Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (746)

Search Parameters:
Keywords = disruption recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 471 KiB  
Review
Sleep Disorders and Stroke: Pathophysiological Links, Clinical Implications, and Management Strategies
by Jamir Pitton Rissardo, Ibrahim Khalil, Mohamad Taha, Justin Chen, Reem Sayad and Ana Letícia Fornari Caprara
Med. Sci. 2025, 13(3), 113; https://doi.org/10.3390/medsci13030113 - 5 Aug 2025
Abstract
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, [...] Read more.
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, in particular, is associated with a two- to three-fold increased risk of incident stroke, primarily through mechanisms involving intermittent hypoxia, systemic inflammation, endothelial dysfunction, and autonomic dysregulation. Conversely, stroke can disrupt sleep architecture and trigger or exacerbate sleep disorders, including insomnia, hypersomnia, circadian rhythm disturbances, and breathing-related sleep disorders. These post-stroke sleep disturbances are common and significantly impair rehabilitation, cognitive recovery, and quality of life, yet they remain underdiagnosed and undertreated. Early identification and management of sleep disorders in stroke patients are essential to optimize recovery and reduce the risk of recurrence. Therapeutic strategies include lifestyle modifications, pharmacological treatments, medical devices such as continuous positive airway pressure (CPAP), and emerging alternatives for CPAP-intolerant individuals. Despite growing awareness, significant knowledge gaps persist, particularly regarding non-OSA sleep disorders and their impact on stroke outcomes. Improved diagnostic tools, broader screening protocols, and greater integration of sleep assessments into stroke care are urgently needed. This narrative review synthesizes current evidence on the interplay between sleep and stroke, emphasizing the importance of personalized, multidisciplinary approaches to diagnosis and treatment. Advancing research in this field holds promise for reducing the global burden of stroke and improving long-term outcomes through targeted sleep interventions. Full article
22 pages, 1820 KiB  
Article
Can a Commercially Available Smartwatch Device Accurately Measure Nighttime Sleep Outcomes in Individuals with Knee Osteoarthritis and Comorbid Insomnia? A Comparison with Home-Based Polysomnography
by Céline Labie, Nils Runge, Zosia Goossens, Olivier Mairesse, Jo Nijs, Anneleen Malfliet, Dieter Van Assche, Kurt de Vlam, Luca Menghini, Sabine Verschueren and Liesbet De Baets
Sensors 2025, 25(15), 4813; https://doi.org/10.3390/s25154813 - 5 Aug 2025
Abstract
Sleep is a vital physiological process for recovery and health. In people with knee osteoarthritis (OA), disrupted sleep is common and linked to worse clinical outcomes. Commercial sleep trackers provide an accessible option to monitor sleep in this population, but their accuracy for [...] Read more.
Sleep is a vital physiological process for recovery and health. In people with knee osteoarthritis (OA), disrupted sleep is common and linked to worse clinical outcomes. Commercial sleep trackers provide an accessible option to monitor sleep in this population, but their accuracy for detecting sleep, wake, and sleep stages remains uncertain. This study compared nighttime sleep data from polysomnography (PSG) and Fitbit Sense in individuals with knee OA and insomnia. Data were collected from 53 participants (60.4% women, mean age 51 ± 8.2 years) over 62 nights using simultaneous PSG and Fitbit recording. Fitbit Sense showed high accuracy (85.76%) and sensitivity (95.95%) for detecting sleep but lower specificity (50.96%), indicating difficulty separating quiet wakefulness from sleep. Agreement with PSG was higher on nights with longer total sleep time, higher sleep efficiency, shorter sleep onset, and fewer awakenings, suggesting better performance when sleep is less fragmented. The device showed limited precision in classifying sleep stages, often misclassifying deep and REM sleep as light sleep. Despite these issues, Fitbit Sense may serve as a useful complementary tool for monitoring sleep duration, timing, and regularity in this population. However, sleep stage and fragmentation data should be interpreted cautiously in both clinical and research settings. Full article
Show Figures

Figure 1

26 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

36 pages, 2033 KiB  
Article
Beyond GDP: COVID-19’s Effects on Macroeconomic Efficiency and Productivity Dynamics in OECD Countries
by Ümit Sağlam
Econometrics 2025, 13(3), 29; https://doi.org/10.3390/econometrics13030029 - 4 Aug 2025
Abstract
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to [...] Read more.
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to 2024Q4. By employing a Slack-Based Measure Data Envelopment Analysis (SBM-DEA) and the Malmquist Productivity Index (MPI), we decompose total factor productivity (TFP) into efficiency change (EC) and technological change (TC) across three periods: pre-pandemic, during-pandemic, and post-pandemic. Our framework incorporates both desirable (GDP) and undesirable outputs (inflation, unemployment, housing price inflation, and interest rate distortions), offering a multidimensional view of macroeconomic efficiency. Results show broad but uneven productivity gains, with technological progress proving more resilient than efficiency during the pandemic. Post-COVID recovery trajectories diverged, reflecting differences in structural adaptability and innovation capacity. Regression analysis reveals that stringent lockdowns in 2020 were associated with lower productivity in 2023–2024, while more adaptive policies in 2021 supported long-term technological gains. These findings highlight the importance of aligning crisis response with forward-looking economic strategies and demonstrate the value of DEA-based methods for evaluating macroeconomic performance beyond GDP. Full article
(This article belongs to the Special Issue Advancements in Macroeconometric Modeling and Time Series Analysis)
Show Figures

Figure 1

19 pages, 2656 KiB  
Article
Circulating Lipid Profiles Indicate Incomplete Metabolic Recovery After Weight Loss, Suggesting the Need for Additional Interventions in Severe Obesity
by Alina-Iuliana Onoiu, Vicente Cambra-Cortés, Andrea Jiménez-Franco, Anna Hernández-Aguilera, David Parada, Francesc Riu, Antonio Zorzano, Jordi Camps and Jorge Joven
Biomolecules 2025, 15(8), 1112; https://doi.org/10.3390/biom15081112 - 1 Aug 2025
Viewed by 98
Abstract
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies [...] Read more.
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies before and after weight loss. Using mass spectrometry, 275 lipid species were analysed in non-obese controls, patients with severe obesity, and patients one year after bariatric surgery. The results showed that severe obesity disrupts lipid pathways, contributing to lipotoxicity, inflammation, mitochondrial stress, and abnormal lipid metabolism. Although weight loss improved these disturbances, surgery did not fully normalise the lipid profiles of all patients. Outcomes varied depending on their baseline liver health and genetic differences. Persistent alterations in cholesterol handling, membrane composition, and mitochondrial function were observed in partial responders. Elevated levels of sterol lipids, glycerophospholipids, and sphingolipids emerged as markers of complete metabolic recovery, identifying candidates for targeted post-surgical interventions. These findings support the use of lipidomics to personalise obesity treatment and follow-up. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 414
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

22 pages, 4043 KiB  
Article
Research Progress and Typical Case of Open-Pit to Underground Mining in China
by Shuai Li, Wencong Su, Tubing Yin, Zhenyu Dan and Kang Peng
Appl. Sci. 2025, 15(15), 8530; https://doi.org/10.3390/app15158530 (registering DOI) - 31 Jul 2025
Viewed by 247
Abstract
As Chinese open-pit mines progressively transition to deeper operations, challenges such as rising stripping ratios, declining slope stability, and environmental degradation have become increasingly pronounced. The sustainability of traditional open-pit mining models faces substantial challenges. Underground mining, offering higher resource recovery rates and [...] Read more.
As Chinese open-pit mines progressively transition to deeper operations, challenges such as rising stripping ratios, declining slope stability, and environmental degradation have become increasingly pronounced. The sustainability of traditional open-pit mining models faces substantial challenges. Underground mining, offering higher resource recovery rates and minimal environmental disruption, is emerging as a pivotal technological pathway for the green transformation of mining. Consequently, the transition from open-pit to underground mining has emerged as a central research focus within mining engineering. This paper provides a comprehensive review of key technological advancements in this transition, emphasizing core issues such as mine development system selection, mining method choices, slope stability control, and crown pillar design. A typical case study of the Anhui Xinqiao Iron Mine is presented to analyze its engineering approaches and practical experiences in joint development, backfilling mining, and ecological restoration. The findings indicate that the mine has achieved multi-objective optimization of resource utilization, environmental coordination, and operational capacity while ensuring safety and recovery efficiency. This offers a replicable and scalable technological demonstration for the green transformation of similar mines around the world. Full article
(This article belongs to the Topic New Advances in Mining Technology)
Show Figures

Figure 1

19 pages, 7853 KiB  
Article
Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology
by Guowei Huang, Haohua Li, Juguang Wang, Tao Liao, Liang Qiu, Guangquan Xiong, Lan Wang, Chan Bai and Yu Zhang
Animals 2025, 15(15), 2249; https://doi.org/10.3390/ani15152249 - 31 Jul 2025
Viewed by 120
Abstract
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), [...] Read more.
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), 5‰ (S3), and 9‰ (S4) salinity for 30 min on stress resilience and recovery in fingerlings during 12 h of simulated transport and 24 h of recovery. All fish survived, but total ammonia nitrogen (TAN) increased, and pH decreased in all groups, except S3, which showed significantly lower TAN and higher pH (p < 0.05). The S3 and S4 groups showed attenuated increases in serum cortisol and glucose, with S3 exhibiting the fastest return to baseline levels and stable serum sodium and potassium levels. Liver antioxidant enzyme activities in group S3 remained stable, with the lowest malondialdehyde (MDA) accumulation. Integrated biomarker response (IBR) and histological analyses demonstrated that S3 had the lowest systemic stress and tissue damage, whereas S1 and S4 displayed marked cellular disruption. These results indicate that a 5‰ salt bath applied prior to transport may improve water quality, mitigate stress responses, and preserve tissue integrity in juvenile channel catfish. Further studies are needed to confirm these findings in other species and under commercial transport conditions. Full article
Show Figures

Figure 1

9 pages, 2757 KiB  
Article
Externally Triggered Activation of Nanostructure-Masked Cell-Penetrating Peptides
by Gayong Shim
Molecules 2025, 30(15), 3205; https://doi.org/10.3390/molecules30153205 - 30 Jul 2025
Viewed by 279
Abstract
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon [...] Read more.
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon complexation with a DNA-based nanostructure. Upon localized plasma exposure, DNA masking was disrupted, restoring the biological functions of the peptides. Transmission electron microscopy revealed that the synthesized DNA nanoflower structures were approximately 150–250 nm in size. Structural and functional analyses confirmed that the system remained inert under physiological conditions and was rapidly activated by plasma treatment. Fluorescence recovery, cellular uptake assays, and cytotoxicity measurements demonstrated that the peptide activity could be precisely controlled in both monolayer and three-dimensional spheroid models. This externally activatable nanomaterial-based system enables the spatial and temporal regulation of peptide function without requiring biochemical triggers or permanent chemical modifications. This platform provides a modular strategy for the development of potential peptide therapeutics that require precise control of activation in complex biological environments. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

24 pages, 3980 KiB  
Article
A Two-Stage Restoration Method for Distribution Networks Considering Generator Start-Up and Load Recovery Under an Earthquake Disaster
by Lin Peng, Aihua Zhou, Junfeng Qiao, Qinghe Sun, Zhonghao Qian, Min Xu and Sen Pan
Electronics 2025, 14(15), 3049; https://doi.org/10.3390/electronics14153049 - 30 Jul 2025
Viewed by 195
Abstract
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and [...] Read more.
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and degraded network topologies are generated by Monte Carlo simulation. Then, a time-domain generator start-up model is developed as a mixed-integer linear program (MILP), incorporating cranking power and radial topology constraints. Further, a prioritized load recovery model is formulated as a mixed-integer second-order cone program (MISOCP), integrating power flow, voltage, and current constraints. Finally, case studies demonstrate the effectiveness and general applicability of the proposed method, confirming its capability to support resilient and adaptive distribution network restoration under various earthquake scenarios. Full article
Show Figures

Figure 1

23 pages, 6813 KiB  
Article
Mapping Multi-Crop Cropland Abandonment in Conflict-Affected Ukraine Based on MODIS Time Series Analysis
by Nuo Xu, Hanchen Zhuang, Yijun Chen, Sensen Wu and Renyi Liu
Land 2025, 14(8), 1548; https://doi.org/10.3390/land14081548 - 28 Jul 2025
Viewed by 265
Abstract
Since the outbreak of the Russia–Ukraine conflict in 2022, Ukraine’s agricultural production has faced significant disruption, leading to widespread cropland abandonment. These croplands were abandoned at different stages, primarily due to war-related destruction and displacement of people. Existing methods for detecting abandoned cropland [...] Read more.
Since the outbreak of the Russia–Ukraine conflict in 2022, Ukraine’s agricultural production has faced significant disruption, leading to widespread cropland abandonment. These croplands were abandoned at different stages, primarily due to war-related destruction and displacement of people. Existing methods for detecting abandoned cropland fail to account for crop type differences and distinguish abandonment stages, leading to inaccuracies. Therefore, this study proposes a novel framework combining crop-type classification with the Bias-weighted Time-Weighted Dynamic Time Warping (BTWDTW) method, distinguishing between sowing and harvest abandonment. Additionally, the proposed framework improves accuracy by integrating a more nuanced analysis of crop-specific patterns, thus offering more precise insights into abandonment dynamics. The overall accuracy of the proposed method reached 88.9%. The results reveal a V-shaped trajectory of cropland abandonment, with abandoned areas increasing from 28,184 km2 in 2022 to 33,278 km2 in 2024, with 2023 showing an abandoned area of 24,007.65 km2. Spatially, about 70% of sowing abandonment occurred in high-conflict areas, with hotspots of unplanted abandonment shifting from southern Ukraine to the northeast, while unharvested abandonment was observed across the entire country. Significant variations were found across crop types, with maize experiencing the highest rate of unharvested abandonment, while wheat exhibited a more balanced pattern of sowing and harvest losses. The proposed method and results provide valuable insights for post-conflict agricultural recovery and decision-making in recovery planning. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 178
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 1546 KiB  
Review
The Role of SARS-CoV-2 Nucleocapsid Protein in Host Inflammation
by Yujia Cao, Yaju Wang, Dejian Huang and Yee-Joo Tan
Viruses 2025, 17(8), 1046; https://doi.org/10.3390/v17081046 - 27 Jul 2025
Viewed by 970
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has posed substantial health threats and triggered widespread global economic disruption. The nucleocapsid (N) protein of SARS-CoV-2 is not only a key structural protein but also instrumental in [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has posed substantial health threats and triggered widespread global economic disruption. The nucleocapsid (N) protein of SARS-CoV-2 is not only a key structural protein but also instrumental in mediating the host immune response, contributing significantly to inflammation and viral pathogenesis. Due to its immunogenic properties, SARS-CoV-2 N protein also interacts with host factors associated with various pre-existing inflammatory conditions and may possibly contribute to the long-term symptoms suffered by some COVID-19 patients after recovery—known as long COVID. This review provides a comprehensive overview of recent advances in elucidating the biological functions of the N protein. In particular, it highlights the mechanisms by which the N protein contributes to host inflammatory responses and elaborates on its association with long COVID and pre-existing inflammatory disorders. Full article
(This article belongs to the Special Issue Viral Mechanisms of Immune Evasion)
Show Figures

Figure 1

12 pages, 1322 KiB  
Article
Recovery Following a Drought-Induced Population Decline in an Exudivorous Forest Mammal
by Ross L. Goldingay
Forests 2025, 16(8), 1230; https://doi.org/10.3390/f16081230 - 26 Jul 2025
Viewed by 167
Abstract
The likely increase in the frequency and severity of droughts with climate warming will pose an enormous challenge for the conservation of forest biodiversity. Documenting the response of species to recent droughts can inform future conservation actions. Mammals that breed and mature slowly [...] Read more.
The likely increase in the frequency and severity of droughts with climate warming will pose an enormous challenge for the conservation of forest biodiversity. Documenting the response of species to recent droughts can inform future conservation actions. Mammals that breed and mature slowly may be especially vulnerable to drought-induced disruption to breeding. The yellow-bellied glider (Petaurus australis, Shaw) is a threatened low-density, arboreal marsupial of eastern Australia. Following a severe drought in 2019, one population had declined by 48% by 2021. The present study investigated whether this population had recovered 3–4 years (2022 and 2023) after that drought. Audio surveys of this highly vocal species were conducted at 42 sites, sampling > 1000 h per year, and producing recordings of 2038–2856 call sequences. The probability of occupancy varied little across the two survey years (0.92–0.97). Local abundance in 2023 had returned to pre-drought levels (45% of occupied sites had ≥3 individuals compared to 6% in 2021). These findings show a recovery from a drought-induced decline required at least 3 years, in keeping with the slow life history traits of this species. This study highlights the importance of considering a species’ life history strategy when evaluating its sensitivity to drought. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

13 pages, 1775 KiB  
Review
Integrating Physical Activity and Artificial Intelligence in Burn Rehabilitation: Muscle Recovery and Body Image Restoration
by Vasiliki J. Malliou, George Pafis, Christos Katsikas and Spyridon Plakias
Appl. Sci. 2025, 15(15), 8323; https://doi.org/10.3390/app15158323 - 26 Jul 2025
Viewed by 265
Abstract
Burn injuries result in complex physiological and psychological sequelae, including hypermetabolism, muscle wasting, mobility impairment, scarring, and disrupted body image. While advances in acute care have improved survival, comprehensive rehabilitation strategies are critical for restoring function, appearance, and psychosocial well-being. Structured physical activity, [...] Read more.
Burn injuries result in complex physiological and psychological sequelae, including hypermetabolism, muscle wasting, mobility impairment, scarring, and disrupted body image. While advances in acute care have improved survival, comprehensive rehabilitation strategies are critical for restoring function, appearance, and psychosocial well-being. Structured physical activity, including resistance and aerobic training, plays a central role in counteracting muscle atrophy, improving cardiovascular function, enhancing scar quality, and promoting psychological resilience and body image restoration. This narrative review synthesizes the current evidence on the effects of exercise-based interventions on post-burn recovery, highlighting their therapeutic mechanisms, clinical applications, and implementation challenges. In addition to physical training, emerging technologies such as virtual reality, aquatic therapy, and compression garments offer promising adjunctive benefits. Notably, artificial intelligence (AI) is gaining traction in burn rehabilitation through its integration into wearable biosensors and telehealth platforms that enable real-time monitoring, individualized feedback, and predictive modeling of recovery outcomes. These AI-driven tools have the potential to personalize exercise regimens, support remote care, and enhance scar assessment and wound tracking. Overall, the integration of exercise-based interventions with digital technologies represents a promising, multimodal approach to burn recovery. Future research should focus on optimizing exercise prescriptions, improving access to personalized rehabilitation tools, and advancing AI-enabled systems to support long-term recovery, functional independence, and positive self-perception among burn survivors. Full article
Show Figures

Figure 1

Back to TopTop