Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (714)

Search Parameters:
Keywords = disruption scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 425 KiB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 (registering DOI) - 6 Aug 2025
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

26 pages, 2459 KiB  
Article
Urban Agriculture for Post-Disaster Food Security: Quantifying the Contributions of Community Gardens
by Yanxin Liu, Victoria Chanse and Fabricio Chicca
Urban Sci. 2025, 9(8), 305; https://doi.org/10.3390/urbansci9080305 - 5 Aug 2025
Abstract
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. [...] Read more.
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. This study examined the potential of urban agriculture for enhancing post-disaster food security by calculating vegetable self-sufficiency rates. Specifically, it evaluated the capacity of current Wellington’s community gardens to meet post-disaster vegetable demand in terms of both weight and nutrient content. Data collection employed mixed methods with questionnaires, on-site observations and mapping, and collecting high-resolution aerial imagery. Garden yields were estimated using self-reported data supported by literature benchmarks, while cultivated areas were quantified through on-site mapping and aerial imagery analysis. Six post-disaster food demand scenarios were used based on different target populations to develop an understanding of the range of potential produce yields. Weight-based results show that community gardens currently supply only 0.42% of the vegetable demand for residents living within a five-minute walk. This rate increased to 2.07% when specifically targeting only vulnerable populations, and up to 10.41% when focusing on gardeners’ own households. However, at the city-wide level, the current capacity of community gardens to provide enough produce to feed people remained limited. Nutrient-based self-sufficiency was lower than weight-based results; however, nutrient intake is particularly critical for vulnerable populations after disasters, underscoring the greater challenge of ensuring adequate nutrition through current urban food production. Beyond self-sufficiency, this study also addressed the role of UA in promoting food diversity and acceptability, as well as its social and psychological benefits based on the questionnaires and on-site observations. The findings indicate that community gardens contribute meaningfully to post-disaster food security for gardeners and nearby residents, particularly for vulnerable groups with elevated nutritional needs. Despite the current limited capacity of community gardens to provide enough produce to feed residents, findings suggest that Wellington could enhance post-disaster food self-reliance by diversifying UA types and optimizing land-use to increase food production during and after a disaster. Realizing this potential will require strategic interventions, including supportive policies, a conducive social environment, and diversification—such as the including private yards—all aimed at improving food access, availability, and nutritional quality during crises. The primary limitation of this study is the lack of comprehensive data on urban agriculture in Wellington and the wider New Zealand context. Addressing this data gap should be a key focus for future research to enable more robust assessments and evidence-based planning. Full article
Show Figures

Figure 1

21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 27
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

28 pages, 1874 KiB  
Article
Lexicon-Based Random Substitute and Word-Variant Voting Models for Detecting Textual Adversarial Attacks
by Tarik El Lel, Mominul Ahsan and Majid Latifi
Computers 2025, 14(8), 315; https://doi.org/10.3390/computers14080315 - 2 Aug 2025
Viewed by 221
Abstract
Adversarial attacks in Natural Language Processing (NLP) present a critical challenge, particularly in sentiment analysis, where subtle input modifications can significantly alter model predictions. In search of more robust defenses against adversarial attacks on sentimental analysis, this research work introduces two novel defense [...] Read more.
Adversarial attacks in Natural Language Processing (NLP) present a critical challenge, particularly in sentiment analysis, where subtle input modifications can significantly alter model predictions. In search of more robust defenses against adversarial attacks on sentimental analysis, this research work introduces two novel defense mechanisms: the Lexicon-Based Random Substitute Model (LRSM) and the Word-Variant Voting Model (WVVM). LRSM employs randomized substitutions from a dataset-specific lexicon to generate diverse input variations, disrupting adversarial strategies by introducing unpredictability. Unlike traditional defenses requiring synonym dictionaries or precomputed semantic relationships, LRSM directly substitutes words with random lexicon alternatives, reducing overhead while maintaining robustness. Notably, LRSM not only neutralizes adversarial perturbations but occasionally surpasses the original accuracy by correcting inherent model misclassifications. Building on LRSM, WVVM integrates LRSM, Frequency-Guided Word Substitution (FGWS), and Synonym Random Substitution and Voting (RS&V) in an ensemble framework that adaptively combines their outputs. Logistic Regression (LR) emerged as the optimal ensemble configuration, leveraging its regularization parameters to balance the contributions of individual defenses. WVVM consistently outperformed standalone defenses, demonstrating superior restored accuracy and F1 scores across adversarial scenarios. The proposed defenses were evaluated on two well-known sentiment analysis benchmarks: the IMDB Sentiment Dataset and the Yelp Polarity Dataset. The IMDB dataset, comprising 50,000 labeled movie reviews, and the Yelp Polarity dataset, containing labeled business reviews, provided diverse linguistic challenges for assessing adversarial robustness. Both datasets were tested using 4000 adversarial examples generated by established attacks, including Probability Weighted Word Saliency, TextFooler, and BERT-based Adversarial Examples. WVVM and LRSM demonstrated superior performance in restoring accuracy and F1 scores across both datasets, with WVVM excelling through its ensemble learning framework. LRSM improved restored accuracy from 75.66% to 83.7% when compared to the second-best individual model, RS&V, while the Support Vector Classifier WVVM variation further improved restored accuracy to 93.17%. Logistic Regression WVVM achieved an F1 score of 86.26% compared to 76.80% for RS&V. These findings establish LRSM and WVVM as robust frameworks for defending against adversarial text attacks in sentiment analysis. Full article
Show Figures

Figure 1

27 pages, 22029 KiB  
Article
Evaluating the Siphon Effect on Airport Cluster Resilience Using Accessibility and a Benchmark System for Sustainable Development
by Xinglong Wang, Weiqi Lin, Hao Yin and Fang Sun
Sustainability 2025, 17(15), 7013; https://doi.org/10.3390/su17157013 - 1 Aug 2025
Viewed by 157
Abstract
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which [...] Read more.
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which affects the overall resilience of the entire airport cluster. To address this issue, this study proposes a siphon index, expands the range of ground transportation options for passengers, and establishes a zero-siphon model to assess the impact of siphoning on the resiliency of airport clusters. Using this framework, four major airport clusters in China were selected as research subjects, with regional aviation accessibility serving as a measure of resilience. The results showed that among the four airport clusters, the siphon effect is most pronounced in the Guangzhou region. To explore the implications of this effect further, three airport disruption scenarios were simulated to assess the resilience of the Pearl River Delta airport cluster. The results indicated that the intensity and timing of disruptive events significantly affect airport cluster resilience, with hub airports being particularly sensitive. This study analyzes the risks associated with excessive route concentration, providing policymakers with critical insights to enhance the sustainability, equity, and resilience of airport clusters. The proposed strategies facilitate coordinated infrastructure development, optimized air–ground intermodal connectivity, and risk mitigation. These measures contribute to building more sustainable and adaptive aviation networks in rapidly urbanizing regions. Full article
Show Figures

Figure 1

19 pages, 3218 KiB  
Article
Ventilation Modeling of a Hen House with Outdoor Access
by Hojae Yi, Eileen Fabian-Wheeler, Michael Lee Hile, Angela Nguyen and John Michael Cimbala
Animals 2025, 15(15), 2263; https://doi.org/10.3390/ani15152263 - 1 Aug 2025
Viewed by 107
Abstract
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor [...] Read more.
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor environment, including properly planned ventilation. Moreover, complaints exist that hens do not use the holes to access the outdoor environment due to the strong incoming airflow through the outdoor access, as they behave as uncontrolled air inlets in a negative pressure ventilation system. As the egg industry transitions to cage-free systems, there is an urgent need for validated computational fluid dynamics (CFD) models to optimize ventilation strategies that balance animal welfare, environmental control, and production efficiency. We developed and validated CFD models of a cage-free hen house with outdoor access by specifying real-world conditions, including two exhaust fans, sidewall ventilation inlets, wire-meshed pens, outdoor access, and plenum inlets. The simulations of four ventilation scenarios predict the measured air flow velocity with an error of less than 50% for three of the scenarios, and the simulations predict temperature with an error of less than 6% for all scenarios. Plenum-based systems outperformed sidewall systems by up to 136.3 air changes per hour, while positive pressure ventilation effectively mitigated disruptions to outdoor access. We expect that knowledge of improved ventilation strategy will help the egg industry improve the welfare of hens cost-effectively. Full article
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 123
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

14 pages, 355 KiB  
Article
Driver Behavior-Driven Evacuation Strategy with Dynamic Risk Propagation Modeling for Road Disruption Incidents
by Yanbin Hu, Wenhui Zhou and Hongzhi Miao
Eng 2025, 6(8), 173; https://doi.org/10.3390/eng6080173 - 31 Jul 2025
Viewed by 159
Abstract
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded [...] Read more.
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded in driver behavior characteristics, aiming to enhance both traffic safety and emergency response efficiency through hierarchical collaboration and dynamic optimization strategies. By capitalizing on human drivers’ perception and decision-making attributes, a driver behavior classification model is developed to quantitatively assess the risk response capabilities of distinct behavioral patterns (conservative, risk-taking, and conformist) under emergency scenarios. A multi-tiered collaborative framework, comprising an early warning layer, a guidance layer, and an interception layer, is devised to implement tailored emergency strategies. Additionally, a rear-end collision risk propagation model is constructed by integrating the risk field model with probabilistic risk assessment, enabling dynamic adjustments to interception range thresholds for precise and real-time emergency management. The efficacy of this mechanism is substantiated through empirical case studies, which underscore its capacity to substantially reduce the occurrence of secondary accidents and furnish scientific evidence and technical underpinnings for emergency management pertaining to highway bridge damage. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 1072 KiB  
Article
Efficient and Reliable Identification of Probabilistic Cloning Attacks in Large-Scale RFID Systems
by Chu Chu, Rui Wang, Nanbing Deng and Gang Li
Micromachines 2025, 16(8), 894; https://doi.org/10.3390/mi16080894 (registering DOI) - 31 Jul 2025
Viewed by 172
Abstract
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag [...] Read more.
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag information by readers, thereby threatening personal privacy and corporate security and incurring significant economic losses. Although some efforts have been made to detect cloning attacks, the presence of missing tags in RFID systems can obscure cloned ones, resulting in a significant reduction in identification efficiency and accuracy. To address these problems, we propose the block-based cloned tag identification (BCTI) protocol for identifying cloning attacks in the presence of missing tags. First, we introduce a block indicator to sort all tags systematically and design a block mechanism that enables tags to respond repeatedly within a block with minimal time overhead. Then, we design a superposition strategy to further reduce the number of verification times, thereby decreasing the execution overhead. Through an in-depth analysis of potential tag response patterns, we develop a precise method to identify cloning attacks and mitigate interference from missing tags in probabilistic cloning attack scenarios. Moreover, we perform parameter optimization of the BCTI protocol and validate its performance across diverse operational scenarios. Extensive simulation results demonstrate that the BCTI protocol meets the required identification reliability threshold and achieves an average improvement of 24.01% in identification efficiency compared to state-of-the-art solutions. Full article
Show Figures

Figure 1

24 pages, 3980 KiB  
Article
A Two-Stage Restoration Method for Distribution Networks Considering Generator Start-Up and Load Recovery Under an Earthquake Disaster
by Lin Peng, Aihua Zhou, Junfeng Qiao, Qinghe Sun, Zhonghao Qian, Min Xu and Sen Pan
Electronics 2025, 14(15), 3049; https://doi.org/10.3390/electronics14153049 - 30 Jul 2025
Viewed by 205
Abstract
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and [...] Read more.
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and degraded network topologies are generated by Monte Carlo simulation. Then, a time-domain generator start-up model is developed as a mixed-integer linear program (MILP), incorporating cranking power and radial topology constraints. Further, a prioritized load recovery model is formulated as a mixed-integer second-order cone program (MISOCP), integrating power flow, voltage, and current constraints. Finally, case studies demonstrate the effectiveness and general applicability of the proposed method, confirming its capability to support resilient and adaptive distribution network restoration under various earthquake scenarios. Full article
Show Figures

Figure 1

28 pages, 1431 KiB  
Article
From Mine to Market: Streamlining Sustainable Gold Production with Cutting-Edge Technologies for Enhanced Productivity and Efficiency in Central Asia
by Mohammad Shamsuddoha, Adil Kaibaliev and Tasnuba Nasir
Logistics 2025, 9(3), 100; https://doi.org/10.3390/logistics9030100 - 29 Jul 2025
Viewed by 232
Abstract
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and [...] Read more.
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and disruptions, and incorporating modernized waste management and advancements in gold bar processing technologies. This study explores how advanced technologies and improved logistical processes can enhance efficiency and sustainability. Method: This paper examines gold production processes in Kyrgyzstan, a gold-producing country in Central Asia. The case study approach combines qualitative interviews with industry stakeholders and a system dynamics (SD) simulation model to compare current operations with a technology-based scenario. Results: The simulation model shows improved outcomes when innovative technologies are applied to ore processing, waste refinement, and gold bar production. The results also indicate an approximate twenty-five percent reduction in transport time, a thirty percent decrease in equipment downtime, a thirty percent reduction in emissions, and a fifteen percent increase in gold extraction when using artificial intelligence, smart logistics, and regional smelting. Conclusions: The study concludes with recommendations to modernize equipment, localize processing, and invest in digital logistics to support sustainable mining and improve operational performance in Kyrgyzstan’s gold sector. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

21 pages, 1574 KiB  
Article
Reevaluating Wildlife–Vehicle Collision Risk During COVID-19: A Simulation-Based Perspective on the ‘Fewer Vehicles–Fewer Casualties’ Assumption
by Andreas Y. Troumbis and Yiannis G. Zevgolis
Diversity 2025, 17(8), 531; https://doi.org/10.3390/d17080531 - 29 Jul 2025
Viewed by 168
Abstract
Wildlife–vehicle collisions (WVCs) remain a significant cause of animal mortality worldwide, particularly in regions experiencing rapid road network expansion. During the COVID-19 pandemic, a number of studies reported decreased WVC rates, attributing this trend to reduced traffic volumes. However, the validity of the [...] Read more.
Wildlife–vehicle collisions (WVCs) remain a significant cause of animal mortality worldwide, particularly in regions experiencing rapid road network expansion. During the COVID-19 pandemic, a number of studies reported decreased WVC rates, attributing this trend to reduced traffic volumes. However, the validity of the simplified assumption that “fewer vehicles means fewer collisions” remains underexplored from a mechanistic perspective. This study aims to reevaluate that assumption using two simulation-based models that incorporate both the physics of vehicle movement and behavioral parameters of road-crossing animals. Employing an inverse modeling approach with quasi-realistic traffic scenarios, we quantify how vehicle speed, spacing, and animal hesitation affect collision likelihood. The results indicate that approximately 10% of modeled cases contradict the prevailing assumption, with collision risk peaking at intermediate traffic densities. These findings challenge common interpretations of WVC dynamics and underscore the need for more refined, behaviorally informed mitigation strategies. We suggest that integrating such approaches into road planning and conservation policy—particularly under the European Union’s ‘Vision Zero’ framework—could help reduce wildlife mortality more effectively in future scenarios, including potential pandemics or mobility disruptions. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Winter Thermal Resilience of Lightweight and Ground-Coupled Mediumweight Buildings: An Experimental Study During Heating Outages
by Marta Gortych and Tadeusz Kuczyński
Energies 2025, 18(15), 4022; https://doi.org/10.3390/en18154022 - 29 Jul 2025
Viewed by 234
Abstract
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure [...] Read more.
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure and a mediumweight masonry structure with ground coupling—were exposed to multi-day heating blackouts, and their thermal responses were monitored at a high temporal resolution. Several resilience indicators were used, including the resistance time (RT), degree of disruption (DoD), and hours of safety threshold (HST). Additionally, two time-based metrics—the time to threshold (Tx) and temperature at X-hours (T(tx))—were introduced to improve classification in long-duration scenarios. The weighted unmet thermal performance (WUMTP) index was also implemented and validated using experimental data. The results show that thermal mass and ground coupling significantly improved passive resilience, enabling the mediumweight building to maintain temperatures above 15 °C for over 60 h without heating. This study provides new empirical evidence of passive survivability in blackout conditions and supports the development of time-sensitive assessment tools for cold climates. The findings may inform future updates to building codes and retrofit guidelines. Full article
Show Figures

Figure 1

22 pages, 573 KiB  
Article
Towards an Extensible and Text-Oriented Analytical Semantic Trajectory Framework
by Damião Ribeiro de Almeida, Cláudio de Souza Baptista, Fabio Gomes de Andrade and Anselmo Cardoso de Paiva
ISPRS Int. J. Geo-Inf. 2025, 14(8), 292; https://doi.org/10.3390/ijgi14080292 - 28 Jul 2025
Viewed by 230
Abstract
Semantically enriched trajectories have attracted growing interest in recent research, driven by the need for more expressive and context-aware movement data analysis. Two primary approaches have emerged for the storage and management of such data: moving object databases, which operate at the transactional [...] Read more.
Semantically enriched trajectories have attracted growing interest in recent research, driven by the need for more expressive and context-aware movement data analysis. Two primary approaches have emerged for the storage and management of such data: moving object databases, which operate at the transactional or operational level, and trajectory data warehouses (TDWs), which support analytical processing within decision support systems. Conventional TDW methodologies typically model semantic aspects of trajectories by introducing new dimensions into the data warehouse schema. However, this approach often requires structural modifications to the schema in order to accommodate additional semantic attributes, potentially resulting in significant disruptions to the architecture and maintenance of the underlying decision support systems. To overcome this limitation, we propose a novel TDW model that supports dynamic and extensible integration of semantic aspects, without necessitating changes to the schema. This design enhances flexibility and promotes seamless adaptability to domain-specific requirements. To enable such extensibility, we propose an innovative approach to representing semantic trajectories by leveraging natural language processing (NLP) techniques. without relying on traditional spatiotemporal features. This enables the analysis of semantic movement patterns purely through textual context. Finally, we present a comprehensive framework that implements the proposed model in real-world application scenarios, demonstrating its practical extensibility. Full article
Show Figures

Figure 1

33 pages, 1238 KiB  
Article
Crisis Response Modes in Collaborative Business Ecosystems: A Mathematical Framework from Plasticity to Antifragility
by Javaneh Ramezani, Luis Gomes and Paula Graça
Mathematics 2025, 13(15), 2421; https://doi.org/10.3390/math13152421 - 27 Jul 2025
Viewed by 393
Abstract
Collaborative business ecosystems (CBEs) are increasingly exposed to disruptive events (e.g., pandemics, supply chain breakdowns, cyberattacks) that challenge organizational adaptability and value creation. Traditional approaches to resilience and robustness often fail to capture the full range of systemic responses. This study introduces a [...] Read more.
Collaborative business ecosystems (CBEs) are increasingly exposed to disruptive events (e.g., pandemics, supply chain breakdowns, cyberattacks) that challenge organizational adaptability and value creation. Traditional approaches to resilience and robustness often fail to capture the full range of systemic responses. This study introduces a unified mathematical framework to evaluate four crisis response modes—plasticity, resilience, transformative resilience, and antifragility—within complex adaptive networks. Grounded in complex systems and collaborative network theory, our model formalizes both internal organizational capabilities (e.g., adaptability, learning, innovation, structural flexibility) and strategic interventions (e.g., optionality, buffering, information sharing, fault-injection protocols), linking them to pre- and post-crisis performance via dynamic adjustment functions. A composite performance score is defined across four dimensions (Innovation, Contribution, Prestige, and Responsiveness to Business Opportunities), using capability–strategy interaction matrices, weighted performance change functions, and structural transformation modifiers. The sensitivity analysis and scenario simulations enable a comparative evaluation of organizational configurations, strategy impacts, and phase-transition thresholds under crisis. This indicator-based formulation provides a quantitative bridge between resilience theory and practice, facilitating evidence-based crisis management in networked business environments. Full article
(This article belongs to the Special Issue Optimization Models for Supply Chain, Planning and Scheduling)
Show Figures

Figure 1

Back to TopTop