Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,820)

Search Parameters:
Keywords = distribution of pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4953 KiB  
Article
Long-Range Transport of Biomass Burning Aerosols from Southern Africa: A Case Study Using Layered Atlantic Smoke Interactions with Clouds Observations
by Osinachi F. Ajoku, Joseph L. Wilkins and Mumin Abdulahi
Atmosphere 2025, 16(9), 997; https://doi.org/10.3390/atmos16090997 (registering DOI) - 23 Aug 2025
Abstract
A case study of an incoming biomass burning aerosol plume at Ascension Island is analyzed for the peak of the 2017 fire season using satellites, reanalysis and in situ observations. Measurements from the Atmospheric Radiation Measurement Mobile Facility 1 reveal an abrupt change [...] Read more.
A case study of an incoming biomass burning aerosol plume at Ascension Island is analyzed for the peak of the 2017 fire season using satellites, reanalysis and in situ observations. Measurements from the Atmospheric Radiation Measurement Mobile Facility 1 reveal an abrupt change from relatively clean conditions (~70 parts per billion by volume of carbon monoxide) to a more polluted state (~150 parts per billion by volume of carbon monoxide). Corresponding changes in aerosol size reveal a broadening of size distributions toward larger optical diameters, consistent with the arrival of aged aerosols. Within a 24 h period, black carbon fraction increases ~500% from ~300 ng me to ~1500 ng m3, while light absorption coefficients increase ~300%. Long-range transport of these aerosols is primarily confined between 2 and 5 km above sea level along the northwesterly trade winds. Our results show that the primary driver of increases in aerosol loading over Ascension Island is an intensification of the St. Helena high-pressure system (anticyclone) that leads to a weakening of trade winds and increases westward transport on its northern flank. A better understanding of the complex interactions between air quality, meteorology and long-range aerosol transport is important for future modeling studies focused on aerosol–cloud–radiation interactions over the open ocean and reducing its associated uncertainties. Full article
(This article belongs to the Special Issue Natural Sources Aerosol Remote Monitoring (2nd Edition))
Show Figures

Figure 1

24 pages, 5995 KiB  
Article
Influence of Inlet Temperature Differentials on Aerothermal Characteristics and Mass Flow Distribution in Multi-Inlet and Multi-Outlet Corotating-Disc Cavities
by Clarence Jia Cheng Chai, Xueying Li and Jing Ren
Energies 2025, 18(17), 4472; https://doi.org/10.3390/en18174472 - 22 Aug 2025
Abstract
To facilitate the development of next-generation gas turbine cooling systems, the present study systematically investigates the influence of inlet temperature differentials on the aerothermal characteristics and mass flow distribution within multi-inlet, multi-outlet corotating-disc cavities, for which inlet temperature differentials of 10 K, 30 [...] Read more.
To facilitate the development of next-generation gas turbine cooling systems, the present study systematically investigates the influence of inlet temperature differentials on the aerothermal characteristics and mass flow distribution within multi-inlet, multi-outlet corotating-disc cavities, for which inlet temperature differentials of 10 K, 30 K, and 50 K were applied. Steady-state Reynolds-averaged Navier–Stokes (RANS) simulations using the Shear Stress Transport (SST) k-ω model were performed across a range of flow conditions corresponding to Rossby numbers from 0.01 to 0.10, by varying the rotational and axial Reynolds numbers. This study finds that the inlet temperature differentials are a secondary driver of the aerothermal characteristics in the corotating cavity. Meanwhile, Rossby number dictates the main flow structure of radially stratified vortices and governs the thermal mixing between hot and cold streams. A higher Rossby number enhances mixing, causing the radial outlet temperature to rise significantly, while the axial outlet remains cool. A larger inlet temperature differential can induce secondary vortices at high Rossby numbers. Furthermore, the differential is revealed to increase cavity pressure, slightly reducing the radial outlet’s mass flow by up to 2.5% and its discharge coefficient by nearly 5% at high Rossby numbers. These insights allow engine designers to develop more precise and optimized cooling strategies. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 11917 KiB  
Article
Spatiotemporal Dynamic Monitoring of Desertification in Ordos Section of Yellow River Basin
by Guohua Qu, Weiwei Hao, Xiaoguang Wu, Yan Sheng, Pengfei Huang, Xi Yang and Fang Li
Sustainability 2025, 17(17), 7594; https://doi.org/10.3390/su17177594 - 22 Aug 2025
Abstract
The Ordos section of the Yellow River Basin represents a typical semi-arid zone in northern China. Due to dual pressures from natural drivers and human activities, this region is at the forefront of desertification. Therefore, rapidly and accurately identifying desertification and analyzing its [...] Read more.
The Ordos section of the Yellow River Basin represents a typical semi-arid zone in northern China. Due to dual pressures from natural drivers and human activities, this region is at the forefront of desertification. Therefore, rapidly and accurately identifying desertification and analyzing its evolutionary trends plays a vital role in desertification control. Using six-phase Landsat imagery (2000–2023) of Ordos City, this study extracted NDVI and Albedo to construct a fitting model, thereby analyzing desertification severity, spatial distribution patterns, and evolutionary dynamics. Through integrated analysis trends in meteorological and anthropogenic data, key driving factors of desertification processes were further investigated. Conclusions: (1) By 2023, the area of extremely severe and severe desertification reduction accounted for 12.67% of the total study area, the proportion of no desertification area increased by 11.27%, and the expansion of desertification was effectively curbed. (2) Desertification intensification cluster near residential zones and grazing lands, while improved areas concentrate in the western and southern of Mu Us Sandy Land vicinity. (3) Spatial autocorrelation analysis revealed statistically significant clustering patterns across the study area, predominantly characterized by distinct low–low and high–high aggregations. (4) Wind speed, temperature, and pastoral activities were major factors contributing to desertification. These research findings provided references for the ecological restoration and sustainable development of semi-arid areas in the Yellow River Basin. Full article
32 pages, 8380 KiB  
Article
Numerical Simulation of Arc Welding in Large Flange Shafts Based on a Novel Combined Heat Source Model
by Zhiqiang Xu, Chaolong Yang, Wenzheng Liu, Ketong Liu, Feiting Shi, Zhifei Tan, Peng Cao and Di Wang
Materials 2025, 18(17), 3932; https://doi.org/10.3390/ma18173932 - 22 Aug 2025
Abstract
Welding, as a critical process for achieving permanent material joining through localized heating or pressure, is extensively applied in mechanical manufacturing and transportation industries, significantly enhancing the assembly efficiency of complex structures. However, the associated localized high temperatures and rapid cooling often induce [...] Read more.
Welding, as a critical process for achieving permanent material joining through localized heating or pressure, is extensively applied in mechanical manufacturing and transportation industries, significantly enhancing the assembly efficiency of complex structures. However, the associated localized high temperatures and rapid cooling often induce uneven thermal expansion and contraction, leading to complex stress evolution and residual stress distributions that compromise dimensional accuracy and structural integrity. In this study, we propose a combined heat source model based on the geometric characteristics of the weld pool to simulate the arc welding process of large flange shafts made of Fe-C-Mn-Cr low-alloy medium carbon steel. Simulations were performed under different welding durations and shaft diameters, and the model was validated through experimental welding tests. The results demonstrate that the proposed model accurately predicts weld pool geometry (depth error of only 2.2%) and temperature field evolution. Meanwhile, experimental and simulated deformations are presented with 95% confidence intervals (95% CI), showing good agreement. Residual stresses were primarily concentrated in the weld and heat-affected zones, exhibiting a typical “increase–steady peak–decrease” distribution along the welding direction. A welding duration of 90 s effectively reduced residual stress differentials perpendicular to the welding direction by 19%, making it more suitable for medium carbon steel components of this scale. The close agreement between simulation and experimental data verifies the model’s reliability and indicates its potential applicability to the welding simulation of other large-scale critical components, thereby providing theoretical support for process optimization. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

23 pages, 6652 KiB  
Article
Fitness-for-Service Assessment of Hoop-Wrapped Vessel with Metal Liner in High-Pressure Hydrogen Environment
by Zehong Chen, Hu Hui, Song Huang, Zhangziyang Du, Guangke Xue and Fanao Meng
Energies 2025, 18(17), 4463; https://doi.org/10.3390/en18174463 - 22 Aug 2025
Abstract
Hoop-wrapped vessels with metal liners (Type II vessels) are susceptible to the risks of brittle fracture and fatigue failure in high-pressure hydrogen environments. However, there is limited research concerning fitness-for-service (FFS) assessments of Type II vessels. An FFS assessment was conducted on a [...] Read more.
Hoop-wrapped vessels with metal liners (Type II vessels) are susceptible to the risks of brittle fracture and fatigue failure in high-pressure hydrogen environments. However, there is limited research concerning fitness-for-service (FFS) assessments of Type II vessels. An FFS assessment was conducted on a specific Type II vessel designed for high-pressure hydrogen storage. The mechanical properties of the liner material 4130X were obtained through in situ mechanical testing in a hydrogen environment. Based on the measured data, the stress distribution within the Type II vessel under different working conditions was determined using a finite element analysis by ANSYS Workbench 2019 R2 software. A leak-before-burst (LBB) analysis and a brittle fracture assessment of the Type II vessel were performed using the failure assessment diagram (FAD) methodology. The results indicate that the measured fracture toughness of 4130X under high-pressure hydrogen is 46 MPa·m0.5, which is significantly lower than the 178 MPa·m0.5 required for LBB failure for the studied vessel. However, the vessel remains in a safe state when the crack depth is under 3.03 mm. Furthermore, the remaining fatigue life of a Type II vessel containing a crack was calculated. The relationship between the non-destructive testing (NDT) capability requirement and the inspection interval for this type of vessel was explored, providing references for establishing inspection schedules for Type II vessels. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

24 pages, 2946 KiB  
Article
Comparative In Vitro Deposition Analysis of Formoterol, Glycopyrronium, and Tiotropium Delivered via Capsule-Based DPI
by Adam Sikora, Joanna Chałupka, Kinga Lewandowska, Paulina Drapińska and Michał Piotr Marszałł
Pharmaceutics 2025, 17(9), 1089; https://doi.org/10.3390/pharmaceutics17091089 - 22 Aug 2025
Abstract
Dry powder inhalers (DPIs) are the mainstay in the treatment of obstructive pulmonary diseases. However, the performance of DPI formulations is highly dependent on the used inhaler device and the patient’s inspiratory effort. This study aimed to evaluate and compare the aerosolization behavior [...] Read more.
Dry powder inhalers (DPIs) are the mainstay in the treatment of obstructive pulmonary diseases. However, the performance of DPI formulations is highly dependent on the used inhaler device and the patient’s inspiratory effort. This study aimed to evaluate and compare the aerosolization behavior of three commercially available capsule-based DPI medications—formoterol (Foradil®), glycopyrronium (Seebri® Breezhaler), and tiotropium (Spiriva®)—delivered using three different capsule-based inhalers (Aerolizer, Breezhaler, and Handihaler), under varying flow conditions. Methods: The aerodynamic performance of each formulation–inhaler combination was assessed using the Next-Generation Impactor (NGI) and Dosage Unit Sampling Apparatus (DUSA) methodology. Fine particle dose (FPD) and aerodynamic particle size distribution (APSD) were determined at fixed flow rates of 15, 30, 60, and 100 L/min, as well as at inhaler-specific flow rates corresponding to a 4 kPa pressure drop. Chromatographic quantification of active ingredients was performed using validated HPLC methods specific to each drug. Results: The FPD values increased consistently with higher flow rates across all tested formulations and inhalers. At a 4 kPa pressure drop, Aerolizer and Breezhaler achieved significantly higher FPDs compared to Handihaler. Notably, in some instances, non-dedicated inhalers produced greater respirable fractions than the originally intended devices. APSD profiles revealed that drug deposition shifted toward smaller NGI stages at higher inspiratory flows, supporting enhanced deep lung delivery potential under optimal conditions. Conclusions: Device resistance, capsule orientation, and piercing mechanics substantially influence drug aerosolization. Although non-dedicated inhalers may offer improved FPDs in vitro, clinical use should adhere to approved drug–device combinations, as these have been validated for efficacy and safety under real-world conditions. Full article
(This article belongs to the Special Issue Inhaled Advances: Emerging Trends in Pulmonary Drug Delivery)
Show Figures

Figure 1

21 pages, 1557 KiB  
Review
Physiopathology of the Brain Renin-Angiotensin System
by Cristina Cueto-Ureña, María Jesús Ramírez-Expósito, María Pilar Carrera-González and José Manuel Martínez-Martos
Life 2025, 15(8), 1333; https://doi.org/10.3390/life15081333 - 21 Aug 2025
Abstract
The renin-angiotensin system (RAS) has evolved from being considered solely a peripheral endocrine system for cardiovascular control to being recognized as a complex molecular network with important functions in the central nervous system (CNS) and peripheral nervous system (PNS). Here we examine the [...] Read more.
The renin-angiotensin system (RAS) has evolved from being considered solely a peripheral endocrine system for cardiovascular control to being recognized as a complex molecular network with important functions in the central nervous system (CNS) and peripheral nervous system (PNS). Here we examine the organization, mechanisms of action, and clinical implications of cerebral RAS in physiological conditions and in various neurological pathologies. The cerebral RAS operates autonomously, synthesizing its main components locally due to restrictions imposed by the blood–brain barrier. The key elements of the system are (pro)renin; (pro)renin receptor (PRR); angiotensinogen; angiotensin-converting enzyme types 1 and 2 (ACE1 and ACE2); angiotensin I (AngI), angiotensin II (AngII), angiotensin III (AngIII), angiotensin IV (AngIV), angiotensin A (AngA), and angiotensin 1-7 (Ang(1-7)) peptides; RAS-regulating aminopeptidases; and AT1 (AT1R), AT2 (AT2R), AT4 (AT4R/IRAP), and Mas (MasR) receptors. More recently, alamandine and its MrgD receptor have been included. They are distributed in specific brain regions such as the hypothalamus, hippocampus, cerebral cortex, and brainstem. The system is organized into two opposing axes: the classical axis (renin/ACE1/AngII/AT1R) with vasoconstrictive, proinflammatory, and prooxidative effects, and the alternative axes AngII/AT2R, AngIV/AT4R/IRAP, ACE2/Ang(1-7)/MasR and alamandine/MrgD receptor, with vasodilatory, anti-inflammatory, and neuroprotective properties. This functional duality allows us to understand its role in neurological physiopathology. RAS dysregulation is implicated in multiple neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and neuropsychiatric disorders such as depression and anxiety. In brain aging, an imbalance toward hyperactivation of the renin/ACE1/AngII/AT1R axis is observed, contributing to cognitive impairment and neuroinflammation. Epidemiological studies and clinical trials have shown that pharmacological modulation of the RAS using ACE inhibitors (ACEIs) and AT1R antagonists (ARA-II) not only controls blood pressure but also offers neuroprotective benefits, reducing the incidence of cognitive decline and dementia. These effects are attributed to direct mechanisms on the CNS, including reduction of oxidative stress, decreased neuroinflammation, and improved cerebral blood flow. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

15 pages, 2690 KiB  
Article
Analysis on Inner Flow Field and Hydrodynamic Force on Flexible Mining Pipeline Under Bending States
by Wen-Hua Wang, Lei Wang, Chuang Liu, Li-Jian Wang, Zi-Han Zhao, Lei-Lei Dong, Gang Liu, Ying-Ying Wang, Hai-Bo Sun and Kun Li
J. Mar. Sci. Eng. 2025, 13(8), 1599; https://doi.org/10.3390/jmse13081599 - 21 Aug 2025
Abstract
To investigate the internal flow characteristics of particles during hydraulic lifting in deep-sea mining risers, this study developed a three-dimensional curved riser multiphase flow model based on the Eulerian–Eulerian framework and the RNG k-ε turbulence model. The effects of particle distribution [...] Read more.
To investigate the internal flow characteristics of particles during hydraulic lifting in deep-sea mining risers, this study developed a three-dimensional curved riser multiphase flow model based on the Eulerian–Eulerian framework and the RNG k-ε turbulence model. The effects of particle distribution and pressure loss in the curved section, as well as the influence of curvature radius, were analyzed. Results indicate that particle distributions take concave circular or crescent-shaped patterns, becoming more uniform with larger curvature radii. Pressure on the extrados is consistently greater than on the intrados, with pressure loss increasing in the bend and peaking at the midpoint. A larger curvature radius leads to greater total pressure loss but lower frictional loss. Additionally, the bend experiences a restoring force toward the vertical position, which increases as the curvature radius decreases. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 5121 KiB  
Article
Research on Cracking Mechanism and Crack Extension of Diversion Tunnel Lining Structure
by Hui Xie, Haoran Wang, Xingtong Zou, Yongcan Chen, Zhaowei Liu, Liyi Yang and Kang Liu
Appl. Sci. 2025, 15(16), 9210; https://doi.org/10.3390/app15169210 - 21 Aug 2025
Abstract
Tunnel systems are often confronted with issues such as cracks, water seepage, and exposed tendons, all of which compromise their structural integrity. This study utilizes an advanced robotic system equipped with a 3D laser scanner to capture data on visible lining defects. By [...] Read more.
Tunnel systems are often confronted with issues such as cracks, water seepage, and exposed tendons, all of which compromise their structural integrity. This study utilizes an advanced robotic system equipped with a 3D laser scanner to capture data on visible lining defects. By analyzing the distribution of defects across various tunnel segments, we explore the mechanisms underlying structural cracks. Finite element software is employed to assess stress, deformation, and crack progression within the tunnel linings. The result found that the diversion tunnel’s segments exhibit notable variations: 66.0% of the defects are concentrated in the upper flat section, while 34.0% are found in the inclined shaft segment. Cracks, primarily located in the vault area, characterize these defects. Under water pressure, stress deformation in the intact lining follows a linear escalation pattern. Specifically, after the formation of cracks measuring 0.1 m, 0.2 m, and 0.3 m, circumferential stresses increase by approximately 4.50%, 9.10%, and 15.10%, respectively. Numerical simulations reveal significant stress concentration near the cave entrance at the upper flat break. Crack propagation at the arch crown is found to pose a greater risk than at the sides of the arch waist. These findings offer valuable scientific insights and practical implications for improving safety and enabling intelligent monitoring of power station tunnels. Full article
Show Figures

Figure 1

25 pages, 8138 KiB  
Article
Design Methodology for Fishtailed Pipe Diffusers and Its Application to a High-Pressure Ratio Centrifugal Compressor
by Junnan Liu, Dingxi Wang and Xiuquan Huang
Aerospace 2025, 12(8), 746; https://doi.org/10.3390/aerospace12080746 - 21 Aug 2025
Abstract
A high-performance diffuser is crucial for a high-pressure ratio centrifugal compressor to achieve high efficiency. Pipe diffusers have been proven effective in enhancing the performance of such compressors. However, detailed design methodologies for pipe diffusers are scarcely covered in the existing literature. Thus, [...] Read more.
A high-performance diffuser is crucial for a high-pressure ratio centrifugal compressor to achieve high efficiency. Pipe diffusers have been proven effective in enhancing the performance of such compressors. However, detailed design methodologies for pipe diffusers are scarcely covered in the existing literature. Thus, this paper provides a comprehensive design methodology specifically for fishtailed pipe diffusers. This methodology begins by defining the throat and outlet areas using gas-dynamic functions and then establishes the centerline by choosing the angle distributions. Finally, various cross-sectional profiles are defined along the centerline, completing the diffuser’s design. To demonstrate the proposed methodology, a fishtailed pipe diffuser is designed to contrast with the original diffuser of the National Aeronautics and Space Administration’s High-Efficiency Centrifugal Compressor (NASA HECC). Numerical analysis shows that the fishtailed pipe diffuser increases the compressor’s total pressure ratio and isentropic efficiency over its whole operating range. At the design operating point, the isentropic efficiency and the total pressure ratio are increased by 2.4 percentage points and 2.7%, respectively. This demonstrates the effectiveness of the proposed design methodology for fishtailed pipe diffusers. Full article
(This article belongs to the Special Issue Progress in Turbomachinery Technology for Propulsion (2nd Edition))
Show Figures

Figure 1

17 pages, 2659 KiB  
Article
Experimental Study on the Distribution of Boundary Shear Stress at an Overfall
by Zhangxin Qi, Zenghui Wang, Yue Pan and Pengbo Chu
Processes 2025, 13(8), 2652; https://doi.org/10.3390/pr13082652 - 21 Aug 2025
Abstract
Overfall flow, characterized by high Froude numbers and intense turbulence, generates boundary shear stress on vertical surfaces, which is considered the direct cause of headcut erosion. This study aims to analyze the hydraulic characteristics of nappe flow over a vertical or near-vertical overfall. [...] Read more.
Overfall flow, characterized by high Froude numbers and intense turbulence, generates boundary shear stress on vertical surfaces, which is considered the direct cause of headcut erosion. This study aims to analyze the hydraulic characteristics of nappe flow over a vertical or near-vertical overfall. Detailed experiments using hot-film anemometry were conducted in an indoor flume to examine the shear stress distribution on vertical surfaces under varying flow rates, overfall heights, and backwater depths. The results show that when the jet dynamic pressure head is less than the backwater depth, the dimensionless relative shear stress and relative depth relationship can be fitted with a beta probability density function. When the dynamic pressure head exceeds the backwater depth, the distribution follows a cubic polynomial form. Dimensional analysis and flow trajectory calculation methods were used to establish shear stress distribution formulas, with determination coefficients of 0.829 and 0.652, and the mean absolute percentage error (MAPE) between the measured and predicted values being 0.106 and 0.081, respectively. The findings provide valuable insights into the effects of complex flow structures on shear stress and offer essential support for the development of scour models for overfall structures. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics, Pollution and Bioavailable Transfers)
Show Figures

Figure 1

23 pages, 17970 KiB  
Article
Strain Monitoring and Numerical Simulation Analysis of Nuclear Containment Structure During Containment Tests
by Xunqiang Yin, Weilong Yang, Junkai Zhang, Min Zhao and Jianbo Li
Sensors 2025, 25(16), 5197; https://doi.org/10.3390/s25165197 - 21 Aug 2025
Viewed by 17
Abstract
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the [...] Read more.
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the structure. However, whether the data from these substitute sensors can reasonably reflect the internal deformation behavior requires further investigation. To ensure the feasibility of the added strain sensors, a refined 3D model of a Chinese Pressurized Reactor (CPR1000) nuclear containment structure was developed in ANSYS 19.1 to study the internal and external deformation laws during a containment test (CTT). Solid reinforcement and cooling methods were employed to simulate prestressed cables and pre-tension application. The influence of ordinary steel bars in concrete was modeled using the smeared model, while interactions between the steel liner and concrete were simulated through coupled nodes. The model’s validity was verified against embedded strain sensor data recorded during a CTT. Furthermore, concrete and prestressed material parameters were refined through a sensitivity analysis. Finally, the variation law between the internal and external deformation of the containment structure was investigated under typical CTT loading conditions. Strain values in the wall thickness direction exhibited an essentially linear relationship. Near the equipment hatch, however, the strain distribution pattern was significantly influenced by the spatial arrangement of prestressed cables. Refined FEM and sensor systems are vital containment monitoring tools. Critically, surface-mounted strain sensors offer a feasible approach for inferring internal stress states and deformation behavior. This study provides theoretical support and a technical foundation for the safe assessment and maintenance of nuclear containment structures during operational service. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 2134 KiB  
Article
Simulation Study on the Energy Consumption Characteristics of Individual and Cluster Thermal Storage Electric Heating Systems
by Bo Qu, Hongjie Jia, Ling Cheng and Xuming Wu
Sustainability 2025, 17(16), 7548; https://doi.org/10.3390/su17167548 - 21 Aug 2025
Viewed by 26
Abstract
This study investigates the energy consumption characteristics of individual and clustered thermal storage electric heating systems, focusing on their sustainability implications for regional load distribution and user energy consumption patterns. Simulation results show that thermal storage electric heating shifts peak energy demand from [...] Read more.
This study investigates the energy consumption characteristics of individual and clustered thermal storage electric heating systems, focusing on their sustainability implications for regional load distribution and user energy consumption patterns. Simulation results show that thermal storage electric heating shifts peak energy demand from daytime to nighttime low-price hours, reducing electricity costs and optimizing grid load balancing. As the proportion of thermal storage electric heating increases from 10% to 30%, the daytime minimum load reduction rate rises from 7% to 22%, while the nighttime maximum load increase rate increases from 16% to 63%. This operational mode supports sustainable energy usage by alleviating daytime grid peak pressure and leveraging low-cost, off-peak electricity for heat storage. The findings highlight the potential of thermal storage electric heating to enhance energy efficiency, integrate renewable energy, and promote grid stability, contributing to a more sustainable energy system. Full article
(This article belongs to the Special Issue Built Environment and Sustainable Energy Efficiency)
Show Figures

Figure 1

15 pages, 5445 KiB  
Article
Numerical Study on Chemical Vapor Deposition of Aluminide Coatings
by Shihong Xin, Baiwan Su, Qizheng Li and Chonghang Tang
Coatings 2025, 15(8), 974; https://doi.org/10.3390/coatings15080974 - 21 Aug 2025
Viewed by 135
Abstract
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade [...] Read more.
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade safety. This study employs computational fluid dynamics (CFD) to investigate the flow field within CVD reactors and the influences of deposition processes on the chemical reaction rates at sample surfaces, thereby guiding the optimization of CVD reactor design and deposition parameters. Three distinct CVD reactor configurations are examined to analyze the flow characteristics of precursor gases and the internal flow field distributions. The results demonstrate that Model A, featuring a bottom-positioned outlet and an extended inlet, exhibits a larger stable deposition zone with more uniform flow velocities near the sample surface, thereby indicating the formation of higher-quality aluminide coatings. Based on Model A, CFD simulations are conducted to evaluate the effects of process parameters, including inflow velocity, pressure, and temperature, on aluminide coating deposition. The results show that the surface chemical reaction rate increases with inflow velocity (0.0065–6.5 m/s), but the relative change rate (ratio of reaction rate to flow rate) shows a declining trend. Temperature variations (653–1453 K) induce a trapezoidal-shaped trend in deposition rates: an initial increase (653–1053 K), followed by stabilization (1053–1303 K), and a subsequent decline (>1303 K). The underlying mechanisms for this trend are discussed. Pressure variations (0.5–2 atm) reveal that both excessively low and high pressures reduce surface reaction rates, with optimal performance observed near 1 atm. This study provides a methodology and insights for optimizing CVD reactor designs and process parameters to enhance aluminide coating quality on turbine blades. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

31 pages, 14651 KiB  
Article
Temperature–Load Stress Analysis of Ultra-Long Pool Structures Based on Distributed Fiber Optic Sensing and Finite Element Analysis
by Yongxing Li, Xinyang Han, Dajian Zhang, Jianrong Li, Pengyong Miao and Wenrui Wang
Buildings 2025, 15(16), 2961; https://doi.org/10.3390/buildings15162961 - 20 Aug 2025
Viewed by 187
Abstract
Ultra-long pool structures used in mine water treatment projects are typical large-volume concrete structures that are highly susceptible to cracking due to the combined effects of cement hydration heat, seasonal temperature variations, and internal water pressure. Such cracking can compromise the durability and [...] Read more.
Ultra-long pool structures used in mine water treatment projects are typical large-volume concrete structures that are highly susceptible to cracking due to the combined effects of cement hydration heat, seasonal temperature variations, and internal water pressure. Such cracking can compromise the durability and long-term service performance of the structure. In this study, distributed fiber optic sensing and finite element analysis were conducted to observe the response of ultra-long pool structures under thermal–load effects. System comparison shows that the average error between the monitored peak thermal strain values and the corresponding simulated values is within 9%. Parametric analysis using the validated simulation model indicates that the hydration protocol with temperatures of 15 °C (casting), 55 °C (peak), and 15 °C (stable), a temperature drop of −20 °C, and loading conditions in sub-pools 3+6 and sub-pools 1+3+5 are the most unfavorable scenarios for inducing tensile stress. When a temperature drop of −20 °C is combined with loading conditions in sub-pools 3+6 or sub-pools 1+3+5, the tensile stress in the pool structure increases by 30% compared to the stress induced by loading alone. This indicates that during the service life of the pool structure, extreme temperature variations combined with mechanical loading may result in localized cracking. This study provides a comprehensive understanding of ultra-long pool behavior during construction and service phases, supporting effective maintenance and long-term durability. Full article
Show Figures

Figure 1

Back to TopTop