Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,715)

Search Parameters:
Keywords = distribution channels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8591 KB  
Communication
Impact of Channel Confluence Geometry on Water Velocity Distributions in Channel Junctions with Inflows at Angles α = 45° and α = 60°
by Aleksandra Mokrzycka-Olek, Tomasz Kałuża and Mateusz Hämmerling
Water 2025, 17(19), 2890; https://doi.org/10.3390/w17192890 (registering DOI) - 4 Oct 2025
Abstract
Understanding flow dynamics in open-channel node systems is crucial for designing effective hydraulic engineering solutions and minimizing energy losses. This study investigates how junction geometry—specifically the lateral inflow angle (α = 45° and 60°) and the longitudinal bed slope (I = 0.0011 to [...] Read more.
Understanding flow dynamics in open-channel node systems is crucial for designing effective hydraulic engineering solutions and minimizing energy losses. This study investigates how junction geometry—specifically the lateral inflow angle (α = 45° and 60°) and the longitudinal bed slope (I = 0.0011 to 0.0051)—influences the water velocity distribution and hydraulic losses in a rigid-bed Y-shaped open-channel junction. Experiments were performed in a 0.3 m wide and 0.5 m deep rectangular flume, with controlled inflow conditions simulating steady-state discharge scenarios. Flow velocity measurements were obtained using a PEMS 30 electromagnetic velocity probe, which is capable of recording three-dimensional velocity components at a high spatial resolution, and electromagnetic flow meters for discharge control. The results show that a lateral inflow angle of 45° induces stronger flow disturbances and higher local loss coefficients, especially under steeper slope conditions. In contrast, an angle of 60° generates more symmetric velocity fields and reduces energy dissipation at the junction. These findings align with the existing literature and highlight the significance of junction design in hydraulic structures, particularly under high-flow conditions. The experimental data may be used for calibrating one-dimensional hydrodynamic models and optimizing the hydraulic performance of engineered channel outlets, such as those found in hydropower discharge systems or irrigation networks. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 3740 KB  
Article
Wildfire Target Detection Algorithms in Transmission Line Corridors Based on Improved YOLOv11_MDS
by Guanglun Lei, Jun Dong, Yi Jiang, Li Tang, Li Dai, Dengyong Cheng, Chuang Chen, Daochun Huang, Tianhao Peng, Biao Wang and Yifeng Lin
Appl. Sci. 2025, 15(19), 10688; https://doi.org/10.3390/app151910688 - 3 Oct 2025
Abstract
To address the issues of small-target missed detection, false alarms from cloud/fog interference, and low computational efficiency in traditional wildfire detection for transmission line corridors, this paper proposes a YOLOv11_MDS detection model by integrating Multi-Scale Convolutional Attention (MSCA) and Distribution-Shifted Convolution (DSConv). The [...] Read more.
To address the issues of small-target missed detection, false alarms from cloud/fog interference, and low computational efficiency in traditional wildfire detection for transmission line corridors, this paper proposes a YOLOv11_MDS detection model by integrating Multi-Scale Convolutional Attention (MSCA) and Distribution-Shifted Convolution (DSConv). The MSCA module is embedded in the backbone and neck to enhance multi-scale dynamic feature extraction of flame and smoke through collaborative depth strip convolution and channel attention. The DSConv with a quantized dynamic shift mechanism is introduced to significantly reduce computational complexity while maintaining detection accuracy. The improved model, as shown in experiments, achieves an mAP@0.5 of 88.21%, which is 2.93 percentage points higher than the original YOLOv11. It also demonstrates a 3.33% increase in recall and a frame rate of 242 FPS, with notable improvements in detecting small targets (pixel occupancy < 1%). Generalization tests demonstrate mAP improvements of 0.4% and 0.7% on benchmark datasets, effectively resolving false/missed detection in complex backgrounds. This study provides an engineering solution for real-time wildfire monitoring in transmission lines with balanced accuracy and efficiency. Full article
Show Figures

Figure 1

16 pages, 1003 KB  
Article
Double-Layered Microphysiological System Made of Polyethylene Terephthalate with Trans-Epithelial Electrical Resistance Measurement Function for Uniform Detection Sensitivity
by Naokata Kutsuzawa, Hiroko Nakamura, Laner Chen, Ryota Fujioka, Shuntaro Mori, Noriyuki Nakatani, Takahiro Yoshioka and Hiroshi Kimura
Biosensors 2025, 15(10), 663; https://doi.org/10.3390/bios15100663 - 2 Oct 2025
Abstract
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, [...] Read more.
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, these chips faced challenges owing to optical interference caused by light scattering from the porous membrane, which hinders cell observation. Trans-epithelial electrical resistance (TEER) measurement offers a non-invasive method for assessing barrier integrity in these chips. However, existing electrode-integrated MPS chips for TEER measurement have non-uniform current densities, leading to compromised measurement accuracy. Additionally, chips made from polydimethylsiloxane have been associated with drug absorption issues. This study developed an electrode-integrated MPS chip for TEER measurement with a uniform current distribution and minimal drug absorption. Through a finite element method simulation, electrode patterns were optimized and incorporated into a polyethylene terephthalate (PET)-based chip. The device was fabricated by laminating PET films, porous membranes, and patterned gold electrodes. The chip’s performance was evaluated using a perfused Caco-2 intestinal model. TEER levels increased and peaked on day 5 when cells formed a monolayer, and then they decreased with the development of villi-like structures. Concurrently, capacitance increased, indicating microvilli formation. Exposure to staurosporine resulted in a dose-dependent reduction in TEER, which was validated by immunostaining, indicating a disruption of the tight junction. This study presents a TEER measurement MPS platform with a uniform current density and reduced drug absorption, thereby enhancing TEER measurement reliability. This system effectively monitors barrier integrity and drug responses, demonstrating its potential for non-animal drug-testing applications. Full article
15 pages, 479 KB  
Article
Security of Quantum Key Distribution with One-Time-Pad-Protected Error Correction and Its Performance Benefits
by Roman Novak
Entropy 2025, 27(10), 1032; https://doi.org/10.3390/e27101032 - 1 Oct 2025
Abstract
In quantum key distribution (QKD), public discussion over the authenticated classical channel inevitably leaks information about the raw key to a potential adversary, which must later be mitigated by privacy amplification. To limit this leakage, a one-time pad (OTP) has been proposed to [...] Read more.
In quantum key distribution (QKD), public discussion over the authenticated classical channel inevitably leaks information about the raw key to a potential adversary, which must later be mitigated by privacy amplification. To limit this leakage, a one-time pad (OTP) has been proposed to protect message exchanges in various settings. Building on the security proof of Tomamichel and Leverrier, which is based on a non-asymptotic framework and considers the effects of finite resources, we extend the analysis to the OTP-protected scheme. We show that when the OTP key is drawn from the entropy pool of the same QKD session, the achievable quantum key rate is identical to that of the reference protocol with unprotected error-correction exchange. This equivalence holds for a fixed security level, defined via the diamond distance between the real and ideal protocols modeled as completely positive trace-preserving maps. At the same time, the proposed approach reduces the computational requirements: for non-interactive low-density parity-check codes, the encoding problem size is reduced by the square of the syndrome length, while privacy amplification requires less compression. The technique preserves security, avoids the use of QKD keys between sessions, and has the potential to improve performance. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

21 pages, 6123 KB  
Article
Improving Air Distribution Within Lettuce Plant Canopy by Employing Double-Channel Ventilation Cultivation System: Simulation and Experiment Study
by Yihan Zhang, Can Chen, Hui Fang and Yuxin Tong
Agronomy 2025, 15(10), 2326; https://doi.org/10.3390/agronomy15102326 - 1 Oct 2025
Abstract
In greenhouse and plant factory production, improper design of the ventilation system and increasing scales will lead to a stagnant airflow zone, which could inhibit plant growth and induce physiological disease, such as tipburn. To increase the airflow within the plant canopy, simplify [...] Read more.
In greenhouse and plant factory production, improper design of the ventilation system and increasing scales will lead to a stagnant airflow zone, which could inhibit plant growth and induce physiological disease, such as tipburn. To increase the airflow within the plant canopy, simplify the equipment complexity, and improve operation convenience, a cultivation system was designed to provide a constant airflow within the plant canopy by integrating ventilation ducts with cultivation tanks. A three-dimensional computational fluid dynamics (ANSYS Fluent 2021R2) model was developed and validated through simulating the airflow distribution within the plant canopy under different intake air velocities. According to the simulated results, an intake air velocity of 10 m s−1 showed better airflow uniformity, and the proportion of the suitable zone reached the highest value of 83% at an intake air velocity of 20 m s−1. To validate the practical effectiveness of cultivation, a cultivation experiment was conducted. Five different canopy air velocities were set at 0 (CK), 0.35 (T1), 0.5 (T2), 0.65 (T3), and 0.8 (T4) m s−1, respectively. The results showed that the photosynthetic and transpiration rate, as well as the fresh and dry weights of lettuce plants (Lactuca sativa cv. ‘Tiberius’), increased by 17.8%, 21.7%, 29.6%, and 29.9%, respectively, under treatment T4 compared to those under the control, while the canopy air temperature and relative humidity decreased by 1.3 °C and 3.2%, respectively. The above results indicate that the newly designed cultivation system can be considered an effective system for improving lettuce plant growth and its canopy environment. Full article
Show Figures

Figure 1

23 pages, 14097 KB  
Article
Comparative Analysis of Local Flow Fields of Typical Inner Jet Holes-Type Reverse Circulation Drill Bit for Pneumatic Hollow-Through DTH Hammer Based on CFD Simulation
by Jiwei Wen, Jiang Chen and Fengtao Zhang
Symmetry 2025, 17(10), 1625; https://doi.org/10.3390/sym17101625 - 1 Oct 2025
Abstract
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation [...] Read more.
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation performance, revealing its local flow fields by computational fluid dynamics (CFD) simulation is an effective approach. Taking the inner jet holes-type reverse circulation drill bit as the research object, three kinds of symmetrical and asymmetrical structures of inner jet holes were proposed. The CFD simulation results show that increasing the air volume supply and the number of inner jet holes leads to an increase in the velocity of air flow jet within the inner jet holes, an increase in the negative pressure formed in the central through channel below the inner jet holes, an enhancement of the reverse circulation performance and suction capacity formed by the reverse circulation drill bit, and an acceleration of the upward flow velocity of the rock cores (samples) located at the bottom of the borehole. Additionally, the reverse circulation performance formed by the reverse circulation drill bit with staggered arranged inner jet holes is superior to that of the reverse circulation drill bit with uniformly distributed inner jet holes. Under the same simulation conditions, the static pressure (i.e., negative pressure) and the upward flow velocity formed by the JB6 model are 2.34 kPa and 30.778 m/s higher than those formed by the JB3-3 model, while these two values formed by the JC6 model are 0.197 kPa and 3.689 m/s higher than those formed by the JB6 model, respectively. In conclusion, an asymmetric structural design would be more reasonable for the design of the inner jet holes-type reverse circulation drill bit. Full article
Show Figures

Figure 1

21 pages, 6851 KB  
Article
Target Area Selection for Residual Coalbed Methane Drainage in Abandoned Multi-Seam Mines
by Gen Li, Yaxin Xiu, Qinjie Liu, Bin Zhang, Minke Duan, Youxing Yang and Chenye Guo
Appl. Sci. 2025, 15(19), 10619; https://doi.org/10.3390/app151910619 - 30 Sep 2025
Abstract
To optimize the location optimization of the coalbed methane (CBM) extraction target area in abandoned mines, based on the background of the Songzao mining area in Chongqing, theoretical analysis and numerical simulation research methods were comprehensively used to systematically evaluate the potential of [...] Read more.
To optimize the location optimization of the coalbed methane (CBM) extraction target area in abandoned mines, based on the background of the Songzao mining area in Chongqing, theoretical analysis and numerical simulation research methods were comprehensively used to systematically evaluate the potential of residual CBM resources in the goaf of the Songzao mining area. The stress-fracture evolution law and permeability enhancement characteristics of overlying strata under repeated mining of inclined multi-coal seams were deeply revealed, and the location optimization of the residual CBM extraction borehole target area was carried out. The results show that the amount of CBM resources in Songzao Coal Mine is 5.248 × 107 m3, accounting for 26.57% of the total resources, which is suitable for the extraction of CBM left in goaf. The maximum height of the overburden fracture zone caused by repeated mining of K2b, K1, and K3b coal seams in Songzao Coal Mine is 72.3 m, which is basically consistent with the results of the numerical simulation (69.76 m). The fracture development of overlying strata is in the distribution form of a symmetrical trapezoid and inclined asymmetrical trapezoid, and its development height increases with an increase in coal seam mining times, and finally forms a three-dimensional ‘O’-ring fracture area, which provides a channel and enrichment area for the effective migration of CBM. The significant permeability-increasing zone of overburden rock is stable in the range of 10~40 m above the roof of the K3b coal seam and is nearly trapezoidal. According to the calculation of the height prediction model of the fracture zone in the abandoned goaf, the fracture height of the long-term compaction of the Songzao Coal Mine is reduced to 63.74 m. Based on the stress-fracture evolution characteristics of the overburden rock, combined with the permeability-increasing characteristics of the overburden rock and the migration law of the remaining CBM, it is determined that the preferred position of the remaining CBM extraction target area of the Songzao Coal Mine should be in the upper corner of the fracture development area within the range of 10~32.47 m above the K36 coal seam. Full article
17 pages, 5980 KB  
Article
Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing
by Xiaoyu Sun, Haojie Zheng, Qiannan Jia, Limin Qi, Zhiqi Zhang, Lijing Zhong, Wei Yan, Jianrong Qiu and Min Qiu
Photonics 2025, 12(10), 973; https://doi.org/10.3390/photonics12100973 - 30 Sep 2025
Abstract
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light [...] Read more.
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light energy at the nanoscale while simultaneously regulating intense photo modifications. In this study, we report the controllable growth of long-distance, high-straightness, and high-parallelism multifilament structures in SiC using ultrafast laser processing. The mechanism is the formation of femtosecond multifilaments through the nonlinear effects of clamping equilibrium, which allow highly confined light to propagate without diffraction in parallel channels, further inducing high-aspect-ratio nanostripe-like photomodifications. By employing an elliptical Gaussian beam—rather than a circular one—and optimizing pulse durations to stabilize multifilaments with regular positional distributions, the induced multifilament structures can reach a length of approximately 90 μm with a minimum linewidth of only 28 nm, resulting in an aspect ratio of over 3200:1. Raman tests indicate that the photomodified regions consist of amorphous SiC, amorphous silicon, and amorphous carbon, and photoluminescence tests reveal that silicon vacancy color centers could be induced in areas with lower light power density. By leveraging femtosecond multifilaments for diffraction-less light confinement, this work proposes an effective method for manufacturing deep-subwavelength, high-aspect-ratio nanostructures in SiC. Full article
Show Figures

Figure 1

23 pages, 992 KB  
Review
Dumping Syndrome After Bariatric Surgery: Advanced Nutritional Perspectives and Integrated Pharmacological Management
by Raquel Cano, Daniel Rodríguez, Pablo Duran, Clímaco Cano, Diana Rojas-Gómez, Diego Rivera-Porras, Paola Barboza-González, Héctor Fuentes-Barría, Lissé Angarita, Arturo Boscan and Valmore Bermúdez
Nutrients 2025, 17(19), 3123; https://doi.org/10.3390/nu17193123 - 30 Sep 2025
Abstract
Dumping Syndrome (DS) is a significant complication following bariatric surgery, particularly Roux-en-Y gastric bypass (RYGB). This condition is characterised by gastrointestinal and vasomotor symptoms resulting from altered anatomy and hormonal dysregulation, notably accelerated gastric emptying and an exaggerated release of gut peptides. Based [...] Read more.
Dumping Syndrome (DS) is a significant complication following bariatric surgery, particularly Roux-en-Y gastric bypass (RYGB). This condition is characterised by gastrointestinal and vasomotor symptoms resulting from altered anatomy and hormonal dysregulation, notably accelerated gastric emptying and an exaggerated release of gut peptides. Based on the timing of symptom onset after food ingestion, DS is classified as early (EDS) or late (LDS). The critical roles of peptides such as GLP-1, GIP, insulin, and YY peptide are highlighted, along with the involvement of neuroendocrine pathways in symptom manifestation. Diagnosis relies on a combination of clinical evaluation and dynamic testing, with the oral glucose tolerance test (OGTT) often considered a key reference standard for diagnosis. Initial management involves dietary modifications, emphasising the glycaemic index of foods and meal distribution. In cases where nutritional interventions are insufficient, pharmacotherapy with agents such as acarbose, somatostatin analogues (octreotide and pasireotide), GLP-1 receptor agonists (liraglutide), calcium channel blockers (verapamil), and emerging therapies, including herbal medicine, may be considered. For refractory cases, surgical options like bypass reversal or partial pancreatectomy are reserved, although their efficacy can be variable. Despite advancements in understanding and treating DS, further large-scale, randomised controlled trials are essential to validate novel strategies and optimise long-term management. This review provides an updated and comprehensive overview of the aetiology, pathophysiological mechanisms, diagnostic approaches, and current management strategies for DS. Full article
(This article belongs to the Special Issue Nutrition Guidelines for Bariatric Surgery Patients)
Show Figures

Figure 1

23 pages, 6860 KB  
Article
Enhancing the Sustained Capability of Continual Test-Time Adaptation with Dual Constraints
by Yu Song, Pei Liu and Yunpeng Wu
Electronics 2025, 14(19), 3891; https://doi.org/10.3390/electronics14193891 - 30 Sep 2025
Abstract
Continuous Test-Time Adaptation aims to adapt a source model to continuously and dynamically changing target domains. However, previous studies focus on adapting to each target domain independently, treating them as isolated, while ignoring the interplay of interference and promotion between domains, which limits [...] Read more.
Continuous Test-Time Adaptation aims to adapt a source model to continuously and dynamically changing target domains. However, previous studies focus on adapting to each target domain independently, treating them as isolated, while ignoring the interplay of interference and promotion between domains, which limits the model’s sustained capability, often causing it to become trapped in local optima. This study highlights this critical issue and identifies two key factors that limit the model’s sustained capability: (1) The update of parameters lacks constraints, where domain-sensitive parameters capture domain-specific knowledge, leading to unstable channel representations and interference from old domain knowledge and hindering the learning of domain-invariant knowledge. (2) The decision boundary lacks constraints, and distribution shifts, which carry significant domain-specific knowledge, cause features to become dispersed and prone to clustering near the decision boundary. This is particularly problematic during the early stages of domain shifts, where features are more likely to cross the boundary. To tackle the two challenges, we propose a Dual Constraints method: First, we constrain updates to domain-sensitive parameters by minimizing the representation changes in domain-sensitive channels, alleviating the interference among domain-specific knowledge and promoting the learning of domain-invariant knowledge. Second, we introduce a constrained virtual decision boundary, which forces features to move away from the original boundary, and with a virtual margin to prevent features from crossing the decision boundary due to domain-specific knowledge interference caused by domain shifts. Extensive benchmark experiments show our framework outperforms competing methods. Full article
(This article belongs to the Special Issue Advances in Social Bots)
Show Figures

Figure 1

23 pages, 637 KB  
Article
A Comprehensive Evaluation of Consumer Trends and the Bioactive Content of Extra Virgin Olive Oil: Comparative Insights into Trademarked and Local Products
by Senem Suna and Burcu Erdal
Foods 2025, 14(19), 3384; https://doi.org/10.3390/foods14193384 - 30 Sep 2025
Abstract
This multidisciplinary comparative study investigates consumption patterns, health-related properties, and quality attributes of trademarked and local extra virgin olive oil (EVOO) samples. It highlights the importance of localization in promoting agricultural sustainability, strengthening regional economies, and enhancing socio-economic impacts within EVOO production and [...] Read more.
This multidisciplinary comparative study investigates consumption patterns, health-related properties, and quality attributes of trademarked and local extra virgin olive oil (EVOO) samples. It highlights the importance of localization in promoting agricultural sustainability, strengthening regional economies, and enhancing socio-economic impacts within EVOO production and consumption systems. In terms of quality characteristics, significant differences were observed in color parameters (L*, a*, b*, Chroma, Hue angle) among EVOO samples (p < 0.05). Regarding nutritional and functional properties, total phenolic content (TPC) measured with the Folin–Ciocalteu method ranged from 58.15 to 176.29 mg of gallic acid equivalents/kg of oil, while total antioxidant capacity (TAC) measured by CUPRAC and DPPH assays varied between 3.42 and 6.54 and 8.56–10.71 µmol of Trolox equivalents/g of oil, respectively. TPC and TAC were also evaluated for their stability during in vitro gastro-intestinal digestion, demonstrating that EVOO’s bioactive potential remains stable under gastric and intestinal conditions. Local samples exhibited significantly higher TACs than trademarked products across undigested, gastric, and intestinal phases (p < 0.05). Concurrently, a face-to-face consumer survey assessed purchasing behaviors and preferences, revealing that 71.3% of consumers preferred local EVOO and showed a low tendency to purchase commercial brands (p < 0.05). Cooperatives were identified as the main distribution channel, playing a crucial role in sustaining local production systems. This study offers valuable insights into EVOO’s bioactive content and consumer behavior, providing a foundation for developing both localized and commercial products that support health outcomes. Additionally, the findings contribute to policy development concerning sustainable food systems and geographical indications. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

33 pages, 7822 KB  
Article
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
by Alessandro Marini, Sebastiano Breda, Roberto Tonelli, Michele Di Sacco and Alessandro d’Adamo
Energies 2025, 18(19), 5181; https://doi.org/10.3390/en18195181 - 29 Sep 2025
Abstract
In the pursuit of zero-emission mobility, hydrogen represents a promising fuel for internal combustion engines. However, its low volumetric energy density poses challenges, especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled [...] Read more.
In the pursuit of zero-emission mobility, hydrogen represents a promising fuel for internal combustion engines. However, its low volumetric energy density poses challenges, especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine, targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation, combustion behavior, abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested, demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system, with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor, strongly linked to mixture stratification and high temperatures. To suppress it, water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall, the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

37 pages, 1604 KB  
Article
Research on Supplier Channel Encroachment Strategies Considering Retailer Fairness Concerns from a Low-Carbon Perspective
by Xiao Zou, Huidan Luo and Yingjie Yu
Sustainability 2025, 17(19), 8750; https://doi.org/10.3390/su17198750 - 29 Sep 2025
Abstract
Driven by China’s “dual carbon” strategy, concerns about channel fairness and green investment have become key frontier issues in supply chain management. This study focuses on a two-tier supply chain under a low-carbon background and innovatively incorporates both fairness concerns and green investment [...] Read more.
Driven by China’s “dual carbon” strategy, concerns about channel fairness and green investment have become key frontier issues in supply chain management. This study focuses on a two-tier supply chain under a low-carbon background and innovatively incorporates both fairness concerns and green investment perspectives. It systematically explores the impact mechanisms of fairness concern coefficients and green investment levels on channel pricing and profit distribution across four scenarios: information symmetry vs. asymmetry and the presence vs. absence of channel encroachment. The simulation results reveal the following: (1) Under information symmetry and without channel encroachment, an increase in the retailer’s fairness concern significantly enhances its bargaining power and profit margin, while the supplier actively adjusts the wholesale price to maintain cooperation stability. (2) Channel encroachment and changes in information structure intensify the nonlinearity and complexity of profit distribution. The marginal benefit of green investment for supply chain members shows a diminishing return, indicating the existence of an optimal investment range. (3) The green premium is predominantly captured by the supplier, while the retailer’s profit margin tends to be compressed, and order quantity exhibits rigidity in response to green investment. (4) The synergy between fairness concerns and green investment drives dynamic adjustments in channel strategies and the overall profit structure of the supply chain. This study not only reveals new equilibrium patterns under the interaction of multidimensional behavioral factors but also provides theoretical support for achieving both economic efficiency and sustainable development goals in supply chains. Based on these findings, it is recommended that managers optimize fairness incentives and green benefit-sharing mechanisms, improve information-sharing platforms, and promote collaborative upgrading of green supply chains to better integrate social responsibility with business performance. Full article
Show Figures

Figure 1

18 pages, 4932 KB  
Article
An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
by Ülke Şimşek and Can Çoğun
Crystals 2025, 15(10), 849; https://doi.org/10.3390/cryst15100849 - 29 Sep 2025
Abstract
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is [...] Read more.
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is employed to model anisotropic slip behavior and microscale deformation mechanisms. The primary objective is to elucidate how initial crystallographic orientation influences hardness, thermal conductivity, and electrical conductivity. Simulations are performed on single-crystal copper for three representative Face Centered Cubic (FCC) orientations. Using an explicit CPFEM model, the study examines texture evolution and deformation heterogeneity during the ECAP process of single-crystal copper. The results indicate that the <100> single-crystal orientation exhibits the highest Taylor factor and the most homogeneous distribution of plastic equivalent strain (PEEQ), suggesting enhanced resistance to plastic flow. In contrast, the <111> single-crystal orientation displays localized deformation and reduced hardening. A decreasing Taylor factor correlates with more uniform slip, which improves both electrical and thermal conductivity, as well as machinability, by minimizing dislocation-related resistance. These findings make a novel contribution to the field by highlighting the critical role of crystallographic orientation in governing slip activity and deformation pathways, which directly impact thermal wear resistance and the fabrication efficiency of ECAP-processed copper electrodes in EDM. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 13644 KB  
Article
Rock Surface Crack Recognition Based on Improved Mask R-CNN with CBAM and BiFPN
by Yu Hu, Naifu Deng, Fan Ye, Qinglong Zhang and Yuchen Yan
Buildings 2025, 15(19), 3516; https://doi.org/10.3390/buildings15193516 - 29 Sep 2025
Abstract
To address the challenges of multi-scale distribution, low contrast and background interference in rock crack identification, this paper proposes an improved Mask R-CNN model (CBAM-BiFPN-Mask R-CNN) that integrates the convolutional block attention mechanism (CBAM) module and the bidirectional feature pyramid network (BiFPN) module. [...] Read more.
To address the challenges of multi-scale distribution, low contrast and background interference in rock crack identification, this paper proposes an improved Mask R-CNN model (CBAM-BiFPN-Mask R-CNN) that integrates the convolutional block attention mechanism (CBAM) module and the bidirectional feature pyramid network (BiFPN) module. A dataset of 1028 rock surface crack images was constructed. The robustness of the model was improved by dynamically combining Gaussian blurring, noise overlay, and color adjustment to enhance data augmentation strategies. The model embeds the CBAM module after the residual block of the ResNet50 backbone network, strengthens the crack-related feature response through channel attention, and uses spatial attention to focus on the spatial distribution of cracks; at the same time, it replaces the traditional FPN with BiFPN, realizes the adaptive fusion of cross-scale features through learnable weights, and optimizes multi-scale crack feature extraction. Experimental results show that the improved model significantly improves the crack recognition effect in complex rock mass scenarios. The mAP index, precision and recall rate are improved by 8.36%, 9.1% and 12.7%, respectively, compared with the baseline model. This research provides an effective solution for rock crack detection in complex geological environments, especially the missed detection of small cracks and complex backgrounds. Full article
(This article belongs to the Special Issue Recent Scientific Developments in Structural Damage Identification)
Show Figures

Figure 1

Back to TopTop