Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (694)

Search Parameters:
Keywords = distortional mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1008 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 (registering DOI) - 1 Aug 2025
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
14 pages, 11798 KiB  
Article
Wavefront-Corrected Algorithm for Vortex Optical Transmedia Wavefront-Sensorless Sensing Based on U-Net Network
by Shangjun Yang, Yanmin Zhao, Binkun Liu, Shuguang Zou and Chenghu Ke
Photonics 2025, 12(8), 780; https://doi.org/10.3390/photonics12080780 (registering DOI) - 1 Aug 2025
Abstract
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured [...] Read more.
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured optical intensity—and augments it with a feed-forward, Gaussian-reference subtraction scheme for iterative compensation. In our experiments, this approach boosts the l = 3 mode purity from 38.4% to 98.1%. Compared to the Gerchberg–Saxton algorithm, the Gaussian-reference feed-forward method achieves far lower computational complexity and greater robustness, making real-time phase recovery feasible for OAM-based communications over heterogeneous channels. Full article
23 pages, 20436 KiB  
Article
An Adaptive Decomposition Method with Low Parameter Sensitivity for Non-Stationary Noise Suppression in Magnetotelluric Data
by Zhenyu Guo, Cheng Huang, Wen Jiang, Tao Hong and Jiangtao Han
Minerals 2025, 15(8), 808; https://doi.org/10.3390/min15080808 - 30 Jul 2025
Abstract
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In [...] Read more.
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In this study, we propose a novel, adaptive, and less parameter-dependent signal decomposition method for MT signal denoising, based on time–frequency domain analysis and the application of modal decomposition. The method uses Variational Mode Decomposition (VMD) to adaptively decompose the MT signal into several intrinsic mode functions (IMFs), obtaining the instantaneous time–frequency energy distribution of the signal. Subsequently, robust statistical methods are introduced to extract the independent components of each IMF, thereby identifying signal and noise components within the decomposition results. Synthetic data experiments show that our method accurately separates high-amplitude non-stationary interference. Furthermore, it maintains stable decomposition results under various parameter settings, exhibiting strong robustness and low parameter dependency. When applied to field MT data, the method effectively filters out non-stationary noise, leading to significant improvements in both apparent resistivity and phase curves, indicating its practical value in mineral exploration. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

13 pages, 1761 KiB  
Article
Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols
by M. Trinidad Martín, Ana Gálvez del Postigo, Práxedes Sánchez, Eleuterio Álvarez, Celia Maya, M. Carmen Nicasio and Riccardo Peloso
Molecules 2025, 30(15), 3167; https://doi.org/10.3390/molecules30153167 - 29 Jul 2025
Viewed by 252
Abstract
In this study, three new terphenyl-substituted NPN ligands bearing pyridyl groups, two phosphonites and one diaminophosphine, were synthesized and fully characterized. Their coordination chemistry with copper(I) was investigated using CuBr and [Cu(NCMe)4]PF6 as metal precursors, affording six mononuclear Cu(I) complexes, [...] Read more.
In this study, three new terphenyl-substituted NPN ligands bearing pyridyl groups, two phosphonites and one diaminophosphine, were synthesized and fully characterized. Their coordination chemistry with copper(I) was investigated using CuBr and [Cu(NCMe)4]PF6 as metal precursors, affording six mononuclear Cu(I) complexes, which were characterized using NMR spectroscopy and, in selected cases, single-crystal X-ray diffraction (SCXRD) analysis. The NPN ligands adopt a κ3-coordination mode, stabilizing the copper centers in distorted tetrahedral geometries. The catalytic performance of these complexes in the S-arylation of thiols with aryl iodides was evaluated. Under optimized conditions, complexes 2a and 2b exhibited excellent activity and broad substrate scope, tolerating both electron-donating and electron-withdrawing groups, as well as sterically hindered and heteroaryl substrates. The methodology also proved effective for aliphatic thiols and demonstrated high chemoselectivity in the presence of potentially reactive functional groups. In contrast, aryl bromides and chlorides were poorly reactive under the same conditions. These findings highlight the potential of well-defined Cu(I)–NPN complexes as efficient and versatile precatalysts for C–S bond formation. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe 2025)
Show Figures

Figure 1

17 pages, 752 KiB  
Article
A Soft-Fault Diagnosis Method for Coastal Lightning Location Networks Based on Observer Pattern
by Yiming Zhang and Ping Guo
Sensors 2025, 25(15), 4593; https://doi.org/10.3390/s25154593 - 24 Jul 2025
Viewed by 158
Abstract
Coastal areas are prone to thunderstorms. Lightning strikes can damage power facilities and communication systems, thereby leading to serious consequences. The lightning location network achieves lightning location through data fusion from multiple lightning locator nodes and can detect the location and intensity of [...] Read more.
Coastal areas are prone to thunderstorms. Lightning strikes can damage power facilities and communication systems, thereby leading to serious consequences. The lightning location network achieves lightning location through data fusion from multiple lightning locator nodes and can detect the location and intensity of lightning in real time. It is an important facility for thunderstorm warning and protection in coastal areas. However, when a sensor node in a lightning location network experiences a soft fault, it causes distortion in the lightning location. To achieve fault diagnosis of lightning locator nodes in a multi-node data fusion mode, this study proposes a new lightning location mode: the observer pattern. This paper first analyzes the main factors contributing to the error of the lightning location algorithm under this mode, proposes an observer pattern estimation algorithm (OPE) for lightning location, and defines the proportion of improvement in lightning positioning accuracy (PI) caused by the OPE algorithm. By analyzing the changes in PI in the process of lightning location, this study further proposes a diagnostic algorithm (OPSFD) for soft-fault nodes in a lightning location network. The simulation experiments in the paper demonstrate that the OPE algorithm can effectively improve the positioning accuracy of existing lightning location networks. Therefore, the OPE algorithm is also a low-cost and efficient method for improving the accuracy of existing lightning location networks, and it is suitable for the actual deployment and upgrading of current lightning locators. Meanwhile, the experimental results show that when a soft fault causes the observation error of the node to exceed the normal range, the OPSFD algorithm proposed in this study can effectively diagnose the faulty node. Full article
(This article belongs to the Special Issue Internet of Things (IoT) Sensing Systems for Engineering Applications)
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 196
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

38 pages, 9839 KiB  
Article
Numerical Study of the Late-Stage Flow Features and Stripping in Shock Liquid Drop Interaction
by Solomon Onwuegbu, Zhiyin Yang and Jianfei Xie
Aerospace 2025, 12(8), 648; https://doi.org/10.3390/aerospace12080648 - 22 Jul 2025
Viewed by 250
Abstract
Three-dimensional (3D) computational fluid dynamic (CFD) simulations have been performed to investigate the complex flow features and stripping of fluid materials from a cylindrical water drop at the late-stage in a Shock Liquid Drop Interaction (SLDI) process when the drop’s downstream end experiences [...] Read more.
Three-dimensional (3D) computational fluid dynamic (CFD) simulations have been performed to investigate the complex flow features and stripping of fluid materials from a cylindrical water drop at the late-stage in a Shock Liquid Drop Interaction (SLDI) process when the drop’s downstream end experiences compression after it is impacted by a supersonic shock wave (Ma = 1.47). The drop trajectory/breakup has been simulated using a Lagrangian model and the unsteady Reynolds-averaged Navier–Stokes (URANS) approach has been employed for simulating the ambient airflow. The Kelvin–Helmholtz Rayleigh–Taylor (KHRT) breakup model has been used to capture the liquid drop fragmentation process and a coupled level-set volume of fluid (CLSVOF) method has been applied to investigate the topological transformations at the air/water interface. The predicted changes of the drop length/width/area with time have been compared against experimental measurements, and a very good agreement has been obtained. The complex flow features and the qualitative characteristics of the material stripping process in the compression phase, as well as disintegration and flattening of the drop are analyzed via comprehensive flow visualization. Characteristics of the drop distortion and fragmentation in the stripping breakup mode, and the development of turbulence at the later stage of the shock drop interaction process are also examined. Finally, this study investigated the effect of increasing Ma on the breakup of a water drop by shear stripping. The results show that the shed fluid materials and micro-drops are spread over a narrower distribution as Ma increases. It illustrates that the flattened area bounded by the downstream separation points experienced less compression, and the liquid sheet suffered a slower growth. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 6362 KiB  
Article
Active Neutral-Point Voltage Balancing Strategy for Single-Phase Three-Level Converters in On-Board V2G Chargers
by Qiubo Chen, Zefu Tan, Boyu Xiang, Le Qin, Zhengyang Zhou and Shukun Gao
World Electr. Veh. J. 2025, 16(7), 406; https://doi.org/10.3390/wevj16070406 - 21 Jul 2025
Viewed by 154
Abstract
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage [...] Read more.
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage Balancing (ANPVB) in a single-phase three-level converter used in on-board V2G chargers. Traditional converters rely on passive balancing using redundant vectors, which cannot ensure neutral-point (NP) voltage stability under sudden load changes or frequent power fluctuations. To solve this issue, an auxiliary leg is introduced into the converter topology to actively regulate the NP voltage. The proposed method avoids complex algorithm design and weighting factor tuning, simplifying control implementation while improving voltage balancing and dynamic response. The results show that the proposed Model Predictive Current Control-based ANPVB (MPCC-ANPVB) and Model Predictive Direct Power Control-based ANPVB (MPDPC-ANPVB) strategies maintain the NP voltage within ±0.7 V, achieve accurate power tracking within 50 ms, and reduce the total harmonic distortion of current (THDi) to below 1.89%. The proposed strategies are tested in both V2G and G2V modes, confirming improved power quality, better voltage balance, and enhanced dynamic response. Full article
Show Figures

Figure 1

20 pages, 5656 KiB  
Article
A Quantitative Analysis Framework for Investigating the Impact of Variable Interactions on the Dynamic Characteristics of Complex Nonlinear Systems
by Yiming Tang, Chongru Liu and Chenbo Su
Electronics 2025, 14(14), 2902; https://doi.org/10.3390/electronics14142902 - 20 Jul 2025
Viewed by 186
Abstract
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a [...] Read more.
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a unified nonlinear modal analysis framework integrating second-order analytical solutions with novel nonlinear indices. Validated across diverse systems (DC microgrids and grid-connected PV), the framework yields significant findings: (1) second-order solutions outperform linearization in capturing critical oscillation/damping distortions under realistic disturbances, essential for fault analysis; (2) nonlinear effects induce modal dominance inversion and generate governing composite modes; (3) key interaction mechanisms are quantified, revealing distinct voltage regulation pathways in DC microgrids and multi-path dynamics driving DC voltage fluctuations. This approach provides a systematic foundation for dynamic characteristic assessment and directly informs control design for power electronics-dominated grids. Full article
Show Figures

Figure 1

19 pages, 3698 KiB  
Article
Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications
by Hengrui Cao, Konghao Xu, Li Zhang, Zhongqiu Liu, Ziyang Wang and Haijun Fu
Energies 2025, 18(14), 3857; https://doi.org/10.3390/en18143857 - 20 Jul 2025
Viewed by 255
Abstract
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back [...] Read more.
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back electromotive force (EMF) content of five-phase FIFT-IPM motors, the existing model predictive current fault-tolerant control algorithms fail to effectively track fundamental and third-harmonic currents. This results in high harmonic distortion in the phase current. Hence, this paper innovatively proposes a multi-plane virtual vector model predictive fault-tolerant control strategy that can achieve rapid and effective control of both the fundamental and harmonic planes while ensuring good dynamic stability performance. Additionally, considering that electric agricultural equipment is usually in a multi-disturbance working environment, this paper introduces an adaptive gain sliding-mode disturbance observer. This observer estimates complex disturbances and feeds them back into the control system, which possesses good resistance to complex disturbances. Finally, the feasibility and effectiveness of the proposed control strategy are verified by experimental results. Full article
Show Figures

Figure 1

19 pages, 12234 KiB  
Article
Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid
by Abdullah M. Noman, Abu Sufyan, Mohsin Jamil and Sulaiman Z. Almutairi
Electronics 2025, 14(14), 2894; https://doi.org/10.3390/electronics14142894 - 19 Jul 2025
Viewed by 171
Abstract
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly [...] Read more.
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly into the grid. The control performance of a GCI equipped with an LCL filter is greatly reduced when it is operating in a power grid with varying impedance and fluctuating grid voltages, which may result in poor current quality and possible instability in the system. A non-singular double integral terminal sliding mode (DIT-SMC) control is presented in this paper for a three-phase GCI with an LCL filter. The proposed method is presented in the α, β frame of reference without adopting an active or passive damping approach, reducing the computational burden. MATLAB/Simulink Version R2023b is leveraged to simulate the mathematical model of the proposed control system. The capability of the DIT-SMC method is validated through the OPAL-RT hardware-in-loop (HIL) platform. The effectiveness of the proposed method is first compared with SMC and integral terminal SMC, and then the DIT-SMC method is rigorously analyzed under resonance frequency events, grid impedance variation, and grid voltage distortions. It is demonstrated by the experimental results that the proposed control is highly effective in delivering a high-quality current into the grid, in spite of the simultaneous occurrence of power grid impedance variations in 6 mH and large voltage distortions. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A General Model Construction and Operating State Determination Method for Harmonic Source Loads
by Zonghua Zheng, Yanyi Kang and Yi Zhang
Symmetry 2025, 17(7), 1123; https://doi.org/10.3390/sym17071123 - 14 Jul 2025
Viewed by 276
Abstract
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and [...] Read more.
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and asymmetric characteristics increasingly compromise power quality. To enhance power quality management, this paper proposes a universal harmonic source modeling and operational state identification methodology integrating physical mechanisms with data-driven algorithms. The approach establishes an RL-series equivalent impedance model as its physical foundation, employing singular value decomposition and Z-score criteria to accurately characterize asymmetric load dynamics; subsequently applies Variational Mode Decomposition (VMD) to extract time-frequency features from equivalent impedance parameters while utilizing Density-Based Spatial Clustering (DBSCAN) for the high-precision identification of operational states in asymmetric loads; and ultimately constructs state-specific harmonic source models by partitioning historical datasets into subsets, substantially improving model generalizability. Simulation and experimental validations demonstrate that the synergistic integration of physical impedance modeling and machine learning methods precisely captures dynamic harmonic characteristics of asymmetric loads, significantly enhancing modeling accuracy, dynamic robustness, and engineering practicality to provide an effective assessment framework for power quality issues caused by harmonic source integration in distribution networks. Full article
Show Figures

Figure 1

15 pages, 5752 KiB  
Article
Coordinated Control of Grid-Forming Inverters for Adaptive Harmonic Mitigation and Dynamic Overcurrent Control
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Dai Orihara and Taha Selim Ustun
Electronics 2025, 14(14), 2793; https://doi.org/10.3390/electronics14142793 - 11 Jul 2025
Viewed by 237
Abstract
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt [...] Read more.
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt active filter (SAF) mechanism within the GFM control structure to achieve a real-time suppression of harmonic distortions from the inverter and grid currents. In parallel, a virtual impedance-based dynamic current limiting strategy is incorporated to constrain fault current magnitudes, ensuring the protection of power electronic components and maintaining system stability. The SAF operates in a current-injection mode aligned with harmonic components, derived via instantaneous reference frame transformations and selective harmonic extraction. The virtual impedance control (VIC) dynamically modulates the inverter’s output impedance profile based on grid conditions, enabling adaptive response during fault transients to limit overcurrent stress. A detailed analysis is performed for the coordinated control of the grid-forming inverter. Supported by simulations and analytical methods, the approach ensures system stability while addressing overcurrent limitations and active harmonic filtering under nonlinear load conditions. This establishes a viable solution for the next-generation inverter-dominated power systems where reliability, power quality, and fault resilience are paramount. Full article
Show Figures

Figure 1

25 pages, 10430 KiB  
Article
Investigating the Impact of Inter-City Patient Mobility on Local Residents’ Equity in Access to High-Level Healthcare: A Case Study of Beijing
by Zhiqing Li and Zhenbao Wang
ISPRS Int. J. Geo-Inf. 2025, 14(7), 260; https://doi.org/10.3390/ijgi14070260 - 2 Jul 2025
Viewed by 349
Abstract
The equitable allocation of healthcare resources reflects social equity. Previous studies of healthcare accessibility have overlooked the impact of inter-city patient mobility on local residents’ and local residents’ multi-mode travel choices, distorting accessibility calculation outcomes. Taking the area within Beijing’s Sixth Ring Road [...] Read more.
The equitable allocation of healthcare resources reflects social equity. Previous studies of healthcare accessibility have overlooked the impact of inter-city patient mobility on local residents’ and local residents’ multi-mode travel choices, distorting accessibility calculation outcomes. Taking the area within Beijing’s Sixth Ring Road as an example, this study established a Multi-Mode Accessibility Model for Local Residents (MMALR) to tertiary hospitals, using the proportion of non-local patients to adjust hospital supply capacity and considering the various travel mode shares from residential communities to hospitals to calculate the number of potential patients. We compared the changes in geospatial accessibility under different travel modes and employed the Gini coefficient to evaluate the geospatial equity of accessibility for different regions when using different accessibility methods. The results indicate that the spatial distribution of healthcare accessibility via different methods is similar, and it gradually decreases along subway lines from the urban center to the periphery. We found that the equities in access to high-level healthcare for Dongcheng District, Xicheng District, the area between the Third and Fourth Ring Road, and the area between the Fourth and Fifth Ring Road, display different ranking results across different methods, revealing that an unreasonable analysis framework could mislead the placement decisions for new hospitals or the allocation of medical resources. These findings emphasize the impact of inter-city patient mobility and the diversity of travel mode choices on accessibility. Our model can assist stakeholders in more accurately evaluating the accessibility and equity of local residents in terms of tertiary hospitals, which is crucial for cities with abundant medical resources and superior conditions. Our analytical findings provide a scientific basis for the location decisions of tertiary hospitals. Full article
Show Figures

Figure 1

16 pages, 3101 KiB  
Article
Enhanced High-Resolution and Long-Range FMCW LiDAR with Directly Modulated Semiconductor Lasers
by Luís C. P. Pinto and Maria C. R. Medeiros
Sensors 2025, 25(13), 4131; https://doi.org/10.3390/s25134131 - 2 Jul 2025
Viewed by 567
Abstract
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. [...] Read more.
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. Integrating LiDARs into electronic and photonic semiconductor chips can lower their cost, size, and power consumption, making them affordable for cost-sensitive applications. Additionally, simple designs are required, such as FMCW signal generation by the direct modulation of the current of a semiconductor laser. However, semiconductor lasers are inherently nonlinear, and the driving waveform needs to be optimized to generate linear FMCW signals. In this paper, we employ pre-distortion techniques to compensate for chirp nonlinearity, achieving frequency nonlinearities of 0.0029% for the down-ramp and the up-ramp at 55 kHz. Experimental results demonstrate a highly accurate LiDAR system with a resolution of under 5 cm, operating over a 210-m range through single-mode fiber, which corresponds to approximately 308 m in free space, towards meeting the requirements for long-range autonomous driving. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

Back to TopTop