Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (806)

Search Parameters:
Keywords = distance laboratory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3101 KiB  
Article
Comparison of Zeiss MEL90 and Alcon WaveLight EX500 Excimer Lasers in FDA Premarket Approval Trials for the Treatment of Myopia, Hyperopia, and Mixed Astigmatism
by Traeson M. Brandenburg, Mina M. Sitto, Phillip C. Hoopes and Majid Moshirfar
J. Clin. Med. 2025, 14(15), 5403; https://doi.org/10.3390/jcm14155403 - 31 Jul 2025
Viewed by 226
Abstract
Background/Objectives: Although both the MEL90 (Carl Zeiss Meditec AG, Jena, Germany) and WaveLight EX500 (Alcon Laboratories, Inc., Fort Worth, TX, USA) are two widely used excimer lasers, comparisons between the two remain limited. This study evaluates visual and refractive outcomes from the [...] Read more.
Background/Objectives: Although both the MEL90 (Carl Zeiss Meditec AG, Jena, Germany) and WaveLight EX500 (Alcon Laboratories, Inc., Fort Worth, TX, USA) are two widely used excimer lasers, comparisons between the two remain limited. This study evaluates visual and refractive outcomes from the U.S. Food and Drug Administration (FDA) premarket approval trials of these platforms in the treatment of myopia with and without astigmatism, hyperopia with and without astigmatism, and mixed astigmatism. Methods: Clinical outcomes from FDA premarket approval trials were compared between the recently approved MEL90 and the WaveLight (now termed EX500) excimer lasers. Results: A total of 714 eyes (358 patients) from MEL90 and 1353 eyes (706 patients) from EX500 were analyzed up to 6 months postoperatively. In the hyperopia/hyperopic astigmatism cohort, the EX500 demonstrated greater efficacy relative to MEL90, with more eyes achieving a postoperative uncorrected distance visual acuity (UDVA) of 20/20 or better (48.6% vs. 68.7%, respectively; p < 0.001). In both the MEL90 and EX500, at least 85% of eyes with myopia/myopic astigmatism and 68% with mixed astigmatism achieved a postoperative UDVA of 20/20 or better. For all refractive cohorts, more than 95% of eyes achieved a UDVA of 20/40 or better at 6 months (all p > 0.05). The EX500 was more likely to demonstrate an improvement of more than two lines of UDVA compared to baseline CDVA (all p < 0.05). In contrast, the MEL90 showed greater predictability of spherical equivalent within ±0.50 D and ±1.00 D for the hyperopia/hyperopic astigmatism cohort (both p = 0.007), as well as within ±0.50 D for the myopia/myopic astigmatism cohort (p < 0.001). Postoperatively, both platforms were associated with decreased glare and halos, although findings were variable in the EX500 mixed astigmatism cohort. Conclusions: Both excimer lasers demonstrated safe and effective outcomes that exceed the threshold set by the FDA. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

17 pages, 5245 KiB  
Article
Discrete Element Analysis of Grouting Reinforcement and Slurry Diffusion in Overburden Strata
by Pengfei Guo, Weiquan Zhao, Yahui Ma and Huiling Gen
Appl. Sci. 2025, 15(15), 8464; https://doi.org/10.3390/app15158464 - 30 Jul 2025
Viewed by 110
Abstract
Research on the grouting reinforcement mechanism of overburden is constrained by the concealed and heterogeneous nature of geotechnical media, posing dual challenges in theoretical analysis and process visualization. Based on discrete element numerical simulations and laboratory tests, an analytical model for grouting reinforcement [...] Read more.
Research on the grouting reinforcement mechanism of overburden is constrained by the concealed and heterogeneous nature of geotechnical media, posing dual challenges in theoretical analysis and process visualization. Based on discrete element numerical simulations and laboratory tests, an analytical model for grouting reinforcement in overburden layers is developed, revealing the influence of grouting pressure on slurry diffusion shape and distance. The results indicate the following: (1) Contact parameters of overburden and cement particles were obtained through laboratory tests. A grouting model for the overburden layer was established using the discrete element method. After optimizing particle coarsening and the contact model, the simulation more accurately represented slurry diffusion characteristics such as compaction, splitting, and permeability. (2) By monitoring porosity and coordination number distributions near grouting holes before and after injection using circular measurement, the discrete element simulation clearly visualizes the slurry reinforcement range. The reinforcement mechanism is attributed to the combined effects of pore structure compaction (reduced porosity) and cementation within the overburden (increased coordination number). (3) Based on slurry diffusion results, a functional relationship between slurry diffusion radius and grouting pressure is established. Error analysis shows that the modified formula improves the goodness of fit by 34–39% compared to the classical formula (Maag, cylindrical diffusion). The discrete element analysis method proposed in this study elucidates the mechanical mechanisms of overburden grouting reinforcement at the particle scale and provides theoretical support for visual evaluation of concealed structures and optimization of grouting design. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 4687 KiB  
Article
Geant4-Based Logging-While-Drilling Gamma Gas Detection for Quantitative Inversion of Downhole Gas Content
by Xingming Wang, Xiangyu Wang, Qiaozhu Wang, Yuanyuan Yang, Xiong Han, Zhipeng Xu and Luqing Li
Processes 2025, 13(8), 2392; https://doi.org/10.3390/pr13082392 - 28 Jul 2025
Viewed by 328
Abstract
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for [...] Read more.
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for early warning. This study proposes a real-time monitoring technique for gas content in drilling fluid based on the attenuation principle of Ba-133 γ-rays. By integrating laboratory static/dynamic experiments and Geant4-11.2 Monte Carlo simulations, the influence mechanism of gas–liquid two-phase media on γ-ray transmission characteristics is systematically elucidated. Firstly, through a comparative analysis of radioactive source parameters such as Am-241 and Cs-137, Ba-133 (main peak at 356 keV, half-life of 10.6 years) is identified as the optimal downhole nuclear measurement source based on a comparative analysis of penetration capability, detection efficiency, and regulatory compliance. Compared to alternative sources, Ba-133 provides an optimal energy range for detecting drilling fluid density variations, while also meeting exemption activity limits (1 × 106 Bq) for field deployment. Subsequently, an experimental setup with drilling fluids of varying densities (1.2–1.8 g/cm3) is constructed to quantify the inverse square attenuation relationship between source-to-detector distance and counting rate, and to acquire counting data over the full gas content range (0–100%). The Monte Carlo simulation results exhibit a mean relative error of 5.01% compared to the experimental data, validating the physical correctness of the model. On this basis, a nonlinear inversion model coupling a first-order density term with a cubic gas content term is proposed, achieving a mean absolute percentage error of 2.3% across the full range and R2 = 0.999. Geant4-based simulation validation demonstrates that this technique can achieve a measurement accuracy of ±2.5% for gas content within the range of 0–100% (at a 95% confidence interval). The anticipated field accuracy of ±5% is estimated by accounting for additional uncertainties due to temperature effects, vibration, and mud composition variations under downhole conditions, significantly outperforming current surface monitoring methods. This enables the high-frequency, high-precision early detection of kick events during the shut-in period. The present study provides both theoretical and technical support for the engineering application of nuclear measurement techniques in well control safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

26 pages, 6714 KiB  
Article
Study on the Shear Performance of MMOM Stay-in-Place Formwork Beams Reinforced with Perforated Steel Pipe Skeleton
by Lingling Li, Chuanhe Shang and Xiaodong Wang
Buildings 2025, 15(15), 2638; https://doi.org/10.3390/buildings15152638 - 26 Jul 2025
Viewed by 260
Abstract
The simulation analysis of a novel stay-in-place formwork (SIPF) beam reinforced with perforated steel pipe skeleton was conducted. The SIPF beam consists of a modified magnesium oxysulfide mortar (MMOM) formwork, a square steel pipe skeleton with holes dug on the sides and top, [...] Read more.
The simulation analysis of a novel stay-in-place formwork (SIPF) beam reinforced with perforated steel pipe skeleton was conducted. The SIPF beam consists of a modified magnesium oxysulfide mortar (MMOM) formwork, a square steel pipe skeleton with holes dug on the sides and top, and cast-in-place concrete. The finite element (FE) analysis model of the SIPF beam was established by using the ABAQUS CAE 2021 software, and simulation analysis was conducted with the shear span ratio (SSR), the distance between the remaining steel strips, and the strength of concrete as the variation parameters. The results show that the stiffness and shear capacity of the SIPF beam decrease with the increase in SSR and increase with the decrease in strip spacing. Under the same conditions, when the concrete strength grade is increased from C30 to C50, the shear bearing capacity of the SIPF beam increases by 11.8% to 16.2%. When the spacing of the steel strips is reduced from 200 mm to 150 mm, the shear bearing capacity can be increased by 12.7% to 31.5%. When the SSR increases from 1.5 to 3.0, the shear bearing capacity decreases by 26.9% to 37.3%. Moreover, with the increase in the SSR, the influence of the steel strip spacing on the shear bearing capacity of the SIPF beam improves, while the influence of the concrete strength on the shear bearing capacity decreases. Taking parameters such as SSR, steel strip spacing, and concrete strength as variables, the influence of steel pipe constraining the core concrete on the shear bearing capacity was considered. The calculation formula for the shear bearing capacity of the SIPF beam with perforated steel pipe skeleton was established. The calculation results fit well with the laboratory test and simulation test results and can be used for the design and calculation of engineering structures. Full article
Show Figures

Figure 1

6 pages, 1910 KiB  
Proceeding Paper
Design and Construction of an Engine Oil Viscosity Meter with Electronic Control
by Penko Mitev, Atanasi Tashev and Yordan Stoyanov
Eng. Proc. 2025, 100(1), 55; https://doi.org/10.3390/engproc2025100055 - 22 Jul 2025
Viewed by 190
Abstract
This study presents the design and implementation of a novel, sensor-based falling-sphere viscometer specifically tailored for measuring the viscosity of engine oil. The equipment utilizes a metallic sphere and two strategically placed sensors to determine the travel time over a predetermined distance within [...] Read more.
This study presents the design and implementation of a novel, sensor-based falling-sphere viscometer specifically tailored for measuring the viscosity of engine oil. The equipment utilizes a metallic sphere and two strategically placed sensors to determine the travel time over a predetermined distance within an oil-filled tube. By applying fundamental principles of fluid dynamics, including Stokes’ law, the system accurately calculates the dynamic viscosity based on the sphere’s velocity and the oil’s density. Experimental validation at particular temperature demonstrates the device’s sensitivity and reliability, which are critical for assessing oil degradation and engine performance. The simplicity and low cost of the design make it an attractive alternative to conventional, more complex viscometers. Furthermore, the automated data acquisition system reduces human error and enhances reproducibility of results. Overall, the developed instrument shows great promise for both laboratory research and practical maintenance applications in the automotive industry. Full article
Show Figures

Figure 1

25 pages, 4994 KiB  
Article
Dynamic Slope Stability Assessment Under Blast-Induced Ground Vibrations in Open-Pit Mines: A Pseudo-Static Limit Equilibrium Approach
by Sami Ullah, Gaofeng Ren, Yongxiang Ge, Muhammad Burhan Memon, Eric Munene Kinyua and Theoneste Ndayiragije
Sustainability 2025, 17(14), 6642; https://doi.org/10.3390/su17146642 - 21 Jul 2025
Viewed by 492
Abstract
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing [...] Read more.
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing of the rock mass, and potential failure. Evaluating the effects of blast-induced vibrations is essential to ensure safe and sustainable mining operations. This study investigates the impact of blasting-induced vibrations on slope stability at the Saindak Copper-Gold Open-Pit Mine in Pakistan. A comprehensive dataset was compiled, including field-monitored ground vibration measurements—specifically peak particle velocity (PPV) and key blast design parameters such as spacing (S), burden (B), stemming length (SL), maximum charge per delay (MCPD), and distance from the blast point (D). Geomechanical properties of slope-forming rock units were validated through laboratory testing. Slope stability was analyzed using pseudo-static limit equilibrium methods (LEMs) based on the Mohr–Coulomb failure criterion, employing four approaches: Fellenius, Janbu, Bishop, and Spencer. Pearson and Spearman correlation analyses quantified the influence of blasting parameters on slope behavior, and sensitivity analysis determined the cumulative distribution of slope failure and dynamic response under increasing seismic loads. FoS values were calculated for both east and west pit slopes under static and dynamic conditions. Among all methods, Spencer consistently yielded the highest FoS values. Under static conditions, FoS was 1.502 for the east slope and 1.254 for the west. Under dynamic loading, FoS declined to 1.308 and 1.102, reductions of 12.9% and 11.3%, respectively, as calculated using the Spencer method. The east slope exhibited greater stability due to its gentler angle. Correlation analysis revealed that burden had a significant negative impact (r = −0.81) on stability. Sensitivity analysis showed that stability deteriorates notably when PPV exceeds 10.9 mm/s. Although daily blasting did not critically compromise stability, the west slope showed greater vulnerability, underscoring the need for stricter control of blasting energy to mitigate vibration-induced instability and promote long-term operational sustainability. Full article
Show Figures

Graphical abstract

27 pages, 11254 KiB  
Article
Improved RRT-Based Obstacle-Avoidance Path Planning for Dual-Arm Robots in Complex Environments
by Jing Wang, Genliang Xiong, Bowen Dang, Jianli Chen, Jixian Zhang and Hui Xie
Machines 2025, 13(7), 621; https://doi.org/10.3390/machines13070621 - 18 Jul 2025
Viewed by 376
Abstract
To address the obstacle-avoidance path-planning requirements of dual-arm robots operating in complex environments, such as chemical laboratories and biomedical workstations, this paper proposes ODSN-RRT (optimization-direction-step-node RRT), an efficient planner based on rapidly-exploring random trees (RRT). ODSN-RRT integrates three key optimization strategies. First, a [...] Read more.
To address the obstacle-avoidance path-planning requirements of dual-arm robots operating in complex environments, such as chemical laboratories and biomedical workstations, this paper proposes ODSN-RRT (optimization-direction-step-node RRT), an efficient planner based on rapidly-exploring random trees (RRT). ODSN-RRT integrates three key optimization strategies. First, a two-stage sampling-direction strategy employs goal-directed growth until collision, followed by hybrid random-goal expansion. Second, a dynamic safety step-size strategy adapts each extension based on obstacle size and approach angle, enhancing collision detection reliability and search efficiency. Third, an expansion-node optimization strategy generates multiple candidates, selects the best by Euclidean distance to the goal, and employs backtracking to escape local minima, improving path quality while retaining probabilistic completeness. For collision checking in the dual-arm workspace (self and environment), a cylindrical-spherical bounding-volume model simplifies queries to line-line and line-sphere distance calculations, significantly lowering computational overhead. Redundant waypoints are pruned using adaptive segmental interpolation for smoother trajectories. Finally, a master-slave planning scheme decomposes the 14-DOF problem into two 7-DOF sub-problems. Simulations and experiments demonstrate that ODSN-RRT rapidly generates collision-free, high-quality trajectories, confirming its effectiveness and practical applicability. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

15 pages, 1211 KiB  
Review
Epidemiology of Chronic Hepatitis C in First Nations Populations in Canadian Prairie Provinces
by Kate P. R. Dunn, Dennis Wardman, Maxim Trubnikov, Chris Sarin, Tom Wong, Hongqun Liu and Samuel S. Lee
Pathogens 2025, 14(7), 693; https://doi.org/10.3390/pathogens14070693 - 14 Jul 2025
Viewed by 338
Abstract
Current structural barriers experienced by First Nations in Canada shape access and engagement for testing and treatment of hepatitis C virus (HCV) infections. This non-systematic informative review considers transdisciplinary perspectives, regional data, and published literature connecting context to the disproportionate HCV burden experienced [...] Read more.
Current structural barriers experienced by First Nations in Canada shape access and engagement for testing and treatment of hepatitis C virus (HCV) infections. This non-systematic informative review considers transdisciplinary perspectives, regional data, and published literature connecting context to the disproportionate HCV burden experienced by First Nations populations in the prairie provinces of Canada, and offers examples of participatory and community-led initiatives working toward the elimination of HCV as a public health threat. First Nations in Canada are disproportionately impacted by chronic HCV infection, with a reported rate of newly diagnosed HCV cases in First Nations communities five times the respective rate in the general Canadian population in 2022. This review explores the reasons underlying the disproportionate burden of HCV infection. Significant over-representation of First Nations in the Canadian Prairies is seen in the major risk categories for HCV acquisition, and the impact of these risk factors is aggravated by barriers to accessing healthcare services and medication coverage. These barriers stem from the legacy of colonialism, discrimination, disenfranchisement, and are exacerbated by stigmatization, victimization, and racism in the justice and healthcare systems. Other contributory factors that impede access to care include inadequate healthcare clinic staffing and infrastructure in First Nations communities, and significant geographical distances between First Nations reserves and laboratories, pharmacies, and treating/prescribing healthcare providers. Recent recognition of historical harms and early steps towards nation-to-nation reconciliation, along with support for culturally connected, holistic, and First Nations-led wellness programs, instill hope that elimination strategies to eradicate HCV infection in First Nations populations will be successful in Canada. Full article
Show Figures

Figure 1

28 pages, 5260 KiB  
Article
A Monte Carlo Simulation of Measurement Uncertainty in Radiation Thermometry Due to the Influence of Spectral Parameters
by Vid Mlačnik, Igor Pušnik and Domen Hudoklin
Appl. Sci. 2025, 15(13), 7618; https://doi.org/10.3390/app15137618 - 7 Jul 2025
Viewed by 308
Abstract
While radiation thermometry is well-developed for laboratory calibrations using high-emissivity sources, the effect of spectral emissivity in real-world conditions, where emissivity ranges from 0 to 1, is usually not considered. Spectral parameters that influence non-contact temperature measurements are often neglected even in laboratory [...] Read more.
While radiation thermometry is well-developed for laboratory calibrations using high-emissivity sources, the effect of spectral emissivity in real-world conditions, where emissivity ranges from 0 to 1, is usually not considered. Spectral parameters that influence non-contact temperature measurements are often neglected even in laboratory conditions. These parameters become more important with decreasing emissivity and at lower temperatures, leading to increased uncertainty contributions to the measurement result. In this manuscript, we analyze the impact of various influential spectral parameters using the constructed spectral Monte Carlo simulation of radiation thermometry. The investigation covers the influence of spectral and related parameters, namely spectral emissivity, reflection temperature, spectral sensitivity and atmospheric parameters of temperature, relative humidity and distance of the path in the atmosphere. Simulation results are compared to experimental results, overestimating sensitivity to humidity by 23–27% and sensitivity to emissivity and reflected temperature within 10% at given conditions. Multiple cases of radiation thermometer (RT) use are simulated for measurement uncertainty: high temperature RT use as the reference in calibration by comparison, the use of a flat plate calibrator for RT calibration, measurements with a RT using emissivity input data from literature with relatively high uncertainty and temperature measurements with a RT using emissivity data, obtained with FTIR spectroscopy with relatively low uncertainty. Findings suggest that spectral uncertainty contributions are often unjustifiably underestimated and neglected, nearing extended uncertainty contribution of 1.94 °C in calibration practices using flat plate calibrators with emissivity within 0.93 and 0.97 and 1.72 °C when radiation thermometers with spectral ranges, susceptible to atmospheric humidity, are used on black bodies. Full article
(This article belongs to the Collection Optical Design and Engineering)
Show Figures

Figure 1

23 pages, 4988 KiB  
Article
Research on the Optimization of the Electrode Structure and Signal Processing Method of the Field Mill Type Electric Field Sensor
by Wei Zhao, Zhizhong Li and Haitao Zhang
Sensors 2025, 25(13), 4186; https://doi.org/10.3390/s25134186 - 4 Jul 2025
Viewed by 240
Abstract
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s [...] Read more.
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s induction electrode, the finite element method was adopted to analyze the influence laws of parameters such as the thickness of the shielding electrode and the distance between the induction electrode and the shielding electrode on the sensor sensitivity. On this basis, the above parameters were optimized. A signal processing circuit incorporating a pre-integral transformation circuit, a differential amplification circuit, and a bias circuit was investigated, and a completed mathematical model of the input and output of the field mill type electric field sensor was established. An improved harmonic detection method combining fast Fourier transform and back propagation neural network (FFT-BP) was proposed, the learning rate, momentum factor, and excitation function jointly participated in the adjustment of the network, and the iterative search range of the algorithm was limited by the threshold interval, further improving the accuracy and rapidity of the sensor measurement. Experimental results indicate that within the simulated electric field intensity range of 0–20 kV/m in the laboratory, the measurement resolution of this system can reach 18.7 V/m, and the measurement linearity is more than 99%. The designed system is capable of measuring the atmospheric electric field intensity in real time, providing necessary data support for lightning monitoring and early warning. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

28 pages, 4733 KiB  
Article
The Margin of Stability During a Single-Turn Pirouette in Female Amateur Dancers: A Pilot Study
by Annalisa Dykstra, Ashley Kooistra, Nicole Merucci, David W. Zeitler and Gordon Alderink
Appl. Sci. 2025, 15(13), 7519; https://doi.org/10.3390/app15137519 - 4 Jul 2025
Viewed by 282
Abstract
Balance control in pirouettes has previously been characterized by constraint of the topple angle. However, there is a paucity of research using the margin of stability (MoS) as a dynamic measure of balance related to pirouettes. Therefore, this study aimed primarily to examine [...] Read more.
Balance control in pirouettes has previously been characterized by constraint of the topple angle. However, there is a paucity of research using the margin of stability (MoS) as a dynamic measure of balance related to pirouettes. Therefore, this study aimed primarily to examine the MoS as a metric of balance during a single-turn en dehors pirouette in healthy female amateur ballet dancers. Four participants performed pirouettes until five successful pirouettes were achieved without hopping or loss of balance. Three-dimensional motion capture was used to record the motion trajectories of anatomical markers based on the Plug-in-Gait and Oxford Foot models. Motion synchronized with ground reaction forces was used to calculate the center of pressure (CoP), base of support (BoS), center of the pivot foot, center of mass (CoM), and extrapolated center of mass (XCoM) throughout the turn phase, using laboratory (LCS) and virtual left foot (LFT) coordinate systems. In the LCS and LFT coordinate system, the excursions and patterns of motion of both the CoM and XCoM relative to the CoP were similar, suggesting a neurological relationship. Two different measures of the margin of stability (MoS) in the LFT coordinate system were tabulated: the distance between the (1) XCoM and CoP and (2) XCoM and BoS center. The magnitude of both versions of the MoS was greatest at turn initiation and toe-touch, which was associated with two foot contacts. The MoS values were at a minimum approximately 50% of the stance during the turn phase: close to zero along the anteroposterior (A/P) axis and approximately 50 mm along the mediolateral (M/L) axis. On average, MoS magnitudes were reduced (mean across participants: approximately 20 mm) along the A/P axis, and larger MoS magnitudes (mean across participants: approximately 50 mm) along the M/L axis throughout the turn phase. Although all turns analyzed were completed successfully, the larger MoS values along the M/L axis suggest a fall potential. The variability between trials within a dancer and across participants and trials was documented and showed moderate inter-trial (16% to 51%) and across-participant CV% (range: 10% to 28%), with generally larger variations along the A/P axis. Although our results are preliminary, they suggest that the MoS may be useful for detecting faults in the control of dynamic balance in dehors pirouette performance, as a part of training and rehabilitation following injury. Full article
Show Figures

Figure 1

15 pages, 5932 KiB  
Article
Numerical Simulation of Fluid Flow, Heat Transfer, and Solidification in AISI 304 Stainless Steel Twin-Roll Strip Casting
by Jingzhou Lu, Wanlin Wang and Kun Dou
Metals 2025, 15(7), 749; https://doi.org/10.3390/met15070749 - 2 Jul 2025
Viewed by 306
Abstract
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the [...] Read more.
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the internal phenomena within its molten pool remain exceptionally challenging to monitor. This study developed a multiscale numerical model to simulate coupled fluid flow, heat transfer, and solidification in AISI 304 stainless steel twin-roll strip casting. A quarter-symmetry 3D model captured macroscopic transport phenomena, while a slice model resolved mesoscopic solidification structure. Laboratory experiments had verified that the deviation between the predicted temperature field and the measured average value (1384.3 °C) was less than 5%, and the error between the solidification structure simulation and the electron backscatter diffraction (EBSD) data was within 5%. The flow field and flow trajectory showed obvious recirculation zones: the center area was mainly composed of large recirculation zones, and many small recirculation zones appeared at the edges. Parameter studies showed that, compared with the high superheat (110 °C), the low superheat (30 °C) increased the total solid fraction by 63% (from 8.3% to 13.6%) and increased the distance between the kiss point and the bottom of the molten pool by 154% (from 6.2 to 15.8 mm). The location of the kiss point is a key industrial indicator for assessing solidification integrity and the risk of strip fracture. In terms of mesoscopic solidification structure, low superheat promoted the formation of coarse columnar crystals (equiaxed crystals accounted for 8.9%), while high superheat promoted the formation of equiaxed nucleation (26.5%). The model can be used to assist in the setting of process parameters and process optimization for twin-roll strip casting. Full article
(This article belongs to the Special Issue Advances in Metal Rolling Processes)
Show Figures

Figure 1

19 pages, 395 KiB  
Article
Assessment of Serum suPAR Levels in Patients with Group 1 and Group 4 Pulmonary Hypertension
by Abdullah Tunçez, Muhammed Ulvi Yalçın, Hüseyin Tezcan, Bülent Behlül Altunkeser, Bahadır Öztürk, Canan Aydoğan, Aslıhan Toprak, Onur Can Polat, Nazif Aygül, Kenan Demir, Kadri Murat Gürses, Yasin Özen, Fikret Akyürek and Hatice Betül Tunçez
J. Clin. Med. 2025, 14(13), 4671; https://doi.org/10.3390/jcm14134671 - 2 Jul 2025
Viewed by 389
Abstract
Background/Objectives: Pulmonary hypertension (PH) is a progressive disorder with high morbidity and mortality, partly driven by chronic inflammation. Soluble urokinase plasminogen activator receptor (suPAR) reflects immune activation. We evaluated whether suPAR is altered in Group 1 and Group 4 PH and its association [...] Read more.
Background/Objectives: Pulmonary hypertension (PH) is a progressive disorder with high morbidity and mortality, partly driven by chronic inflammation. Soluble urokinase plasminogen activator receptor (suPAR) reflects immune activation. We evaluated whether suPAR is altered in Group 1 and Group 4 PH and its association with clinical, echocardiographic, and laboratory parameters. Methods: We enrolled 44 PH patients (36 in Group 1, 8 in Group 4) and 45 healthy controls. All underwent clinical and echocardiographic assessments; right heart catheterization was performed in the PH patients. Serum suPAR was measured by ELISA. N-terminal pro B-type natriuretic peptide (NT-proBNP) and C-reactive protein (CRP) were also assessed. Results: The suPAR plasma levels in the PH group were between 23.91 and 960.8 pg/mL (median: 73.14 p25: 62.77, p75: 167.13). suPAR was significantly higher in PH versus controls (73.14 [62.77–167.13] vs. 65.52 [53.06–80.91] pg/mL; p = 0.012). In logistic regression, systolic blood pressure, erythrocyte sedimentation rate, NT-proBNP, and suPAR independently predicted PH. suPAR correlated negatively with six-minute walk distance (r = −0.310) and tricuspid annular plane systolic excursion (r = −0.295) but positively with systolic pulmonary artery pressure (r = 0.241). On multivariate analysis, six-minute walk distance was the only independent correlate of suPAR (p = 0.004). suPAR levels did not differ between Group 1 and Group 4 PH. Conclusions: suPAR is elevated in Group 1 and Group 4 PH and correlates with functional and echocardiographic indices of disease severity. Larger prospective studies are needed to determine suPAR’s role in diagnosis, risk stratification, and therapeutic decision-making. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

15 pages, 1382 KiB  
Article
Wave Run-Up Distance Prediction Combined Data-Driven Method and Physical Experiments
by Peng Qin, Hangwei Zhu, Fan Jin, Wangtao Lu, Zhenzhu Meng, Chunmei Ding, Xian Liu and Chunmei Cheng
J. Mar. Sci. Eng. 2025, 13(7), 1298; https://doi.org/10.3390/jmse13071298 - 1 Jul 2025
Viewed by 266
Abstract
Predicting wave run-up on seawalls is essential for assessing coastal flood risk and guiding resilient design. In this study, we combine physical model experiments with a hybrid data driven method to forecast wave run-up distance. Laboratory tests generated a nonlinear data set spanning [...] Read more.
Predicting wave run-up on seawalls is essential for assessing coastal flood risk and guiding resilient design. In this study, we combine physical model experiments with a hybrid data driven method to forecast wave run-up distance. Laboratory tests generated a nonlinear data set spanning a wide range of wave amplitudes, wavelengths, Froude numbers. To capture the underlying physical regimes, the records were first classified using a Gaussian Mixture Model (GMM), which automatically grouped waves of similar hydrodynamic character. Within each cluster a Gradient Boosting Regressor (GBR) was then trained, allowing the model to learn tailored input–output relationships instead of forcing a single global fit. Results demonstrate that the GMM-GBR combined model achieves a coefficient of determination R2 greater than 0.91, outperforming a conventional, non-clustered GBR model. This approach offers a reliable tool for predicting seawall performance under varying wave conditions, contributing to better coastal management and resilience strategies. Full article
(This article belongs to the Special Issue Wave Hydrodynamics in Coastal Areas)
Show Figures

Figure 1

Back to TopTop