Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (402)

Search Parameters:
Keywords = dissipative energy evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10804 KB  
Article
CFD-Simulation-Based Multi-Axial Differential Mixing Enhancement Study for High-Viscosity Adhesives: From the Perspective of Breaking the Symmetry of the Flow Field
by Bin He, Long Fan, Xurong Teng, Facheng Qiu and Renlong Liu
Symmetry 2025, 17(11), 1932; https://doi.org/10.3390/sym17111932 - 11 Nov 2025
Abstract
The synthesis of high-performance adhesives imposes stringent requirements on the design of stirred reactors: simultaneous achievement of efficient mixing and minimal energy dissipation in highly viscous media remains the principal challenge. In this study, computational fluid dynamics (CFD) was employed to solve the [...] Read more.
The synthesis of high-performance adhesives imposes stringent requirements on the design of stirred reactors: simultaneous achievement of efficient mixing and minimal energy dissipation in highly viscous media remains the principal challenge. In this study, computational fluid dynamics (CFD) was employed to solve the Navier–Stokes equations for the high-viscosity epoxy system and numerically simulating the flow fields of four representative reactor configurations across a prescribed range of rotational speeds. Specifically, the four representative reactor configurations were (i) single-serrated shaft, (ii) eccentric single-serrated shaft, (iii) uniaxial single-blade paddle combined with a single-serrated dual-axis assembly, and (iv) biaxial single-blade paddle coupled with a single-serrated triaxial assembly. The mixing performance was quantitatively assessed by systematically comparing the evolution of mixing speed, vorticity fields, restricted power consumption, and mixing time across a range of rotational speeds. The results demonstrated that the synergistic deployment of an eccentric impeller and a differential-speed single-propeller shaft effectively disrupted the axisymmetric flow pattern, compressed the chaotic isolation zones, and intensified both axial exchange and global chaotic mixing. Among the configurations examined, the uniaxial single-propeller–single-serrated biaxial arrangement reduced the mixing time by 13.43% and cut the specific energy consumption by approximately 58.32%, thereby attaining markedly higher energy efficiency. This research will provide guidance for the study of efficient mixing of adhesives. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

31 pages, 8670 KB  
Article
Shear Mechanical Properties and Acoustic Emission Characteristics of the Interface of a Surrounding-Rock–Backfill Composite
by Pengyu Wang, Huixian Huang, Hao Liu, Shuhong Wang and Tianjiao Yang
Processes 2025, 13(11), 3631; https://doi.org/10.3390/pr13113631 - 10 Nov 2025
Abstract
Understanding the shear behavior of the interface between surrounding rock and backfill is of significant engineering importance for enhancing stope stability in cemented tailings backfill mining. However, the evolutionary mechanisms of shear properties and damage under varying mechanical conditions remain insufficiently studied. This [...] Read more.
Understanding the shear behavior of the interface between surrounding rock and backfill is of significant engineering importance for enhancing stope stability in cemented tailings backfill mining. However, the evolutionary mechanisms of shear properties and damage under varying mechanical conditions remain insufficiently studied. This investigation employed tailings and surrounding rock from a Guangdong tailings pond, with basic mechanical parameters determined through laboratory tests. Numerical models of the rock-backfill composite were developed using PFC2D, considering different shear rates (0.3, 0.6, and 0.9 mm/min), lateral confinement levels (0.5, 1.0, and 1.5 MPa), and roughness coefficients. The analysis compared the interface’s peak and residual shear strengths, revealed crack evolution patterns, and explored damage mechanisms using acoustic emission monitoring and energy dissipation theory. Key findings include the following: (1) Shear stress–displacement curves under all conditions exhibited three stages, ascending, shearing-off, and sliding, with distinct peak and residual strengths. (2) Increasing lateral confinement, shear rate, and roughness transformed failure from localized to global sliding, with cracks occurring at the interface and propagating into the backfill. (3) Cumulative acoustic emission events increased with all three factors, with lateral confinement showing the most substantial effect on interface energy accumulation (83% increase). These results provide theoretical support for assessing interface stability in deep backfilled stopes. Full article
Show Figures

Figure 1

16 pages, 1719 KB  
Article
Exploration of a Novel Technology for Waterless Fracturing in Shale Reservoirs Based on Microwave Heating
by Lei Ma, Tao Liu, Guangsheng Cao, Ying Liu and Mingyu Qi
Processes 2025, 13(11), 3576; https://doi.org/10.3390/pr13113576 - 6 Nov 2025
Viewed by 197
Abstract
Chinese shale reservoirs are typically deep, clay-rich, and highly water-sensitive, which severely limits the effectiveness of conventional hydraulic fracturing. To address this challenge, we propose a microwave-assisted waterless fracturing method and investigate its feasibility through laboratory experiments on core samples from the Gulong [...] Read more.
Chinese shale reservoirs are typically deep, clay-rich, and highly water-sensitive, which severely limits the effectiveness of conventional hydraulic fracturing. To address this challenge, we propose a microwave-assisted waterless fracturing method and investigate its feasibility through laboratory experiments on core samples from the Gulong shale and tight sandstone formations in the Daqing Oilfield. A coupled model integrating microwave power dissipation, pore water heating, and thermal stress evolution is developed to interpret the underlying mechanisms. Experimental results show that, under microwave irradiation (200 W, 40 s) and initial pore water content of 2.1–6%, fracturing is successfully induced without external fluid injection. The tensile failure of the rock coincides with the peak internal pore pressure generated by rapid vaporization and thermal expansion of pore water, as confirmed by a modified tensile strength measurement method. Fracture patterns observed in SEM and post-treatment imaging align with model predictions, demonstrating that microwave energy absorption by pore water is the primary driver of rock failure. The technique eliminates water-related formation damage and is inherently suitable for deep, water-sensitive reservoirs. This study provides experimental evidence and mechanistic insight supporting microwave-based waterless fracturing as a viable approach for challenging shale formations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 12895 KB  
Review
Hydrodynamic Interactions of Turbulent Jets with Surface Waves or Rigid Vegetation: A Review
by Michele Mossa
Water 2025, 17(21), 3163; https://doi.org/10.3390/w17213163 - 5 Nov 2025
Viewed by 174
Abstract
Thisreview provides a comprehensive synthesis of recent theoretical and experimental advances on turbulent plane jets interacting with surface waves or rigid vegetation. In wave-affected conditions, a unified mathematical framework based on velocity decomposition and the integral balances of momentum and energy reveals the [...] Read more.
Thisreview provides a comprehensive synthesis of recent theoretical and experimental advances on turbulent plane jets interacting with surface waves or rigid vegetation. In wave-affected conditions, a unified mathematical framework based on velocity decomposition and the integral balances of momentum and energy reveals the fundamental scaling laws governing jet spreading and momentum exchange. The analysis demonstrates that wave-induced shear alters classical entrainment mechanisms, leading to modified power-law relationships for jet width and centerline velocity, consistent with laboratory and numerical evidence. In obstructed environments, such as canopies of rigid or flexible vegetation, distributed drag induces a transition from entrainment to detrainment. The resulting momentum loss is captured analytically by incorporating drag-induced dissipation into the Reynolds-averaged momentum equations, yielding exponential decay of jet momentum and reduced mixing efficiency. Together, these models elucidate how environmental forcing—dynamic (waves) and structural (vegetation)—controls the evolution of turbulent jets in natural and engineered aquatic systems. The review highlights key scaling relationships, theoretical developments, and experimental findings, offering a coherent basis for future studies on mixing, dispersion, and transport in complex coastal and vegetated flows. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

16 pages, 2200 KB  
Article
Coupling Dynamics and Regulation Mechanisms of Natural Wind, Traffic Wind, and Mechanical Wind in Extra-Long Tunnels
by Yongli Yin, Xiang Lei, Changbin Guo, Kai Kang, Hongbi Li, Jian Wang, Wei Xiang, Bo Guang and Jiaxing Lu
Processes 2025, 13(11), 3512; https://doi.org/10.3390/pr13113512 - 1 Nov 2025
Viewed by 217
Abstract
This study systematically investigates the velocity characteristics and coupling mechanisms of tunnel flow fields under the interactions of natural wind, traffic wind, mechanical ventilation, and structural factors (such as transverse passages and relative positions between vehicles and fans). Using CFD simulations combined with [...] Read more.
This study systematically investigates the velocity characteristics and coupling mechanisms of tunnel flow fields under the interactions of natural wind, traffic wind, mechanical ventilation, and structural factors (such as transverse passages and relative positions between vehicles and fans). Using CFD simulations combined with turbulence model analyses, the flow behaviors under different coupling scenarios are explored. The results show that: (1) Under natural wind conditions, transverse passages act as key pressure boundaries, reshaping the longitudinal wind speed distribution into a segmented structure of “disturbance zones (near passages) and stable zones (mid-regions)”, with disturbances near passages showing “amplitude enhancement and range contraction” as natural wind speed increases. (2) The coupling of natural wind and traffic wind (induced by moving vehicles) generates complex turbulent structures; vehicle motion forms typical flow patterns including stagnation zones, high-speed bypass flows, and wake vortices, while natural wind modulates the wake structure through momentum exchange, affecting pollutant dispersion. (3) When natural wind, traffic wind, and mechanical ventilation are coupled, the flow field is dominated by momentum superposition and competition; adjusting fan output can regulate coupling ranges and turbulence intensity, balancing energy efficiency and safety. (4) The relative positions of vehicles and fans significantly affect flow stability: forward positioning leads to synergistic momentum superposition with high stability, while reverse positioning induces strong turbulence, compressing jet effectiveness and increasing energy dissipation. This study reveals the intrinsic laws of tunnel flow field evolution under multi-factor coupling, providing theoretical support for optimizing tunnel ventilation system design and dynamic operation strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 6786 KB  
Review
Advances in DFT-Based Computational Tribology: A Review
by Haochen Feng, Ziwen Cheng, Zhibin Lu and Qichang He
Lubricants 2025, 13(11), 483; https://doi.org/10.3390/lubricants13110483 - 31 Oct 2025
Cited by 1 | Viewed by 333
Abstract
The rapid advancement of micro/nano-electromechanical systems (MEMS/NEMS) and precision manufacturing has fundamentally challenged traditional friction theories at the nanoscale. Classical continuum models fail to capture energy dissipation mechanisms at the atomic level, which are influenced by interfacial phenomena such as electron transfer, charge [...] Read more.
The rapid advancement of micro/nano-electromechanical systems (MEMS/NEMS) and precision manufacturing has fundamentally challenged traditional friction theories at the nanoscale. Classical continuum models fail to capture energy dissipation mechanisms at the atomic level, which are influenced by interfacial phenomena such as electron transfer, charge redistribution, and energy level realignment. Density functional theory (DFT), renowned for its accurate description of ground-state properties in many-electron systems, has emerged as a key tool for uncovering quantized friction mechanisms. By quantifying potential energy surface (PES) fluctuations, the evolution of interfacial charge density, and dynamic electronic band structures, DFT establishes a universal correlation between frictional dissipation and electronic behavior, transcending the limitations of conventional models in explaining stick–slip motion, superlubricity, and non-Amonton effects. Research breakthroughs in the application of DFT include characterizing frictional chemical potentials, designing heterojunction-based superlubricity, elucidating strain/load modulation mechanisms, and resolving electronic energy dissipation pathways. However, these advances remain scattered across interdisciplinary studies. This article systematically summarizes methodological innovations and cutting-edge applications of DFT in computational tribology, with the aim of constructing a unified framework for carrying out the “electronic structure–energy dissipation–frictional response” predictions. It provides a state of the art of using DFT to help design high-performance lubricants and actively control interfacial friction. Full article
Show Figures

Figure 1

15 pages, 2318 KB  
Article
Experimental Investigation on the Characteristic Stress and Energy Evolution Law of Carbonaceous Shale: Effects of Dry–Wet Cycles, Confining Pressure, and Fissure Angle
by Yu Li, Shengnan Li, Xianglong Liu, Aiguo Jiang and Dongge Cui
Processes 2025, 13(11), 3399; https://doi.org/10.3390/pr13113399 - 23 Oct 2025
Viewed by 152
Abstract
To investigate characteristic stress and energy evolution law of carbonaceous shale under dry–wet cycles and fissure angle, several samples with prefabricated fissure angles were prepared and subjected to the coupled influence of dry–wet cycles and loading. The results show that the closure stress, [...] Read more.
To investigate characteristic stress and energy evolution law of carbonaceous shale under dry–wet cycles and fissure angle, several samples with prefabricated fissure angles were prepared and subjected to the coupled influence of dry–wet cycles and loading. The results show that the closure stress, initiation stress, damage stress, and peak stress gradually increase with the increase in confining pressure, effectively suppressing the initiation and propagation of the crack. At the same time, the total energy, elastic energy, and dissipated energy at the crack characteristic stress are enhanced by a linear function relationship, significantly improving the bearing capacity and energy storage capacity of carbonaceous shale. The dry–wet cycle is regarded as the driving force of damage, reducing the crack characteristic stress and the total energy, elastic energy, and dissipated energy of crack characteristic stress. This results in a weakened capacity of the rock samples to store elastic strain energy, ultimately contributing to the damage degradation of carbonaceous shale. The anisotropic damage of rock is controlled by fissure angle. The crack characteristic stress and the total energy, elastic energy, and dissipated energy of crack characteristic stress with a 45° fissure angle is the smallest. Finally, the energy storage level at the damage stress (Kcd) can be used as an early warning indicator for rock failure. Full article
Show Figures

Figure 1

21 pages, 14327 KB  
Article
Numerical Modeling of Wave Hydrodynamics Around Submerged Artificial Reefs on Fringing Reefs in Weizhou Island of Northern South China Sea
by Zuodong Liang, Guangxian Huang, Wen Huang, Hailun Chen, Kefu Yu and Dong-Sheng Jeng
J. Mar. Sci. Eng. 2025, 13(11), 2031; https://doi.org/10.3390/jmse13112031 - 23 Oct 2025
Viewed by 318
Abstract
This study numerically investigates wave transformation and setup processes across fringing reefs, focusing on artificial reef configuration effects under varying tidal conditions and incident wave parameters. The OpenFOAM-based waves2Foam model simulates hydrodynamic processes along reef profiles containing a fore-reef slope and reef flat. [...] Read more.
This study numerically investigates wave transformation and setup processes across fringing reefs, focusing on artificial reef configuration effects under varying tidal conditions and incident wave parameters. The OpenFOAM-based waves2Foam model simulates hydrodynamic processes along reef profiles containing a fore-reef slope and reef flat. Following validation against laboratory data, the model simulates cross-shore wave height attenuation and setup within fringing reef systems. The results demonstrate that reef flat water depth substantially modulates wave dynamics: during low tide, intensified wave breaking elevates the maximum wave height and setup by up to 45.7% and 78.5%, respectively, compared to high-tide conditions. Furthermore, this water depth critically governs the reef configuration’s influence on wave energy dissipation efficiency. Under high tide, additional reef rows increase the peak wave height by 5.2% while reducing wave setup by 10.5%. In contrast, expanded reef spacing reduces the peak wave height by 2.1% and decreases the peak wave setup by 2.4%. The temporal evolution of wave reflection (KR) and transmission (KT) coefficients reveals that shallow-water conditions amplify wave reflection while diminishing transmission capacity, as tidal variations directly regulate wave propagation mechanisms through water depth modulation. At the outer reef flat boundary, KR and KT values for existing artificial reefs exhibit variations below 5% across all tidal phases, row configurations, and spacing combinations. Consequently, current reef structures provide limited control over wave transmission in fringing reef terrains, indicating that structural modifications such as increasing reef elevation or deploying reefs on the fore-reef slope could enhance attenuation performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4576 KB  
Article
Study on Engineering Geopolymer Composites (EGCs) Under Sustained Thermal Environment: Linking Strain-Hardening Characteristics, Static/Impact Load Mechanical Properties, and Evolution Mechanism
by Shuo Wang, Wei Wang, Haoxing Liu, Ao Huang and Hongqiang Ma
Buildings 2025, 15(20), 3792; https://doi.org/10.3390/buildings15203792 - 21 Oct 2025
Viewed by 367
Abstract
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 [...] Read more.
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 °C significantly enhances the static and impact loading compressive strength of EGCs; however, single-slag or high-alkalinity systems exhibit strength retrogression due to insufficient long-term thermal stability. After exposure to elevated temperatures, the tensile strain-hardening curve of EGCs becomes smoother, with a reduced number of cracks but increased crack width, leading to a transition from a distributed multicrack propagation pattern to rapid widening of primary cracks. Due to the bridging effect of PVA fibers, sustained elevated temperature significantly enhances the peak impact load stress of the S50-6 sample. Microscopic analysis attributes this improvement to the matrix-strengthening effect caused by accelerated C-(A)-S-H gel polymerization and refined pore structure under continuous heat, as well as the energy dissipation role of the fiber system. The study recommends an optimal EGC system formulation with a fly ash–slag mass ratio of 1:1 and a Na2O concentration of 4–6%. This research provides a theoretical foundation for understanding the performance evolution and strength stability of EGC materials under sustained elevated temperature. Full article
Show Figures

Figure 1

29 pages, 9027 KB  
Article
Microstructural Mechanisms of Concrete Degradation Under Different Coal Gangue Sand Replacement Ratios
by Yukai Cai, Wenhua Zha, Tao Xu, Chao Ji and Yaozong Li
Materials 2025, 18(20), 4787; https://doi.org/10.3390/ma18204787 - 20 Oct 2025
Viewed by 392
Abstract
Coal gangue manufactured sand (CGS), a sustainable substitute for natural sand, offers both resource and environmental benefits; however, the micro-mechanisms underlying performance deterioration at different replacement levels remain unclear. In this study, cube specimens with 25%, 50%, 75%, and 100% CGS were tested [...] Read more.
Coal gangue manufactured sand (CGS), a sustainable substitute for natural sand, offers both resource and environmental benefits; however, the micro-mechanisms underlying performance deterioration at different replacement levels remain unclear. In this study, cube specimens with 25%, 50%, 75%, and 100% CGS were tested in uniaxial compression, and the results were integrated with PFC2D discrete-element simulations and SEM observations to establish an energy–force-chain–crack coupling framework. Experiments and simulations showed close agreement in peak stress, peak strain, and overall curve shape (errors generally <5%). With increasing replacement, the interfacial transition zone (ITZ) evolves from a dense three-phase ITZ (NS–CGS–CA; natural sand–CGS–coarse aggregate) to a degraded two-phase ITZ (CGS–CA), accompanied by more pores and microcracks; the proportion of Adhesive cracks decreases while Cohesive (intra-particle) cracks increase. Concurrently, continuous force-chain networks deteriorate into localized short-chain clusters; the peak and fraction of strain-energy decrease, whereas frictional/damping dissipation rises—together driving a macroscopic transition from ductile to brittle behavior. At 28 d, SEM images and DEM evolution of cracks/force chains/energy exhibit strong consistency, further confirming that low replacement (25% and 50%) favors stable load-transfer paths and suppresses early cracking, whereas high replacement (75% and 100%)—through ITZ degradation and force-chain instability—induces more concentrated cracking and higher energy dissipation, thereby diminishing mechanical performance. Full article
Show Figures

Figure 1

23 pages, 4494 KB  
Article
Investigating the Regulatory Mechanism of the Baffle Geometric Parameters on the Lubrication Transmission of High-Speed Gears
by Yunfeng Tan, Qihan Li, Lin Li and Dapeng Tan
Appl. Sci. 2025, 15(20), 11080; https://doi.org/10.3390/app152011080 - 16 Oct 2025
Viewed by 219
Abstract
Under extreme operating conditions, the internal lubricating flow field of high-speed gear transmission systems exhibits a transient oil–gas multiphase flow, predominantly governed by cavitation-induced phase transitions and turbulent shear. This phenomenon involves complex mechanisms of nonlinear multi-physical coupling and energy dissipation. Traditional lubrication [...] Read more.
Under extreme operating conditions, the internal lubricating flow field of high-speed gear transmission systems exhibits a transient oil–gas multiphase flow, predominantly governed by cavitation-induced phase transitions and turbulent shear. This phenomenon involves complex mechanisms of nonlinear multi-physical coupling and energy dissipation. Traditional lubrication theories and single-phase flow simplified models show significant limitations in capturing microsecond-scale flow features, dynamic interface evolution, and turbulence modulation mechanisms. To address these challenges, this study developed a cross-scale coupled numerical framework based on the Lattice Boltzmann method and large eddy simulation (LBM-LES). By incorporating an adaptive time relaxation algorithm, the framework effectively enhances the computational accuracy and stability for high-speed rotational flow fields, enabling the precise characterization of lubricant splashing, distribution, and its interaction with air. The research systematically reveals the spatiotemporal evolution characteristics of the internal flow field within the gearbox and focuses on analyzing the nonlinear regulatory effect of baffle geometric parameters on the system’s energy transport and dissipation characteristics. Numerical results indicate that the baffle structure significantly influences the spatial distribution of the vorticity field and turbulence intensity by reconstructing the shear layer topology. Low-profile baffles optimize the energy transfer pathway, effectively reducing the flow enthalpy, whereas excessively tall baffles induce strong secondary recirculation flows, exacerbating vortex-induced energy losses. Simultaneously, appropriately increasing the spacing between double baffles helps enhance global lubricant transport efficiency and suppresses unsteady dissipation caused by localized momentum accumulation. Furthermore, the geometrically optimized double-baffle configuration can achieve synergistic improvements in lubrication performance, oil film stability, and system energy efficiency by guiding the main shear flow and mitigating localized high-momentum impacts. This study provides crucial theoretical foundations and design guidelines for developing the next generation of theory-driven, energy-efficient lubrication design strategies for gear transmissions. Full article
Show Figures

Figure 1

15 pages, 1863 KB  
Article
Energy Dissipation and Damage Evolution of Water-Saturated Skarn Under Impact Loading
by Ximing Jian, Pinzhe Zhao, Xianglong Li, Jianguo Wang, Yaohong Li and Yang Yang
Appl. Sci. 2025, 15(20), 11040; https://doi.org/10.3390/app152011040 - 15 Oct 2025
Viewed by 315
Abstract
Understanding the combined effects of water and dynamic disturbance on rock behavior is essential for deep underground engineering, where groundwater and blasting often coexist. Existing studies have mainly emphasized static weakening by water or the strength characteristics under impact, while the energy evolution [...] Read more.
Understanding the combined effects of water and dynamic disturbance on rock behavior is essential for deep underground engineering, where groundwater and blasting often coexist. Existing studies have mainly emphasized static weakening by water or the strength characteristics under impact, while the energy evolution process remains insufficiently addressed. To fill this gap, uniaxial impact compression tests were conducted on dry and water-saturated skarn specimens using a separated Split Hopkinson Pressure Bar system. The relationship between peak stress and impact pressure was analyzed, and the total input energy, releasable elastic strain energy, and dissipated energy were quantified to examine their evolution with strain. The results indicate that water saturation significantly reduces dynamic strength and modifies the damage process. During the compaction and elastic stages, dissipated energy is low but slightly higher in water-saturated specimens due to microcrack initiation. In the plastic stage, dry specimens exhibit faster energy dissipation, while water-saturated specimens show reduced capacity for crack propagation dissipation. Damage–strain curves follow an S-shaped pattern, with water-saturated specimens presenting higher damage growth rates in the plastic stage. These findings clarify the energy-based damage mechanisms of skarn under impact loading and provide theoretical support for evaluating stability in water-rich underground environments. Full article
Show Figures

Figure 1

19 pages, 2576 KB  
Article
Mechanism and Optimization of Acoustic Absorption of an Underwater Lattice-Reinforced Meta-Absorber
by Zhenkai Yin, Honggang Zhao, Wenzheng Zhang, Yao Sun, Zihao Liu, Jingfan Yang and Jihong Wen
J. Mar. Sci. Eng. 2025, 13(10), 1944; https://doi.org/10.3390/jmse13101944 - 11 Oct 2025
Viewed by 453
Abstract
Conventional rubber-based absorbers containing cavities exhibit a decline in acoustic absorption as hydrostatic pressure rises. To improve sound absorption performance under hydrostatic pressure, a lattice-reinforced meta-absorber (LRMA) is proposed in this paper. The rubber layer is embedded with periodic cavities and aluminum pipes [...] Read more.
Conventional rubber-based absorbers containing cavities exhibit a decline in acoustic absorption as hydrostatic pressure rises. To improve sound absorption performance under hydrostatic pressure, a lattice-reinforced meta-absorber (LRMA) is proposed in this paper. The rubber layer is embedded with periodic cavities and aluminum pipes as a lattice reinforcement structure. The energy dissipation density, displacement field, and surface acoustic impedance are employed to reveal the sound absorption mechanism of the LRMA. Then, the collaborative design of material and structure for the LRMA is optimized using a differential evolution algorithm. Finally, the experiment verifies that the average sound absorption coefficient is above 0.9 in the frequency range of 500–5000 Hz under hydrostatic pressure of 1 MPa, 2 MPa, and 3 MPa. The results show that the face sheet and the lattice reinforcement structure have good hydrostatic pressure resistance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Dynamic Mechanical Properties and Damage Evolution Mechanism of Polyvinyl Alcohol Modified Alkali-Activated Materials
by Feifan Chen, Yunpeng Liu, Yimeng Zhao, Binghan Li, Yubo Zhang, Yen Wei and Kangmin Niu
Buildings 2025, 15(19), 3612; https://doi.org/10.3390/buildings15193612 - 9 Oct 2025
Viewed by 301
Abstract
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and [...] Read more.
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and an 80 mm diameter split Hopkinson pressure bar (SHPB). Digital image correlation (DIC) was then utilized to study the surface strain field of the composite material, and the crack propagation process during sample failure was analyzed. The experimental results demonstrate that the compressive strength of AAMs diminishes with higher PVA content, while the flexural strength initially increases before decreasing. It is suggested that the optimal PVA content should not exceed 5%. When the strain rate varies from 25.22 to 130.08 s−1, the dynamic compressive strength, dissipated energy, and dynamic compressive increase factor (DCIF) of the samples all exhibit significant strain rate effects. Furthermore, the logarithmic function model effectively fits the dynamic strength evolution pattern of AAMs. DIC observations reveal that, under high strain rates, the crack mode of the samples gradually transitions from tensile failure to a combined tensile–shear multi-crack pattern. Furthermore, the crack propagation rate rises as the strain rate increases, which demonstrates the toughening effect of PVA on AAMs. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

24 pages, 11789 KB  
Article
Mechanical Performance Degradation and Microstructural Evolution of Grout-Reinforced Fractured Diorite Under High Temperature and Acidic Corrosion Coupling
by Yuxue Cui, Henggen Zhang, Tao Liu, Zhongnian Yang, Yingying Zhang and Xianzhang Ling
Buildings 2025, 15(19), 3547; https://doi.org/10.3390/buildings15193547 - 2 Oct 2025
Viewed by 388
Abstract
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and [...] Read more.
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and their mechanical degradation and microstructural evolution mechanisms were investigated under coupled high-temperature (25–1000 °C) and acidic corrosion (pH = 2) conditions. Multi-scale characterization techniques, including uniaxial compression strength (UCS) tests, X-ray computed tomography (CT), scanning electron microscopy (SEM), three-dimensional (3D) topographic scanning, and X-ray diffraction (XRD), were employed systematically. The results indicated that the synergistic thermo-acid interaction accelerated mineral dissolution and induced structural reorganization, resulting in surface whitening of specimens and decomposition of HSFAA hydration products. Increasing the prefabricated fracture angles (0–60°) amplified stress concentration at the grout–rock interface, resulting in a reduction of up to 69.46% in the peak strength of the specimens subjected to acid corrosion at 1000 °C. Acidic corrosion suppressed brittle disintegration observed in the uncorroded specimens at lower temperature (25–600 °C) by promoting energy dissipation through non-uniform notch formation, thereby shifting the failure modes from shear-dominated to tensile-shear hybrid modes. Quantitative CT analysis revealed a 34.64% reduction in crack volume (Vca) for 1000 °C acid-corroded specimens compared to the control specimens at 25 °C. This reduction was attributed to high-temperature-induced ductility, which transformed macroscale crack propagation into microscale coalescence. These findings provide critical insights for assessing the durability of grouting reinforcement in post-fire tunnel rehabilitation and predicting the long-term stability of underground structures in chemically aggressive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop