalysis of O2 Reduction. Inorg. Chem. 2023, 62, 12741–12749. [Google Scholar] [CrossRef]
- Pascual-Álvarez, A.; Topala, T.; Estevan, F.; Sanz, F.; Alzuet-Piña, G. Photoinduced and Self-Activated Nuclease Activity of Copper(II) Complexes with N-(Quinolin-8-yl)quin-olin-8-sulfonamide—DNA and Bovine Serum Albumin Binding. Eur. J. Inorg. Chem. 2016, 2016, 982–994. [Google Scholar]
- Morgan, G.; Burstall, F.H. 347. Researches on residual affinity and co-ordination. Part XXXVII. Complex metallic salts containing 2:6-di-2′-pyridylpyridine (2:2′:2″-tripyridyl). J. Chem. Soc. (Resumed) 1937, 1649–1655. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Wang, M.; Weyhermüller, T.; England, J.; Wieghardt, K. Molecular and Electronic Structures of Six-Coordinate “Low-Valent” [M(Mebpy)3]0 (M = Ti, V, Cr, Mo) and [M(tpy)2]0 (M = Ti, V, Cr), and Seven-Coordinate [MoF(Mebpy)3](PF6) and [MX(tpy)2](PF6) (M = Mo, X = Cl and M = W, X = F). Inorg. Chem. 2013, 52, 12763–12776. [Google Scholar] [CrossRef] [PubMed]
- England, J.; Bill, E.; Weyhermüller, T.; Neese, F.; Atanasov, M.; Wieghardt, K. Molecular and Electronic Structures of Homoleptic Six-Coordinate Cobalt(I) Complexes of 2,2′:6′,2″-Terpyridine, 2,2′-Bipyridine, and 1,10-Phenanthroline. An Experimental and Computational Study. Inorg. Chem. 2015, 54, 12002–12018. [Google Scholar] [CrossRef]
- Liu, Y.; Harlang, T.; Canton, S.E.; Chábera, P.; Suárez-Alcántara, K.; Fleckhaus, A.; Vithanage, D.A.; Göransson, E.; Corani, A.; Lomoth, R.; et al. Towards longer-lived metal-to-ligand charge transfer states of iron(ii) complexes: An N-heterocyclic carbene approach. Chem. Commun. 2013, 49, 6412–6414. [Google Scholar] [CrossRef]
- Creutz, C.; Chou, M.; Netzel, T.L.; Okumura, M.; Sutin, N. Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). J. Am. Chem. Soc. 1980, 102, 1309–1319. [Google Scholar] [CrossRef]
- Parisien-Collette, S.; Hernandez-Perez, A.C.; Collins, S.K. Photochemical Synthesis of Carbazoles Using an [Fe(phen)3](NTf2)2/O2 Catalyst System: Catalysis toward Sustainability. Org. Lett. 2016, 18, 4994–4997. [Google Scholar] [CrossRef]
- Kuehnel, M.F.; Orchard, K.L.; Dalle, K.E.; Reisner, E. Selective Photocatalytic CO2 Reduction in Water through Anchoring of a Molecular Ni Catalyst on CdS Nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223. [Google Scholar] [CrossRef] [PubMed]
- Elgrishi, N.; Chambers, M.B.; Artero, V.; Fontecave, M. Terpyridine complexes of first row transition metals and electrochemical reduction of CO2 to CO. Phys. Chem. Chem. Phys. 2014, 16, 13635–13644. [Google Scholar] [CrossRef] [PubMed]
- Baffert, C.; Romain, S.; Richardot, A.; Leprêtre, J.C.; Lefebvre, B.; Deronzier, A.; Collomb, M.N. Electrochemical and Chemical Formation of [Mn4IVO5(terpy)4(H2O)2]6+, in Relation with the Photosystem II Oxygen-Evolving Center Model [Mn2III,IVO2(terpy)2(H2O)2]3+. J. Am. Chem. Soc. 2005, 127, 13694–13704. [Google Scholar] [CrossRef]
- Limburg, J.; Vrettos, J.S.; Liable-Sands, L.M.; Rheingold, A.L.; Crabtree, R.H.; Brudvig, G.W. A Functional Model for O-O Bond Formation by the O2-Evolving Complex in Photosystem II. Science 1999, 283, 1524–1527. [Google Scholar] [CrossRef]
- Sjödin, M.; Gätjens, J.; Tabares, L.C.; Thuéry, P.; Pecoraro, V.L.; Un, S. Tuning the Redox Properties of Manganese(II) and Its Implications to the Electrochemistry of Manganese and Iron Superoxide Dismutases. Inorg. Chem. 2008, 47, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.M.; Macero, D.J.; Hughes, M.C. Dual role of para-phenyl substituents in aromatic imine ligand complexes of cobalt and iron. Inorg. Chim. Acta 1980, 41, 221–226. [Google Scholar] [CrossRef]
- Chambers, J.; Eaves, B.; Parker, D.; Claxton, R.; Ray, P.S.; Slattery, S.J. Inductive influence of 4′-terpyridyl substituents on redox and spin state properties of iron(II) and cobalt(II) bis-terpyridyl complexes. Inorg. Chim. Acta 2006, 359, 2400–2406. [Google Scholar] [CrossRef]
- Bressler, C.; Milne, C.; Pham, V.-T.; ElNahhas, A.; van der Veen, R.M.; Gawelda, W.; Johnson, S.; Beaud, P.; Grolimund, D.; Kaiser, M.; et al. Femtosecond XANES Study of the Light-Induced Spin Crossover Dynamics in an Iron(II) Complex. Science 2009, 323, 489–492. [Google Scholar] [CrossRef]
- Hannonen, J.; Tuna, A.; Gonzalez, G.; Martínez González, E.; Peljo, P. Investigation of Fe(II) Complexes with 1,10-Phenanthroline and 2,2′;6′,2”-Terpyridine for Aqueous Flow Battery Applications. ChemElectroChem 2025, 12, e202400574. [Google Scholar] [CrossRef]
- Hathcock, D.J.; Stone, K.; Madden, J.; Slattery, S.J. Electron donating substituent effects on redox and spin state properties of iron(II) bis-terpyridyl complexes. Inorg. Chim. Acta 1998, 282, 131–135. [Google Scholar] [CrossRef]
- Szemes, D.S.; Keszthelyi, T.; Papp, M.; Varga, L.; Vankó, G. Quantum-chemistry-aided ligand engineering for potential molecular switches: Changing barriers to tune excited state lifetimes. Chem. Commun. 2020, 56, 11831–11834. [Google Scholar] [CrossRef]
- McPherson, J.N.; Elton, T.E.; Colbran, S.B. A Strain-Deformation Nexus within Pincer Ligands: Application to the Spin States of Iron(II) Complexes. Inorg. Chem. 2018, 57, 12312–12322. [Google Scholar] [CrossRef]
- Shahid, N.; Burrows, K.E.; Pask, C.M.; Cespedes, O.; Howard, M.J.; McGowan, P.C.; Halcrow, M.A. Heteroleptic iron(ii) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands—The interplay of two different ligands on the metal ion spin sate. Dalton Trans. 2022, 51, 4262–4274. [Google Scholar] [CrossRef]
- Anderer, C.; Näther, C.; Bensch, W. Bis(2,2′:6′,2′’-terpyridine-[kappa]3N,N′,N″)nickel(II) bis(perchlorate) hemihydrate. IUCrData 2016, 1, x161009. [Google Scholar] [CrossRef]
- Cointe, M.B.-L.; Hébert, J.; Baldé, C.; Moisan, N.; Toupet, L.; Guionneau, P.; Létard, J.F.; Freysz, E.; Cailleau, H.; Collet, E. Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs. Phys. Rev. B 2012, 85, 064114. [Google Scholar] [CrossRef]
- Drew, M.G.B.; Harding, C.J.; McKee, V.; Morgan, G.G.; Nelson, J. Geometric control of manganese redox state. J. Chem. Soc. Chem. Commun. 1995, 1035–1038. [Google Scholar] [CrossRef]
- Marchivie, M.; Guionneau, P.; Létard, J.-F.; Chasseau, D. Photo-induced spin-transition: The role of the iron(II) environment distortion. Acta Crystallogr. Sect. B Struct. Sci. 2005, 61, 25–28. [Google Scholar] [CrossRef]
- Ketkaew, R.; Tantirungrotechai, Y.; Harding, P.; Chastanet, G.; Guionneau, P.; Marchivie, M.; Harding, D.J. OctaDist: A tool for calculating distortion parameters in spin crossover and coordination complexes. Dalton Trans. 2020, 50, 1086–1096. [Google Scholar] [CrossRef]
- Robinson, K.; Gibbs, G.V.; Ribbe, P.H. Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra. Science 1971, 172, 567–570. [Google Scholar] [CrossRef]
- Aroua, S.; Todorova, T.K.; Hommes, P.; Chamoreau, L.-M.; Reissig, H.-U.; Mougel, V.; Fontecave, M. Synthesis, Characterization, and DFT Analysis of Bis-Terpyridyl-Based Molecular Cobalt Complexes. Inorg. Chem. 2017, 56, 5930–5940. [Google Scholar] [CrossRef]
- Constable, E.C.; Harris, K.; Housecroft, C.E.; Neuburger, M.; Zampese, J.A. Turning {M(tpy)2}n+ embraces and CH⋯π interactions on and off in homoleptic cobalt(ii) and cobalt(iii) bis(2,2′:6′,2″-terpyridine) complexes. CrystEngComm 2010, 12, 2949–2961. [Google Scholar] [CrossRef]
- Sloufova, I.; Vlckova, B.; Mojzes, P.; Matulkova, I.; Cisarova, I.; Prochazka, M.; Vohlidal, J. Probing the Formation, Structure, and Reactivity of Zn(II), Ag(I), and Fe(II) Complexes with 2,2′:6′,2″-Terpyridine on Ag Nanoparticles Surfaces by Time Evolution of SERS Spectra, Factor Analysis, and DFT Calculations. J. Phys. Chem. C 2018, 122, 6066–6077. [Google Scholar] [CrossRef]
- Evans, D.F. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003–2005. [Google Scholar] [CrossRef]
- Gagne, R.R.; Koval, C.A.; Lisensky, G.C. Ferrocene as an internal standard for electrochemical measurements. Inorg. Chem. 1980, 19, 2854–2855. [Google Scholar] [CrossRef]
- García, T.; Casero, E.; Lorenzo, E.; Pariente, F. Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes. Sens. Actuators B Chem. 2005, 106, 803–809. [Google Scholar] [CrossRef]
- Torriero, A.A.J.; Mruthunjaya, A.K.V. Ferrocene-Based Electrochemical Sensors for Cations. Inorganics 2023, 11, 472. [Google Scholar] [CrossRef]
- Chen, N.; Wu, Z.; Xu, H. Ferrocene as a Redox Catalyst for Organic Electrosynthesis. Isr. J. Chem. 2023, 64, e202300097. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, S.; Zhang, Y.; Song, Y.; Gentle, I.R.; Wang, L.; Luo, B. All-soluble all-iron aqueous redox flow batteries: Towards sustainable energy storage. Energy Storage Mater. 2025, 75, 104004. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Cottrell, F.G. Der Reststrom bei galvanischer Polarisation, betrachtet als ein Diffusionsproblem. Z. Phys. Chem.-Int. J. Res. Phys. Chem. Chem. Phys. 1903, 42U, 385–431. [Google Scholar] [CrossRef]
- Nicholson, R.S.; Shain, I. Theory of Stationary Electrode Polarography for a Chemical Reaction Coupled between Two Charge Transfers. Anal. Chem. 1965, 37, 178–190. [Google Scholar] [CrossRef]
- Lavagnini, I.; Antiochia, R.; Magno, F. An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanalysis 2004, 16, 505–506. [Google Scholar] [CrossRef]
- Kadish, K.M.; Su, C.H.; Wilson, L.J. Spin-state dependence of heterogeneous electron-transfer rates for the [FeIII(X-sal)2trien]+ spin-equilibrium system in solution. Inorg. Chem. 1982, 21, 2312–2314. [Google Scholar] [CrossRef]
- Romain, S.; Baffert, C.; Duboc, C.; Leprêtre, J.-C.; Deronzier, A.; Collomb, M.-N. Mononuclear MnIII and MnIV Bis-terpyridine Complexes: Electrochemical Formation and Spectroscopic Characterizations. Inorg. Chem. 2009, 48, 3125–3131. [Google Scholar] [CrossRef]
- Armstrong, C.G.; Toghill, K.E. Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification. J. Power Sources 2017, 349, 121–129. [Google Scholar] [CrossRef]
- Conradie, J.; von Eschwege, K.G. Cyclic voltammograms and electrochemical data of FeII polypyridine complexes. Data Brief 2020, 31, 105754. [Google Scholar] [CrossRef]
- Cook, L.J.K.; Tuna, F.; Halcrow, M.A. Iron(ii) and cobalt(ii) complexes of tris-azinyl analogues of 2,2′:6′,2′′-terpyridine. Dalton Trans. 2012, 42, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Reiff, W.M.; Baker, W.A., Jr.; Erickson, N.E. Binuclear, oxygen-bridged complexes of iron(III). New iron(III)-2,2′,2”-terpyridine complexes. J. Am. Chem. Soc. 1968, 90, 4794–4800. [Google Scholar] [CrossRef]
- Bellér, G.; Lente, G.; Fábián, I. Kinetics and Mechanism of the Autocatalytic Oxidation of Bis(terpyridine)iron(II) by Peroxomonosulfate Ion (Oxone) in Acidic Medium. Inorg. Chem. 2017, 56, 8270–8277. [Google Scholar] [CrossRef]
- Ford-Smith, M.H.; Sutin, N. The Kinetics of the Reactions of Substituted 1,10-Phenanthroline, 2,2′-Dipyridine and 2,2′,2″-Tripyridine Complexes of Iron(III) with Iron(II) Ions1. J. Am. Chem. Soc. 1961, 83, 1830–1834. [Google Scholar] [CrossRef]
- Flores-Leonar, M.M.; Moreno-Esparza, R.; Ugalde-Saldívar, V.M.; Amador-Bedolla, C. Further insights in DFT calculations of redox potential for iron complexes: The ferrocenium/ferrocene system. Comput. Theor. Chem. 2017, 1099, 167–173. [Google Scholar] [CrossRef]
- Sridharan, V.; Menéndez, J.C. Cerium(IV) Ammonium Nitrate as a Catalyst in Organic Synthesis. Chem. Rev. 2010, 110, 3805–3849. [Google Scholar] [CrossRef]
- Baffert, C.; Orio, M.; Pantazis, D.A.; Duboc, C.; Blackman, A.G.; Blondin, G.; Neese, F.; Deronzier, A.; Collomb, M.-N. Trinuclear Terpyridine Frustrated Spin System with a MnIV3O4 Core: Synthesis, Physical Characterization, and Quantum Chemical Modeling of Its Magnetic Properties. Inorg. Chem. 2009, 48, 10281–10288. [Google Scholar] [CrossRef]
- Limburg, J.; Vrettos, J.S.; Chen, H.; de Paula, J.C.; Crabtree, R.H.; Brudvig, G.W. Characterization of the O2-Evolving Reaction Catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3 (terpy = 2,2′:6″,2-Terpyridine). J. Am. Chem. Soc. 2001, 123, 423–430. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.W.; Schultz, F.A. Solution Characterization of the Iron(II) Bis(1,4,7-Triazacyclononane) Spin-Equilibrium Reaction. Inorg. Chem. 2001, 40, 5296–5298. [Google Scholar] [CrossRef]
- Piguet, C. Paramagnetic Susceptibility by NMR: The “Solvent Correction” Removed for Large Paramagnetic Molecules. J. Chem. Educ. 1997, 74, 815. [Google Scholar] [CrossRef]
- Haase, W. Oliver Kahn: Molecular Magnetism. VCH-Verlag, Weinheim, NY, USA, 1993. ISBN 3-527-89566-3, 380 Seiten, Preis: DM 154,—. Berichte Bunsenges. Phys. Chem. 1994, 98, 1208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skavenborg, M.L.; McKenzie, C.J. Bis-Homoleptic Metal Complexes of a Tridentate Ligand with a Central Anionic Sulfonamide Donor. Molecules 2025, 30, 3378. https://doi.org/10.3390/molecules30163378
Skavenborg ML, McKenzie CJ. Bis-Homoleptic Metal Complexes of a Tridentate Ligand with a Central Anionic Sulfonamide Donor. Molecules. 2025; 30(16):3378. https://doi.org/10.3390/molecules30163378
Chicago/Turabian StyleSkavenborg, Mathias L., and Christine J. McKenzie. 2025. "Bis-Homoleptic Metal Complexes of a Tridentate Ligand with a Central Anionic Sulfonamide Donor" Molecules 30, no. 16: 3378. https://doi.org/10.3390/molecules30163378
APA StyleSkavenborg, M. L., & McKenzie, C. J. (2025). Bis-Homoleptic Metal Complexes of a Tridentate Ligand with a Central Anionic Sulfonamide Donor. Molecules, 30(16), 3378. https://doi.org/10.3390/molecules30163378