Design Methodology for Fishtailed Pipe Diffusers and Its Application to a High-Pressure Ratio Centrifugal Compressor
Abstract
1. Introduction
2. Design Methodology
2.1. Throat and Outlet Areas
2.2. The Centerline
2.2.1. Radial–Conical Section
2.2.2. Radial-to-Axial Section
2.3. Cross-Sectional Area Distribution
2.4. Cross Sections
2.5. Scalloped Leading Edge
3. The Fishtailed Pipe Diffuser for the NASA HECC Compressor
3.1. The NASA HECC Centrifugal Compressor Stage (Compressor A)
3.2. The Fishtailed Pipe Diffuser (Compressor B)
4. Numerical Setting-Up
4.1. Solver
4.2. Mesh
4.3. Boundary Conditions
4.4. Grid Independence Study
4.5. Comparison of Various Turbulence Models
5. Performance Characteristics
5.1. Overall Performance
5.2. Impeller Performance
5.3. Diffuser Performance
5.4. Flow Mechanism in Two Diffusers
6. Conclusions
- The design of a fishtailed pipe diffuser can be systematically achieved using aerodynamic parameters, diffuser centerline, metal angle distribution, and area distribution. This methodology ensures both efficiency and reliability in a design process.
- At the design operating point, the fishtailed pipe diffuser increases the isentropic efficiency and the total pressure ratio by 2.4 percentage points and 2.7%, respectively.
- For the fishtailed pipe diffuser, a pair of counter-rotating vortices generated by the scalloped leading edge can transport and re-energize the low-momentum flow near the pressure side, effectively suppressing upstream flow separations. In constrast, the prototype vaned diffuser lacks the ability to redistribute low-energy fluid, leading to higher losses.
7. Discussion
8. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Area, |
b | 1) Blade height, m 2) semi-major axis |
B | Blockage factor |
c | Ratio of throat length to throat diameter |
Static pressure recovery coefficient | |
d | Equivalent hydraulic diameter, m |
i | Incidence, ° |
K | Continuity equation constant |
m | Meridional length, m |
Mass flow rate, | |
Absolute Mach number | |
N | Number of pipes |
p | Pressure, |
q | Mass flux density gas-dynamic function |
r | 1) Radius, m 2) exponent of the major axis of the quasi-elliptic equation |
R | Radial coordinate of meridional flow path, m |
s | Exponent of the semi-major axis of the quasi-elliptic equation |
T | Temperature, K |
x | X-coordinate, m |
y | Y-coordinate, m |
z | Z-coordinate, m |
Z | Z-coordinate of meridional flow path, m |
Abbreviations | |
Total pressure loss | |
SS | Suction side |
PS | Pressure side |
VS | Vortex near the shroud wall |
VH | Vortex near the hub wall |
Greek Symbols | |
Absolute flow angle/metal angle (angles relative to the meridional plane), ° | |
Relative flow angle (angles relative to the meridional plane), ° | |
Deviation angle, ° | |
1) Divergence angle, ° 2) Circumferential angle, ° | |
Velocity coefficient | |
Total pressure loss coefficient | |
Ratio of specific heats | |
Single passage angle, ° | |
Area coefficient | |
Subscripts | |
2 | Impeller outlet |
3 | Diffuser inlet |
4 | Diffuser outlet |
B | Scalloped leading edge point (start) |
Pipe diffuser (single passage) | |
Radial-to-axial section | |
G | Scalloped leading edge point (end) |
Diffuser/compressor outlet | |
Radial–conical section | |
t | Tangent |
Throat area | |
Superscripts | |
* | Stagnation |
Appendix A
s | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
r | |||||||||
2 | 1 | 1.0712 | 1.1129 | 1.1402 | 1.1596 | 1.1740 | 1.1852 | 1.1941 | |
3 | 1.0712 | 1.1247 | 1.1555 | 1.1758 | 1.1902 | 1.2008 | 1.2090 | 1.2155 | |
4 | 1.1129 | 1.1555 | 1.1803 | 1.1964 | 1.2077 | 1.2162 | 1.2226 | 1.2281 | |
5 | 1.1402 | 1.1758 | 1.1964 | 1.2097 | 1.2192 | 1.2263 | 1.2315 | 1.2359 | |
6 | 1.1596 | 1.1902 | 1.2077 | 1.2192 | 1.2274 | 1.2332 | 1.2378 | 1.2415 | |
7 | 1.1740 | 1.2008 | 1.2162 | 1.2263 | 1.2332 | 1.2383 | 1.2424 | 1.2455 | |
8 | 1.1852 | 1.2090 | 1.2226 | 1.2315 | 1.2378 | 1.2424 | 1.2459 | 1.2486 | |
9 | 1.1941 | 1.2155 | 1.2281 | 1.2359 | 1.2415 | 1.2455 | 1.2486 | 1.2512 |
Appendix B. Coordinates of the Scalloped Leading Edge
References
- Vrana, J.C. Diffuser for Centrifugal Compressor. U.S. Patent 3333762, 1 August 1967. [Google Scholar]
- Kenny, D.P. A novel low-cost diffuser for high-performance centrifugal compressor. J. Eng. Power 1969, 91, 37–46. [Google Scholar] [CrossRef]
- Zachau, U.; Buescher, C.; Niehuis, R. Experimental investigation of a centrifugal compressor stage with focus on the flow in the pipe diffuser supported by particle image velocimetry (piv) measurements. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Bourgeois, J.A. Experimental and numerical investigation of an aero-engine centrifugal compressor. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea and Air, Orlando, FL, USA, 8–12 June 2009. [Google Scholar]
- Han, G.; Lu, X.G.; Zhao, S.F.; Yang, C.W.; Zhu, J.Q. Parametric studies of pipe diffuser on performance of a highly loaded centrifugal compressor. J. Eng. Gas. Turb. Power 2014, 136, 122604. [Google Scholar] [CrossRef]
- Erickson, D.W. Characterization and impact of secondary flows in a discrete passage centrifugal compressor diffuser. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Han, G.; Lu, X.G.; Zhang, Y.F.; Zhao, S.F.; Yang, C.W.; Zhu, J.Q. Investigation of two pipe diffuser configurations for a compact centrifugal compressor. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 716–728. [Google Scholar] [CrossRef]
- Ogino, A.; Nakayama, R.; Kitamura, E.; Fujisawa, N.; Aoyama, S.; Ohta, Y. Diffuser stall inception in a high-pressure ratio centrifugal compressor with fishtail pipe diffuser. In Proceeding of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, Boston, MA, USA, 26–30 June 2023. [Google Scholar]
- Bennett, I. The Design and Analysis of Pipe Diffusers for Centrifugal Compressors. Ph.D. Thesis, Cranfield University, Cranfield, UK, 1997. [Google Scholar]
- Antas, S. Pipe diffuser for radial and axial-centrifugal compressor. Int. J. Turbo. Jet. Eng. 2014, 31, 29–36. [Google Scholar] [CrossRef]
- Wang, B.; Yan, M. Design and numerical simulation of pipe diffuser in centrifugal compressor. J. Aerosp. Power 2012, 27, 1303–1311. [Google Scholar]
- Antas, S. Exhaust system for radial and axial-centrifugal compressor with pipe diffuser. Int. J. Turbo. Jet. Eng. 2016, 36, 297–304. [Google Scholar] [CrossRef]
- Xie, J.; He, X.; Jin, H.L.; Chen, X.; Yin, Y.Q.; Huang, S.Q. Design Methodology for the Pipe Diffuser and Pipe Diffuser. CN Patent CN110374928A, 25 October 2019. [Google Scholar]
- Medic, G.; Shrama, O.P.; Jongwook, J.; Hardin, L.W.; McCormick, D.C.; Cousins, W.T.; Lurie, E.A.; Shabbir, A.; Holley, B.M.; Van Slooten, P.R. High Efficiency Centrifugal Compressor for Rotorcraft Application, NASA/CR-2014-218114; National Aeronautics and Space Administration: Washington, DC, USA, 2014. [Google Scholar]
- Liu, J.; Wang, D.X.; Huang, X.Q. A Design Methodology for the Fishtailed Pipe Diffuser with Scalloped Leading Edge. CN Patent CN119026282B, 18 April 2025. [Google Scholar]
- Wang, X. Fundamentals of Gas Dynamics, 2nd ed.; Northwestern Polytechnical University: Xi’an, China, 2006. (In Chinese) [Google Scholar]
- Kenny, D.P. A comparison of the predicted and measured performance of high pressure ratio centrifugal compressor diffusers. In Proceedings of the ASME International Gas Turbine and Fluids Engineering Conference and Products Show, San Francisco, CA, USA, 26–30 March 1972. [Google Scholar]
- Casey, M.; Robinson, C. Radial Flow Turbocompressors: Design, Analysis, and Applications; Cambridge University: Cambridge, UK, 2021. [Google Scholar]
- Han, G.; Yang, C.; Wu, S.; Zhao, S.F.; Lu, X.G. The investigation of mechanism on pipe diffuser leading edge vortex generation and development in centrifugal compressor. Appl. Therm. Eng. 2023, 219, 119606. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.F.; Lu, X.G.; Zhu, J.Q. Analysis of characteristic and mechanism of pipe diffuser for a highly loaded centrifugal compressor. J. Aerosp. Power 2011, 26, 649–655. [Google Scholar]
- Rhie, C.M.; Chow, W.L. A numerical study of the turbulence flow past on the airfoil with trailing edge separation. J. AIAA 1983, 21, 1525–1532. [Google Scholar] [CrossRef]
- Liu, J.N.; Wang, D.X.; Huang, X.Q. Investigation of turbulence models for areodynamic analysis of a high pressure ratio centrifugal compressor. Phys. Fluids 2023, 35, 106108. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: San Diego, CA, USA, 2006; pp. 124–136. [Google Scholar]
- Jone, W.P.; Launder, B.E. The calculation of low-reynolds-number phenomena with a two-equation model for turbulence. Int. J. Heat Mass. Tran. 1973, 16, 1119–1130. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applicaitons. J. AIAA 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Bourgeois, J.A.; Martinuzzi, R.J.; Savory, E.; Zhang, C.; Roberts, D.A. Assessment of turbulence model predictions for an aero-engine centrifugal compressor. J. Turbomach. 2011, 133, 011025. [Google Scholar] [CrossRef]
- Denton, J.D. The 1993 IGTI scholar lecture: Loss mechanisms in turbomachines. J. Turbomach. 1993, 115, 621–656. [Google Scholar] [CrossRef]
Profile | Value |
---|---|
Design speed (rpm) | 21,789 |
Impeller inner diameter (mm) | 240.6 |
Impeller outer diameter (mm) | 431.7 |
Number of blade/splitter pairs | 15 |
Fillets of impeller (mm) | 1.5/4.0 (The leading edge to trailing edge) |
Tip clearance (mm) | 0.3 |
Vaned diffuser inner diameter (mm) | 462.7 |
Vaned diffuser outer diameter (mm) | 568.9 |
Number of vane/splitter pairs | 20 |
Fillets of vaned diffuser (mm) | 1.0 |
EGV inner/outer diameter (mm) | 602.9 |
EGV axial chord (mm) | 61.9 |
Number of EGVs | 60 |
Fillets of EGV (mm) | 1.0 |
Surface finish (μm) | 1.52 (About Ra1.6) |
Profile | Value |
---|---|
Number of pipes | 31 |
Diffuser inner diameter (mm) | 440 |
Diffuser outer diameter (mm) | 602.9 |
Throat diameter (mm) | 15.42 |
Normalized throat length | 1.0 |
Diffuser inlet metal angle (°) | 72 |
Diffuser outlet metal angle (°) | 3.0 |
Radial–conical divergence angle (2) (°) | 4.0 |
Exponent of the major and semi-major axis | 2.0 to 5.0 (Linear) |
Surface finish (μm) | 1.52 (About Ra1.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, D.; Huang, X. Design Methodology for Fishtailed Pipe Diffusers and Its Application to a High-Pressure Ratio Centrifugal Compressor. Aerospace 2025, 12, 746. https://doi.org/10.3390/aerospace12080746
Liu J, Wang D, Huang X. Design Methodology for Fishtailed Pipe Diffusers and Its Application to a High-Pressure Ratio Centrifugal Compressor. Aerospace. 2025; 12(8):746. https://doi.org/10.3390/aerospace12080746
Chicago/Turabian StyleLiu, Junnan, Dingxi Wang, and Xiuquan Huang. 2025. "Design Methodology for Fishtailed Pipe Diffusers and Its Application to a High-Pressure Ratio Centrifugal Compressor" Aerospace 12, no. 8: 746. https://doi.org/10.3390/aerospace12080746
APA StyleLiu, J., Wang, D., & Huang, X. (2025). Design Methodology for Fishtailed Pipe Diffusers and Its Application to a High-Pressure Ratio Centrifugal Compressor. Aerospace, 12(8), 746. https://doi.org/10.3390/aerospace12080746