Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,099)

Search Parameters:
Keywords = disease microenvironment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1167 KB  
Review
mRNA-Based Neoantigen Vaccines in Pancreatic Ductal Adenocarcinoma (PDAC)—A Promising Avenue in Cancer Immunotherapy
by Jacek Kabut, Małgorzata Stopyra, Natalia Nafalska, Grzegorz J. Stępień, Michał Miciak, Marcin Jezierzański, Tomasz Furgoł, Krzysztof Feret and Iwona Gisterek-Grocholska
Int. J. Mol. Sci. 2025, 26(22), 10988; https://doi.org/10.3390/ijms262210988 - 13 Nov 2025
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies, with 5-year survival rates consistently below 5% despite advances in surgery, chemotherapy, and targeted therapy. Worldwide, PDAC remains highly lethal, with 458,918 new cases and 432,242 deaths in 2018—about a 94% mortality-to-incidence [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies, with 5-year survival rates consistently below 5% despite advances in surgery, chemotherapy, and targeted therapy. Worldwide, PDAC remains highly lethal, with 458,918 new cases and 432,242 deaths in 2018—about a 94% mortality-to-incidence ratio. The limited therapeutic efficacy is largely attributed to the pronounced heterogeneity of the disease, late clinical presentation, and the strongly immunosuppressive tumor microenvironment. In recent years, mRNA-based vaccines encoding patient-specific neoantigens have emerged as a promising immunotherapeutic modality. By delivering tailored antigenic sequences, these vaccines are capable of eliciting potent cytotoxic T-cell responses against tumor-restricted epitopes, thereby enhancing tumor immunogenicity while minimizing off-target effects. This review summarizes the biological rationale underlying mRNA vaccination in PDAC, recent progress in preclinical and early clinical trials, and key obstacles related to antigen selection, delivery platforms, and the immunosuppressive stroma. The potential integration of neoantigen mRNA vaccines into multimodal therapeutic strategies, including immune checkpoint inhibition and chemotherapy, is also discussed, underscoring their prospective role in overcoming resistance mechanisms and improving clinical outcomes in PDAC. However, most current data come from early-phase trials, with long-term benefits yet unproven. Definitive conclusions on efficacy and survival await results from ongoing randomized studies expected by 2028–2029. Further progress in neoantigen identification, delivery systems, and combination strategies is crucial to fully harness mRNA vaccine potential in PDAC. Full article
(This article belongs to the Special Issue Molecular Research for Cancer Immunotherapy)
Show Figures

Figure 1

23 pages, 1551 KB  
Review
Recent Advances in nccRCC Classification and Therapeutic Approaches
by Hewei Wang, Yiyuan Chang, Kaiyan Wang and Rong Liu
Cells 2025, 14(22), 1781; https://doi.org/10.3390/cells14221781 - 13 Nov 2025
Abstract
Non-clear cell renal cell carcinoma (nccRCC) constitutes a biologically diverse category of renal malignancies. The 2022 WHO classification framework has significantly evolved to incorporate molecularly defined entities alongside traditional histologic subtypes, reflecting the growing recognition of distinct pathogenic drivers. Current therapeutic paradigms for [...] Read more.
Non-clear cell renal cell carcinoma (nccRCC) constitutes a biologically diverse category of renal malignancies. The 2022 WHO classification framework has significantly evolved to incorporate molecularly defined entities alongside traditional histologic subtypes, reflecting the growing recognition of distinct pathogenic drivers. Current therapeutic paradigms for advanced disease remain suboptimal, with treatment strategies often extrapolated from clear cell renal cell carcinoma (ccRCC). In this review, we highlight transformative multi-omics approaches to address nccRCC’s profound heterogeneity, which enables molecular stratification beyond conventional pathology, identifying novel subtypes characterized by unique immune microenvironment features, metabolic profiles, and genomic instability patterns. This molecular reclassification provides a foundational framework for precision oncology, facilitating patient selection for targeted therapies and immunomodulatory strategies. Advancements in multi-omics subtyping represent a pivotal shift toward biologically guided clinical management and underscore the imperative for biomarker-driven therapeutic development in nccRCC. Full article
Show Figures

Figure 1

20 pages, 854 KB  
Review
Nanotechnology-Based Delivery Systems and Retinal Pigment Epithelium: Advances, Targeting Approaches, and Translational Challenges
by Michele Nardella, Marco Pellegrini, Angeli Christy Yu, Ginevra Giovanna Adamo, Marco Mura and Massimo Busin
Biomolecules 2025, 15(11), 1592; https://doi.org/10.3390/biom15111592 - 13 Nov 2025
Abstract
The retinal pigment epithelium (RPE) is essential for maintaining retinal integrity, and its dysfunction underlies several progressive ocular diseases, including age-related macular degeneration, choroidal neovascularization (CNV), inherited retinal disorders (IRDs), and proliferative vitreoretinopathy (PVR). Although current therapies have improved disease management, they mainly [...] Read more.
The retinal pigment epithelium (RPE) is essential for maintaining retinal integrity, and its dysfunction underlies several progressive ocular diseases, including age-related macular degeneration, choroidal neovascularization (CNV), inherited retinal disorders (IRDs), and proliferative vitreoretinopathy (PVR). Although current therapies have improved disease management, they mainly target secondary pathological mechanisms and do not directly preserve or restore RPE function. Moreover, the delivery of therapeutic molecules or genes to the RPE remains a major challenge due to the presence of multiple ocular barriers and the need for sustained, localized action. Nanomedicine offers innovative solutions to these limitations by enabling precise, controlled, and cell-specific delivery of drugs and genetic materials. Engineered nanocarriers can be optimized to traverse ocular barriers, enhance bioavailability, and modulate the retinal microenvironment. This review summarizes recent advances in nanoscale delivery systems for RPE-targeted therapies, focusing on design principles, targeting strategies, and therapeutic applications, and discusses the translational challenges that must be addressed to bring nanotechnology-based treatments closer to clinical application. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Retinal Pigment Epithelium)
Show Figures

Figure 1

23 pages, 1957 KB  
Review
Three-Dimensional Models of the Dental Pulp: Bridging Fundamental Biology and Regenerative Therapy
by Rana Smaida, Guoqiang Hua, Nadia Benkirane-Jessel and Florence Fioretti
Int. J. Mol. Sci. 2025, 26(22), 10960; https://doi.org/10.3390/ijms262210960 - 12 Nov 2025
Abstract
The dental pulp is a dynamic connective tissue essential for tooth vitality, sensory function, immune defense, and reparative dentinogenesis. Conventional endodontic procedures, while effective in eradicating infection, often result in a non-functional, devitalized tooth, highlighting the need for biologically based regenerative approaches. The [...] Read more.
The dental pulp is a dynamic connective tissue essential for tooth vitality, sensory function, immune defense, and reparative dentinogenesis. Conventional endodontic procedures, while effective in eradicating infection, often result in a non-functional, devitalized tooth, highlighting the need for biologically based regenerative approaches. The emergence of three-dimensional (3D) culture systems has transformed pulp biology and endodontic research by providing physiologically relevant microenvironments that better reproduce the dentino-pulp interface, vascular and neural networks, and immune interactions. This review synthesizes current advances in 3D dental pulp modeling, from scaffold-based and hydrogel systems to spheroids, organoids, bioprinted constructs, and microfluidic “tooth-on-a-chip” platforms. Each system’s composition, biological relevance, and translational potential are critically examined with respect to odontogenic differentiation, angiogenesis, neurogenesis, and inflammatory response. Applications in disease modeling, biomaterial screening, and regenerative endodontics are highlighted, showing how these models bridge fundamental biology and therapeutic innovation. Finally, we discuss key challenges including vascularization, innervation, standardization, and clinical translation, and propose integrative strategies combining bioprinting, stem-cell engineering, and organ-on-chip technologies to achieve functional pulp regeneration. Overall, 3D pulp models represent a paradigm shift from reductionist cultures to bioinstructive, patient-relevant platforms that accelerate the development of next-generation endodontic therapies. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

21 pages, 1452 KB  
Review
Inflaming and Immune-Resolving: The Ambivalent Role of Eosinophils in Osteoarthritis
by Silvia Costantini, Paolo Dolzani, Veronica Panichi, Rosa Maria Borzì, Paulraj Balaji, Maria Daglia and Carla Renata Arciola
Int. J. Mol. Sci. 2025, 26(22), 10948; https://doi.org/10.3390/ijms262210948 - 12 Nov 2025
Abstract
Osteoarthritis (OA), the most prevalent form of arthropathy, is characterized by progressive degradation of cartilage, synovial inflammation, and other pathological changes that gradually affect the entire joint. Once regarded as a purely degenerative disease with minimal immune involvement, recent evidence reveals that chronic [...] Read more.
Osteoarthritis (OA), the most prevalent form of arthropathy, is characterized by progressive degradation of cartilage, synovial inflammation, and other pathological changes that gradually affect the entire joint. Once regarded as a purely degenerative disease with minimal immune involvement, recent evidence reveals that chronic low-grade inflammation, insidiously fueled by the destructive crosstalk between cartilage and synovium, plays a key role in OA pathophysiology. Among the immune cells involved, eosinophils have emerged as unexpected yet significant contributors, exhibiting both pro-inflammatory and immunoregulatory properties. Traditionally associated with allergic responses and antiparasitic defense, eosinophils can also secrete anti-inflammatory cytokines along with specialized pro-resolving lipid mediators (SPMs) that promote macrophage polarization toward reparative M2 phenotypes. Eosinophils may sustain inflammation or, conversely, act as “silent modulators” that subtly shape the immune microenvironment and support tissue homeostasis. This immunological plasticity positions them at the intersection of joint damage and repair. This article explores emerging evidence on eosinophil activity in OA, emphasizing their dual nature and potential as therapeutic targets to shift the joint milieu from a pro-inflammatory state toward resolution. Understanding eosinophil-mediated pathways may pave the way for novel strategies to reduce synovial inflammation, preserve cartilage integrity, and improve clinical outcomes. Full article
(This article belongs to the Special Issue Elucidating How Chondrocytes Maintain Cartilage Stability)
Show Figures

Figure 1

24 pages, 4646 KB  
Review
Lipocalin-2 in Triple-Negative Breast Cancer: A Review of Its Pathophysiological Role in the Metastatic Cascade
by Diandra T. Keller, Ralf Weiskirchen and Sarah K. Schröder-Lange
Int. J. Mol. Sci. 2025, 26(22), 10938; https://doi.org/10.3390/ijms262210938 - 12 Nov 2025
Abstract
Lipocalin-2 (LCN2) is a 25 kDa glycoprotein that has been shown to be a multifunctional player in the metastasis of triple-negative breast cancer (TNBC). In physiological contexts, LCN2 exhibits bacteriostatic properties and plays key roles in iron homeostasis and the transport of hydrophobic [...] Read more.
Lipocalin-2 (LCN2) is a 25 kDa glycoprotein that has been shown to be a multifunctional player in the metastasis of triple-negative breast cancer (TNBC). In physiological contexts, LCN2 exhibits bacteriostatic properties and plays key roles in iron homeostasis and the transport of hydrophobic molecules. However, several studies have shown that aberrant LCN2 expression is associated with poor prognosis in various malignancies, including breast cancer, which is the most common cancer in women worldwide and can be classified into four molecular subtypes. Among these, TNBC represents a disproportionately aggressive subtype characterized by poor prognosis and high metastatic potential. Although LCN2 has been extensively studied in breast cancer overall, its specific role in TNBC progression and metastasis is only beginning to be understood. Recent evidence suggests that LCN2 contributes to several tumor-promoting processes such as angiogenesis, therapy resistance and modulation of the tumor microenvironment. Moreover, LCN2 appears to influence organ-specific metastasis, particularly to the lung and brain, while its role in liver and bone dissemination remains unclear. Collectively, current data identify LCN2 as a critical mediator of TNBC progression and highlight its potential as a prognostic factor and modulator of disease progression. This review aims to summarize insights from both in vitro and in vivo studies, with particular focus on the role of LCN2 in the metastatic cascade, while also addressing existing research gaps and critically evaluating the current findings. Full article
Show Figures

Figure 1

17 pages, 1913 KB  
Article
A Machine Learning Framework for Cancer Prognostics: Integrating Temporal and Immune Gene Dynamics via ARIMA-CNN
by Rui-Bin Lin, Linlin Zhou, Yu-Chun Lin, Yu Yu, Hung-Chih Yang and Chen-Wei Yu
Biomedicines 2025, 13(11), 2751; https://doi.org/10.3390/biomedicines13112751 - 11 Nov 2025
Viewed by 24
Abstract
Background: Hepatocellular carcinoma remains a global health challenge with high mortality rates. The tumor immune microenvironment significantly impacts disease progression and survival. However, traditional analyses predominantly focus on single immune genes, overlooking the critical interplay among multiple immune gene signatures. Our study explores [...] Read more.
Background: Hepatocellular carcinoma remains a global health challenge with high mortality rates. The tumor immune microenvironment significantly impacts disease progression and survival. However, traditional analyses predominantly focus on single immune genes, overlooking the critical interplay among multiple immune gene signatures. Our study explores the prognostic significance of chemokine (C-C motif) ligand 5 (CCL5) expression and associated immune genes through an innovative combination of Autoregressive Integrated Moving Average (ARIMA) and Convolutional Neural Network (CNN) models. Methods: A time series dataset of CCL5 expression, comprising 230 liver cancer patients, was analyzed using an ARIMA model to capture its temporal dynamics. The residuals from the ARIMA model, combined with immune gene expression data, were utilized as input features for a CNN to predict survival outcomes. Survival analyses were conducted using the Cox proportional hazards model and Kaplan–Meier curves. Furthermore, the ARIMA-CNN framework’s results were systematically compared with traditional median-based stratification methods, establishing a benchmark for evaluating model efficacy and highlighting the enhanced predictive power of the proposed integrative approach. Results: CNN-extracted features demonstrated superior prognostic capability compared to traditional median-split analyses of single-gene datasets. Features derived from CD8+ T cells and effector T cells achieved a hazard ratio (HR) of 0.7324 (p = 0.0008) with a statistically significant log-rank p-value (0.0131), highlighting their critical role in anti-tumor immunity. Hierarchical clustering of immune genes further identified distinct survival associations. Notably, a cluster comprising B cells, Th2 cells, T cells, and NK cells demonstrated a moderate protective effect (HR: 0.8714, p = 0.1093) with a significant log-rank p-value (0.0233). Conversely, granulocytes, Tregs, macrophages, and myeloid-derived suppressor cells showed no significant survival association, emphasizing the complex regulatory landscape within the tumor immune microenvironment. Conclusions: Our study provides the first ARIMA-CNN framework for modeling gene expression and survival analysis, marking a significant innovation in integrating temporal dynamics and machine learning for biological data interpretation. This model offers deeper insights into the tumor immune microenvironment and underscores the potential for advancing precision immunotherapy strategies and identifying novel biomarkers, contributing significantly to innovative cancer management solutions. Full article
Show Figures

Figure 1

18 pages, 5023 KB  
Article
Developing a 3D Model Culture of an EBV+/CD30+ B-Anaplastic Large Cell Lymphoma Cell Line to Assay Brentuximab Vedotin Treatment
by Paolo Giannoni, Gabriella Pietra, Orlando Izzo, Giuseppina Fugazza, Roberto Benelli, Alessandro Poggi, Mauro Krampera, Chiara Utzeri, Monica Marchese, Marco Musso, Paola Visconti and Daniela de Totero
Antibodies 2025, 14(4), 98; https://doi.org/10.3390/antib14040098 - 10 Nov 2025
Viewed by 72
Abstract
Background/Objectives: Three-dimensional (3D) in vitro cell culture models have recently stimulated great interest since they may have more pre-clinical value than conventional in vitro 2D models. In fact, 3D culture models may mimic the in vivo biophysical 3D structure of tumors and cell-to-cell [...] Read more.
Background/Objectives: Three-dimensional (3D) in vitro cell culture models have recently stimulated great interest since they may have more pre-clinical value than conventional in vitro 2D models. In fact, 3D culture models may mimic the in vivo biophysical 3D structure of tumors and cell-to-cell interaction, thereby representing a more useful approach to testing drug responses. In this study we have developed a 3D culture model of an EBV+/CD30+cell line, D430B, previously characterized as an Anaplastic Large Cell Lymphoma of B phenotype (B-ALCL), to determine the cytotoxic activity of the antibody–drug conjugate Brentuximab Vedotin. Methods: By using of ultra-low attachment plates, we developed D430B spheroids that appeared particularly homogenous in terms of growth and size. Results: Brentuximab Vedotin treatment (1 to 20 μg/mL) turned out to be significantly cytotoxic to these cells, while the addition of the anti-CD20 chimeric antibody Rituximab (10 μg/mL) appeared almost ineffective, even though these cells express CD20. Moreover, when we co-cultured D430B cells with stromal cells (HS5), to re-create a microenvironment representative of neoplastic cell/mesenchymal cell interactions within the lymph node, we observed a significant, although faint, protective effect. Conclusions: This simple and reproducible method of generating D430B-ALCL spheroids to evaluate their response to Brentuximab Vedotin treatment, as here described, may provide a valuable preliminary tool for the future pre-clinical screening of patients’ primary lymphoma cells or the development of novel therapies for this type of pathology and related diseases. Full article
Show Figures

Graphical abstract

15 pages, 2964 KB  
Article
Interplay Between Immune Microenvironment CD8+ Tumor-Infiltrating Lymphocytes and PDL-1 Expression as Prognostic Markers in Invasive Cervical Squamous Cell Carcinoma
by Laura-Andra Petrică, Mariana Deacu, Georgeta Camelia Cozaru, Anca Florentina Mitroi, Gabriela Izabela Bălţătescu, Manuela Enciu, Oana Cojocaru, Anca-Antonela Nicolau, Andrei Radu Baz, Lucian Șerbănescu and Mariana Aşchie
Medicina 2025, 61(11), 2007; https://doi.org/10.3390/medicina61112007 - 10 Nov 2025
Viewed by 118
Abstract
Background: Cervical cancer remains a major cause of cancer-related morbidity and mortality worldwide, with limited therapeutic options for advanced disease. As we better understand the fine mechanisms involved in the interaction between tumor cells and the tumor microenvironment, new paths and opportunities [...] Read more.
Background: Cervical cancer remains a major cause of cancer-related morbidity and mortality worldwide, with limited therapeutic options for advanced disease. As we better understand the fine mechanisms involved in the interaction between tumor cells and the tumor microenvironment, new paths and opportunities will emerge. Recent evidence highlights the prognostic and predictive roles of immune checkpoint markers and tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs, in shaping treatment outcomes. Objectives: This study investigated the immunohistochemical expression of PD-L1 and CD8+ TILs in 48 newly diagnosed, treatment-naive cervical cancer cases and analyzed their associations with clinicopathological features and survival outcomes. Results: In our cohort, we observed that PD-L1 positivity was identified in 68.8% of cases, most frequently in advanced FIGO stages and in tumors with lympho-vascular invasion or with a high proliferation rate evaluated by the Ki-67 index. High levels of intra-tumoral CD8+ TILs were observed in 52.1% of cases and correlated positively with stromal TILs, lower proliferation rates, and absence of vascular invasion. A significant inverse relationship was found between PD-L1 expression and the density of CD8+ TILs (p = 0.047). Survival analysis showed that patients exhibiting a “cold” immunophenotype with low levels of CD8+ TILs and PD-L1-positive tumors had worse outcomes, while high levels of CD8+ TILs played a protective role. Conclusions: Our study highlights the importance of the immunohistochemical assessment of PD-L1 and CD8+ TILs biomarkers, which have a complementary inter-relationship and have a significant prognostic impact on cervical squamous cell carcinoma. PD-L1 positivity marks aggressive disease features, while higher intra-tumoral CD8+ TIL density is protective. Their combined evaluation may improve patient stratification and inform immunotherapy strategies. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

20 pages, 3805 KB  
Review
Recent Progress of Magnetic Nanomaterials with Enhanced Enzymatic Activities in Antitumor Therapy
by Yifan Zhang, Dongyan Li, Hongxia Liang, Bin Lan, Peidan Chang, Yaoxin Yang, Yuanyuan Cheng, Galong Li and Hongbing Lu
Int. J. Mol. Sci. 2025, 26(22), 10890; https://doi.org/10.3390/ijms262210890 - 10 Nov 2025
Viewed by 198
Abstract
Magnetic nanomaterials with enhanced enzymatic activities have garnered significant attention from researchers worldwide. Magnetic nanomaterials, including nanozymes and immobilized enzymes, can initiate specific catalytic reactions in the diseased microenvironment for cancer treatment. In this review, we aim to present the significant advancements in [...] Read more.
Magnetic nanomaterials with enhanced enzymatic activities have garnered significant attention from researchers worldwide. Magnetic nanomaterials, including nanozymes and immobilized enzymes, can initiate specific catalytic reactions in the diseased microenvironment for cancer treatment. In this review, we aim to present the significant advancements in synthesizing various types of magnetic nanomaterials with enhanced enzymatic activities and their antitumor therapy applications in the past five years. We first show the representative magnetic nanomaterials and elucidate their fundamental mechanisms related to magnetic properties and electromagnetic effects (such as magneto-thermal, magneto-mechanical, and magneto-electric effects). Secondly, we introduce magnetic nanozymes and magnetic immobilized enzymes and discuss the creative methods allowing the enzymatic activities of nanomaterials to be remotely enhanced by various electromagnetic effects. We also discuss some innovative magnetic nanomaterials that exhibit unique responsiveness to external energies (such as X-rays and ultrasounds) for killing cancer cells. Finally, we address future research suggestions in rationally designing advanced magnetic nanomaterials with remote increased enzymatic activities and discuss challenges and opportunities for efficient cancer therapy. Full article
Show Figures

Figure 1

26 pages, 1431 KB  
Review
Molecular and Clinical Insights into TP53-Mutated MDS and AML
by Erotokritos Georgantzinos and Theodoros Karantanos
Int. J. Mol. Sci. 2025, 26(22), 10818; https://doi.org/10.3390/ijms262210818 - 7 Nov 2025
Viewed by 584
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) comprise a distinct subgroup of myeloid neoplasms with unique biological and clinical features. The molecular alterations linked to TP53 mutations drive genomic instability and treatment resistance and ultimately lead to poor survival outcomes. [...] Read more.
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) comprise a distinct subgroup of myeloid neoplasms with unique biological and clinical features. The molecular alterations linked to TP53 mutations drive genomic instability and treatment resistance and ultimately lead to poor survival outcomes. The disease biology is further shaped by alterations in immune response within the bone marrow microenvironment and significant changes in cellular metabolism. Conventional treatments, including chemotherapy and hypomethylating agents +/− venetoclax, offer limited benefit, with high relapse rates and short remissions. Allogeneic bone marrow transplantation is the only curative approach, but the vast majority of patients relapse. Novel therapeutic approaches—ranging from p53 reactivation strategies to immunotherapy and targeted inhibition of specific signaling pathways—are under active investigation. Our review summarizes current knowledge on the molecular pathogenesis, prognostic implications, and therapeutic landscape of TP53-mutated MDS/AML and discusses ongoing challenges and opportunities for improving patient outcomes. Full article
Show Figures

Figure 1

36 pages, 2754 KB  
Review
Bioengineering of Periodontal Tissues: Cell Therapy and Biomaterials Application
by Mohammad Hadi Norahan, Sudesh Sivarasu, Alexey Fayzullin, Chibuike Mbanefo, Polina Bikmulina, Igor Ashurko, Iana Khristidis and Peter Timashev
Bioengineering 2025, 12(11), 1213; https://doi.org/10.3390/bioengineering12111213 - 6 Nov 2025
Viewed by 638
Abstract
Periodontal regeneration remains one of the most demanding challenges in oral bioengineering due to the structural complexity of the periodontium and the inflammatory microenvironment accompanying disease. Conventional surgical and pharmacological therapies often fail to achieve full restoration of bone, ligament and cementum, prompting [...] Read more.
Periodontal regeneration remains one of the most demanding challenges in oral bioengineering due to the structural complexity of the periodontium and the inflammatory microenvironment accompanying disease. Conventional surgical and pharmacological therapies often fail to achieve full restoration of bone, ligament and cementum, prompting the development of cell-based and biomaterial-assisted approaches. This review summarizes current advances in cellular technologies for periodontal regeneration, emphasizing the biological rationale, material design and delivery methods shaping next-generation treatments. We discuss stem-cell-based strategies employing periodontal ligament, dental pulp and mesenchymal stem cells, their paracrine and immunomodulatory roles, and how their therapeutic potential is enhanced through integration into engineered scaffolds. Recent progress in hydrogel systems, microspheres, decellularized matrices and 3D bioprinting is analyzed, highlighting how structural cues, bioactive nanoparticles and gene-modified cells enable multi-tissue regeneration. Emerging delivery and biofabrication techniques, from manual seeding to automated and in situ printing, are reviewed as key determinants of clinical translation. The convergence of bioprinting precision, immune-responsive biomaterials and personalized cellular constructs positions periodontal bioengineering as a rapidly maturing field with strong prospects for functional restoration of diseased oral tissues. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

56 pages, 3092 KB  
Review
Hydrogels in the Immune Context: In Vivo Applications for Modulating Immune Responses in Cancer Therapy
by Mara R. Lanis, Sujin Kim and Jonathan P. Schneck
Gels 2025, 11(11), 889; https://doi.org/10.3390/gels11110889 - 4 Nov 2025
Viewed by 333
Abstract
In response to growing clinical demands for more targeted and effective immunotherapies to treat cancer, biomaterial-based strategies have emerged as powerful tools for locally regulating immune responses. Among these, hydrogels, a class of biocompatible and tunable polymeric networks, are increasingly being leveraged for [...] Read more.
In response to growing clinical demands for more targeted and effective immunotherapies to treat cancer, biomaterial-based strategies have emerged as powerful tools for locally regulating immune responses. Among these, hydrogels, a class of biocompatible and tunable polymeric networks, are increasingly being leveraged for their high versatility and adaptability for creating tailored immune environments. By enabling controlled delivery of immune cues and direct cellular engineering, hydrogels utilized in vivo can precisely regulate both innate and adaptive immune responses while minimizing systemic toxicity. In this review, we outline essential hydrogel design features necessary for in vivo functionality including injectability, degradation kinetics, and immune-specific functionalization. Building on these principles, we explore how hydrogels have been employed to enhance T cell activation and dendritic cell maturation and guide macrophage reprogramming. Beyond cellular modulation, we further examine the use of hydrogels for cytokine and immunoregulatory agent delivery, tumor microenvironment remodeling, and the creation of tertiary-like lymphoid structures. Finally, we review recently completed and ongoing clinical trials of hydrogels in the cancer immunotherapy space. Together, these insights underscore the growing potential of in vivo hydrogel systems as immuno-interactive platforms capable of reshaping immune responses across diverse disease contexts. Full article
(This article belongs to the Special Issue Gel Biomaterials for Cancer Therapy and Biomedical Applications)
Show Figures

Figure 1

32 pages, 4140 KB  
Review
Nanotheranostics in Periodontitis: Bridging Diagnosis and Therapy Through Smart Integrated Nanosystems
by Poornima Ramburrun, Theresa P. K. Varughese and Yahya E. Choonara
J. Nanotheranostics 2025, 6(4), 31; https://doi.org/10.3390/jnt6040031 - 3 Nov 2025
Viewed by 281
Abstract
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the tooth-supporting structures. Conventional therapeutic approaches, including mechanical debridement and systemic antibiotics, often fall short in achieving complete bacterial eradication or tissue regeneration, particularly in deep periodontal pockets. Nanotheranostics—an integrated [...] Read more.
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the tooth-supporting structures. Conventional therapeutic approaches, including mechanical debridement and systemic antibiotics, often fall short in achieving complete bacterial eradication or tissue regeneration, particularly in deep periodontal pockets. Nanotheranostics—an integrated platform combining diagnostics and therapeutics within a single nanosystem—holds promise in advancing periodontal care through targeted delivery, real-time disease monitoring, and site-specific therapy. This narrative review examines the potential of various nanomaterials for building nanotheranostic systems to overcome current clinical limitations, including non-specific drug delivery, insufficient treatment monitoring, and delayed intervention, and their functionalization and responsiveness to the periodontal microenvironment are discussed. Their application in targeted antimicrobial, anti-inflammatory, and regenerative therapy is discussed in terms of real-time monitoring of disease biomarkers and pathogenic organisms. Although nanoparticle-based therapeutics have been extensively studied in periodontitis, the integration of diagnostic elements remains underdeveloped. This review identifies key translational gaps, evaluates emerging dual-function platforms, and discusses challenges related to biocompatibility, scalability, and regulatory approval. In particular, inorganic nanomaterials exhibit potential for theranostic functions such as antimicrobial activity, biofilm disruption, immunomodulation, tissue regeneration, and biosensing of microbial and inflammatory biomarkers. Finally, we propose future directions to advance nanotheranostic research toward clinical translation. By consolidating the current evidence base, this review advocates for the development of smart, responsive nanotheranostic platforms as a foundation for personalized, minimally invasive, and precision-guided periodontal care. Full article
Show Figures

Figure 1

14 pages, 649 KB  
Review
Sphingolipid Metabolism in the Pathogenesis of Hashimoto’s Thyroiditis
by Jialiang Huang, Zeping Chen, Yijue Wang, Chuyu Shang and Yue Feng
Int. J. Mol. Sci. 2025, 26(21), 10674; https://doi.org/10.3390/ijms262110674 - 2 Nov 2025
Viewed by 371
Abstract
Hashimoto’s thyroiditis (HT) is the most common autoimmune thyroid disorder, characterized by progressive lymphocytic infiltration, follicular destruction, tissue fibrosis, and an elevated risk of thyroid carcinoma. While the precise mechanisms underlying HT remain incompletely defined, emerging evidence implicates dysregulated sphingolipid (SPL) metabolism, particularly [...] Read more.
Hashimoto’s thyroiditis (HT) is the most common autoimmune thyroid disorder, characterized by progressive lymphocytic infiltration, follicular destruction, tissue fibrosis, and an elevated risk of thyroid carcinoma. While the precise mechanisms underlying HT remain incompletely defined, emerging evidence implicates dysregulated sphingolipid (SPL) metabolism, particularly the sphingosine-1-phosphate (S1P) signaling axis, as a central contributor to disease pathogenesis. S1P, a bioactive lipid mediator, integrates metabolic and immunological cues to regulate immune cell trafficking, cytokine production, apoptosis, and fibroblast activation. Aberrant activation of the sphingosine kinase (SPHK)/sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) pathway has been linked to persistent T helper 1 (Th1) cell recruitment, signal transducer and activator of transcription 3 (STAT3)-mediated immune polarization, epithelial–mesenchymal transition, extracellular matrix remodeling, and the establishment of a chronic inflammatory and fibrotic microenvironment. Moreover, S1P signaling may foster a pro-tumorigenic niche, providing a mechanistic explanation for the strong epidemiological association between HT and papillary thyroid carcinoma. This review summarizes current insights into the role of SPL metabolism in HT, highlighting its potential as a mechanistic link between autoimmunity, fibrosis, and carcinogenesis. Full article
Show Figures

Figure 1

Back to TopTop