Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimization of Pulse Duration
3.2. Evolution of Photomodified Regions and Formation of Multifilaments
3.3. Pulse-Energy-Dependent Regulation of Multiple Filaments
3.4. High-Aspect-Ratio Nanostripes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SiC | Silicon carbide |
α-SiC | Amorphous silicon carbide |
c-SiC | Crystalline silicon carbide |
α-Si | Amorphous silicon |
α-C | Amorphous carbon |
Vsi | Silicon vacancy |
PL | Photoluminescence |
NA | Numerical aperture |
SEM | Scanning electron microscopy |
Appendix A
References
- Castelletto, S.; Peruzzo, A.; Bonato, C.; Johnson, B.C.; Radulaski, M.; Ou, H.; Kaiser, F.; Wrachtrup, J. Silicon Carbide Photonics Bridging Quantum Technology. ACS Photonics 2022, 9, 1434–1457. [Google Scholar] [CrossRef]
- Son, N.T.; Anderson, C.P.; Bourassa, A.; Miao, K.C.; Babin, C.; Widmann, M.; Niethammer, M.; Ul Hassan, J.; Morioka, N.; Ivanov, I.G.; et al. Developing silicon carbide for quantum spintronics. Appl. Phys. Lett. 2020, 116, 190501. [Google Scholar] [CrossRef]
- Day, A.M.; Dietz, J.R.; Sutula, M.; Yeh, M.; Hu, E.L. Laser writing of spin defects in nanophotonic cavities. Nat. Mater. 2023, 22, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Salter, P.S.; Niethammer, M.; Widmann, M.; Kaiser, F.; Nagy, R.; Morioka, N.; Babin, C.; Erlekampf, J.; Berwian, P.; et al. Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Lett. 2019, 19, 2377–2383. [Google Scholar] [CrossRef]
- Okada, T.; Tomita, T.; Matsuo, S.; Hashimoto, S.; Kashino, R.; Ito, T. Formation of Nanovoids in Femtosecond Laser-Irradiated Single Crystals of Silicon Carbide. Mater. Sci. Forum 2012, 725, 19–22. [Google Scholar] [CrossRef]
- Yamamoto, M.; Deki, M.; Takahashi, T.; Tomita, T.; Okada, T.; Matsuo, S.; Hashimoto, S.; Yamaguchi, M.; Nakagawa, K.; Uehara, N.; et al. Raman Spectroscopic Stress Evaluation of Femtosecond-Laser-Modified Region Inside 4H-SiC. Appl. Phys. Express 2010, 3, 016603. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Wang, L.; Chen, F. Fabrication and polarization modulation of waveguides in 4H-SiC crystals by femtosecond laser direct writing. Appl. Phys. A 2022, 128, 651. [Google Scholar] [CrossRef]
- Xiangfu, L.; Minghui, H. Micro-cracks generation and growth manipulation by all-laser processing for low kerf-loss and high surface quality SiC slicing. Opt. Express 2024, 32, 38758. [Google Scholar] [CrossRef]
- Khuat, V.; Chen, T.; Gao, B.; Si, J.; Ma, Y.; Hou, X. Uniform nano-ripples on the sidewall of silicon carbide micro-hole fabricated by femtosecond laser irradiation and acid etching. Appl. Phys. Lett. 2014, 104, 241907. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Poumellec, B.; Lancry, M.; Chahid-Erraji, A.; Kazansky, P.G. Modification thresholds in femtosecond laser processing of pure silica: Review of dependencies on laser parameters [Invited]. Opt. Mater. Express 2011, 1, 766–782. [Google Scholar] [CrossRef]
- Skupin, S.; Bergé, L. Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion. Phys. D: Nonlinear Phenom. 2006, 220, 14–30. [Google Scholar] [CrossRef]
- Temnov, V.V.; Alekhin, A.; Samokhvalov, A.; Ivanov, D.S.; Lomonosov, A.; Vavassori, P.; Modin, E.; Veiko, V.P. Nondestructive Femtosecond Laser Lithography of Ni Nanocavities by Controlled Thermo-Mechanical Spallation at the Nanoscale. Nano Lett. 2020, 20, 7912–7918. [Google Scholar] [CrossRef] [PubMed]
- Garzillo, V.; Jukna, V.; Couairon, A.; Grigutis, R.; Di Trapani, P.; Jedrkiewicz, O. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass. J. Appl. Phys. 2016, 120, 013102. [Google Scholar] [CrossRef]
- Geints, Y.E.; Golik, S.S.; Zemlyanov, A.A.; Kabanov, A.M. Microstructure of the multiple filamentation region of femtosecond laser radiation in a solid dielectric. Atmos. Ocean. Opt. 2016, 29, 141–151. [Google Scholar] [CrossRef]
- Sun, H.; He, F.; Xu, J.; Liao, Y.; Cheng, Y.; Xu, Z.; Jiang, X.; Dai, Y. Femtosecond laser-induced color change and filamentation in Ag+-doped silicate glass. Chin. Opt. Lett. 2009, 7, 329–331. [Google Scholar] [CrossRef]
- Sakurai, T.; Shimotsuma, Y.; Shimizu, M.; Miura, K. Photoinduced Structural Change in MgO Single Crystal. J. Laser Micro Nanoen 2024, 19, 51–56. [Google Scholar] [CrossRef]
- Ge, W.; Xing, C.; Veiko, V.; Li, Z. All-optical, self-focused laser beam array for parallel laser surface processing. Opt. Express 2019, 27, 29261–29272. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Fedorov, V.Y. Properties of self-focusing of elliptic beams. Quantum Electron. 2004, 34, 1163–1168. [Google Scholar] [CrossRef]
- Dubietis, A.; Tamošauskas, G.; Fibich, G.; Ilan, B. Multiple filamentation induced by input-beam ellipticity. Opt. Lett. 2004, 29, 1126–1128. [Google Scholar] [CrossRef]
- Fedorov, V.Y.; Kandidov, V.P.; Kosareva, O.G.; Akozbek, N.; Scalora, M.; Chin, S.L. Filamentation of a femtosecond laser pulse with the initial beam ellipticity. Laser Phys. 2006, 16, 1227–1234. [Google Scholar] [CrossRef]
- Grow, T.D.; Gaeta, A.L. Dependence of multiple filamentation on beam ellipticity. Opt. Express 2005, 13, 4594–4599. [Google Scholar] [CrossRef] [PubMed]
- Bryukvina, L. Features of propagation of the high-intensity femtosecond laser pulses in magnesium and sodium fluoride crystals. J. Lumin. 2015, 162, 145–148. [Google Scholar] [CrossRef]
- Okada, T.; Tomita, T.; Matsuo, S.; Hashimoto, S.; Ishida, Y.; Kiyama, S.; Takahashi, T. Formation of periodic strained layers associated with nanovoids inside a silicon carbide single crystal induced by femtosecond laser irradiation. J. Appl. Phys. 2009, 106, 054307. [Google Scholar] [CrossRef]
- Kim, E.; Shimotsuma, Y.; Sakakura, M.; Miura, K. Nano Periodic Structure Formation in 4H–SiC Crystal Using Femtosecond Laser Double-Pulses. J. Superhard Mater. 2018, 40, 259–266. [Google Scholar] [CrossRef]
- Huang, F.; Si, J.; Chen, T.; Shen, T.; Shi, M.; Hou, X. Temporal-spatial dynamics of electronic plasma in femtosecond laser induced damage. Opt. Express 2021, 29, 14658–14667. [Google Scholar] [CrossRef]
- Shen, Y.-R. Principles of Nonlinear Optics; John Wiley and Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Temnov, V.V.; Sokolowski-Tinten, K.; Zhou, P.; El-Khamhawy, A.; von der Linde, D. Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization. Phys. Rev. Lett. 2006, 97, 237403. [Google Scholar] [CrossRef]
- Fox, R.A.; Kogan, R.M.; Robinson, E.J. Laser Triple-Quantum Photoionization of Cesium. Phys. Rev. Lett. 1971, 26, 1416–1417. [Google Scholar] [CrossRef]
- Venable, D.D.; Kay, R.B. Polarization effects in four-photon conductivity in quartz. Appl. Phys. Lett. 1975, 27, 48–49. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Liu, F.; Zheng, H.; Cheng, G.J. Process mechanism of ultrafast laser multi-focal-scribing for ultrafine and efficient stealth dicing of SiC wafers. Appl. Phys. A 2022, 128, 872. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784–1794. [Google Scholar] [CrossRef]
- Yan, T.; Ji, L.; Ma, R.; Amina; Lin, Z. Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire. Ceram. Int. 2020, 46, 16074–16079. [Google Scholar] [CrossRef]
- Mahadik, N.A.; Stahlbush, R.E.; Klein, P.B.; Khachatrian, A.; Buchner, S.; Block, S.G. Carrier lifetime variation in thick 4H-SiC epilayers using two-photon absorption. Appl. Phys. Lett. 2017, 111, 221904. [Google Scholar] [CrossRef]
- Rajeev, P.P.; Gertsvolf, M.; Corkum, P.B.; Rayner, D.M. Field Dependent Avalanche Ionization Rates in Dielectrics. Phys. Rev. Lett. 2009, 102, 083001. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, G.; Zhang, X.; Zhang, Y.; Wang, R.; Zhu, J. Self-focusing of partially coherent beams based on complex screen and split-step Fourier transform methods. Chin. Opt. Lett. 2023, 21, 071901. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Wang, L.; Fan, H.; Yu, Y.-H.; Chen, Q.-D.; Juodkazis, S.; Sun, H.-B. O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light. Sci. Appl. 2020, 9, 41. [Google Scholar] [CrossRef]
- Bhardwaj, V.R.; Simova, E.; Rajeev, P.P.; Hnatovsky, C.; Taylor, R.S.; Rayner, D.M.; Corkum, P.B. Optically Produced Arrays of Planar Nanostructures inside Fused Silica. Phys. Rev. Lett. 2006, 96, 057404. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Fan, H.; Wang, L.; Zhang, X.; Zhao, X.-J.; Yu, Y.-H.; Xu, Y.-S.; Wang, Y.; Wang, X.-J.; Juodkazis, S.; et al. Super-stealth dicing of transparent solids with nanometric precision. Nat. Photonics 2024, 18, 799–808. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Tan, D.; Qiu, J. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: Fundamentals and applications. PhotoniX 2023, 4, 24. [Google Scholar] [CrossRef]
- Cao, H.; Li, Y.; Wang, G.; Zhao, G.; Sun, D.; Jin, Z.; Xin, B.; Li, S.; Yu, Y.; Wang, Y.; et al. Femtosecond-laser-induced periodic surface structures on diamond with high efficiency. Chin. Opt. Lett. 2025, 23, 92201. [Google Scholar] [CrossRef]
- Quan, H.; Wang, R.; Ma, W.; Wu, Z.; Qiu, L.; Xu, K.; Zhao, W. Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC. Micromachines 2024, 15, 242. [Google Scholar] [CrossRef]
- Tomita, T.; Okada, T.; Kawahara, H.; Kumai, R.; Matsuo, S.; Hashimoto, S.; Kawamoto, M.; Yamaguchi, M.; Ueno, S.; Shindou, E.; et al. Microscopic analysis of carbon phases induced by femtosecond laser irradiation on single-crystal SiC. Appl. Phys. A 2010, 100, 113–117. [Google Scholar] [CrossRef]
- Castelletto, S.; Almutairi, A.F.M.; Kumagai, K.; Katkus, T.; Hayasaki, Y.; Johnson, B.C.; Juodkazis, S. Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing. Opt. Lett. 2018, 43, 6077. [Google Scholar] [CrossRef]
- Liu, Y.H.; Kuo, K.K.; Cheng, C.W.; Lee, A.C. Femtosecond laser two-beam interference applied to 4H-SiC surface hierarchical micro-nano structure fabrication. Opt. Laser Technol. 2022, 151, 108081. [Google Scholar] [CrossRef]
- Majus, D.; Jukna, V.; Valiulis, G.; Dubietis, A. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams. Phys. Rev. A 2009, 79, 033843. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Zhou, Y.; Wang, F.; Cai, Y.; Zhou, G. Realization of double uniform line self-focusing of elliptical Airyprime beams. Opt. Express 2024, 32, 14116–14132. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.K.; Tsvetkov, D.; Terekhov, P.; Litchinitser, N.M.; Dai, K.; Free, J.; Johnson, E.G. Spatio-temporal controlled filamentation using higher order Bessel-Gaussian beams integrated in time. Opt. Express 2021, 29, 19362–19372. [Google Scholar] [CrossRef]
- Hu, M.; Nan, J.; Yuan, S.; Zeng, H. Volume plasma grating by noncollinear interaction of femtosecond filament arrays. Opt. Express 2023, 31, 11239–11248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zheng, H.; Jia, Q.; Qi, L.; Zhang, Z.; Zhong, L.; Yan, W.; Qiu, J.; Qiu, M. Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing. Photonics 2025, 12, 973. https://doi.org/10.3390/photonics12100973
Sun X, Zheng H, Jia Q, Qi L, Zhang Z, Zhong L, Yan W, Qiu J, Qiu M. Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing. Photonics. 2025; 12(10):973. https://doi.org/10.3390/photonics12100973
Chicago/Turabian StyleSun, Xiaoyu, Haojie Zheng, Qiannan Jia, Limin Qi, Zhiqi Zhang, Lijing Zhong, Wei Yan, Jianrong Qiu, and Min Qiu. 2025. "Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing" Photonics 12, no. 10: 973. https://doi.org/10.3390/photonics12100973
APA StyleSun, X., Zheng, H., Jia, Q., Qi, L., Zhang, Z., Zhong, L., Yan, W., Qiu, J., & Qiu, M. (2025). Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing. Photonics, 12(10), 973. https://doi.org/10.3390/photonics12100973