Bioengineering of Periodontal Tissues: Cell Therapy and Biomaterials Application
Abstract
1. Introduction
2. Cell Therapy for Periodontal Regeneration
3. Biomaterial-Assisted Cell Transplantation for Periodontal Regeneration
3.1. Freeze-Dried, Foam and Membrane Structures
3.2. Hydrogels
3.3. Three-Dimensional Bioprinting
3.4. Decellularized Extracellular Matrix
3.5. Microsphere
3.6. Gold Nanoparticles in Gene-Modified Periodontal Regeneration
4. Delivery Methods for Biofabrication Products for Periodontal Regeneration
4.1. Manual Delivery Methods for Biofabrication Products
4.2. Semi-Automatic Delivery Methods for Biofabrication Products
4.3. Automatic Delivery Methods for Biofabrication Products
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MSCs | mesenchymal stem cells |
| ASCs | adult stem cells |
| BMAC | bone marrow aspirate concentrate |
| SVF | stromal vascular fraction |
| PDL | periodontal ligament |
| DPSCs | dental pulp stem cells |
| PDLSCs | periodontal ligament stem cells |
| CEMP1 | cementum protein-1 |
| CAP | cementum attachment protein |
| BMSCs | mesenchymal stem cells derived from bone marrow |
| PDGF | platelet-derived growth factor |
| FGF | fibroblast growth factor |
| VEGF | vascular endothelial growth factor |
| FGF-2 | fibroblast growth factor 2 |
| IGF-1 | insulin-like growth factor 1 |
| BMSC-sEVs | bone marrow mesenchymal stem cell-derived small extracellular vesicles |
| TSG101 | tumor susceptibility gene 101 |
| hPDLC | human periodontal ligament cells |
| HSCs | hematopoietic stem cells |
| SCF | stem cell factor |
| ECM | extracellular matrix |
| APC | alveolar periosteal cell |
| CS | chitosan |
| β-GP | β-glycerol phosphate |
| HA/β-TCP | biphasic calcium phosphate |
| GOQDs | graphene oxide quantum dots |
| EMSCs | ectomesenchymal stem cells |
| OCS | oxidized chondroitin sulfate |
| BPPs | biomimetic periodontium patches |
| DFCs | dental follicle cells |
| mCDLP | microscale continuous digital light projection |
| PMs | porous microspheres |
| SF | silk fibroin |
| HA | hydroxyapatite |
| BM-MNCs | bone marrow mononuclear cells |
| CB-MSC | cortical bone-derived mesenchymal stromal cell |
| SCID | severe combined immunodeficiency |
| μCT | micro-computed tomography |
| a-BMMSCs | autologous alveolar bone marrow mesenchymal stem cells |
| aFPL | autologous fibrin/platelet lysate |
| CAL | clinical attachment level |
| PPD | probing pocket depth |
| PDL-MSCs | autologous periodontal ligament-derived mesenchymal stem cells |
| XBS | xenogeneic bone substitute |
| GF | gingival fibroblast |
| GMSC | gingival mesenchymal stem cells |
| β-TCP | β-tricalcium phosphate |
| VPD | vertical pocket depth |
| GCF | gingival crevicular fluid |
| F/COS | fibroin/chitosan oligosaccharide lactate hydrogel |
| PX | poloxamer 407 |
| β-CD | β-cyclodextrin |
| CEJ-ABC distance | distance of the cementoenamel junction to the alveolar bone crest |
| BV/TV | bone volume per tissue volume |
| AuNCs | gold nanocomplexes |
| OTM | orthodontic tooth movement |
| BMD | bone mineral density |
| HPLFs | human periodontal ligament fibroblasts |
| LED | light-emitting diode |
| GelMA | gelatin methacrylate |
| PEG | poly(ethylene glycol) |
| BGM | bioactive glass microspheres |
| AMP | amorphous magnesium phosphate |
| DAM | decellularized human amniotic membrane |
| ADSCs | adipose-derived stromal cells |
| PLGA | poly(lactic-co-glycolic acid) |
| CGRP | calcitonin gene-related peptide |
| HIF-1α | hypoxia-inducible factor 1α |
| AI | artificial intelligence |
References
- Matthews, D.C.; Smith, C.G.; Hanscom, S.L. Tooth loss in periodontal patients. J. Can. Dent. Assoc. 2001, 67, 207–210. [Google Scholar]
- McFall, W.T., Jr. Tooth loss in 100 treated patients with periodontal disease. A long-term study. J. Periodontol. 1982, 53, 539–549. [Google Scholar] [CrossRef]
- Chatzopoulos, G.S.; Jiang, Z.; Marka, N.; Wolff, L.F. Periodontal Disease, Tooth Loss, and Systemic Conditions: An Exploratory Study. Int. Dent. J. 2024, 74, 207–215. [Google Scholar] [CrossRef]
- Chapple, I.L. Time to take periodontitis seriously. BMJ 2014, 348, g2645. [Google Scholar] [CrossRef]
- Elias-Boneta, A.R.; Encarnacion, A.; Rivas-Tumanyan, S.; Berrios-Ouslan, B.C.; Garcia-Godoy, B.; Murillo, M.; Diaz-Nicolas, J.; Lugo, F.; Toro, M.J. Prevalence of Gingivitis in a Group of 35- to 70-Year-Olds Residing in Puerto Rico. Puerto Rico Health Sci. J. 2017, 36, 140–145. [Google Scholar]
- Morales-Ruiz, P.; Moreno-Barrera, A.; Ribas-Perez, D.; Rodriguez-Menacho, D.; Flores-Fraile, J.; Gomez-Salgado, J.; Castano-Seiquer, A. Periodontal health of a low socioeconomic level population in Yucatan (Mexico): A cross-sectional study. Medicine 2023, 102, e35748. [Google Scholar] [CrossRef] [PubMed]
- Borrell, L.N.; Crawford, N.D. Socioeconomic position indicators and periodontitis: Examining the evidence. Periodontology 2000 2012, 58, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Albandar, J.M. Disparities and social determinants of periodontal diseases. Periodontology 2000 2024. early view. [Google Scholar] [CrossRef]
- Klinge, B.; Norlund, A. A socio-economic perspective on periodontal diseases: A systematic review. J. Clin. Periodontol. 2005, 32 (Suppl. 6), 314–325. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Leira, Y.; Proenca, L.; Chambrone, L.; Mendes, J.J. Economic burden of periodontitis in the United States and Europe: An updated estimation. J. Periodontol. 2022, 93, 373–379. [Google Scholar] [CrossRef]
- Asli, K. Periodontitis patients’ oral health experience and quality of life during the Malaysian Movement Control Order-2020. J. Sains Kesihat. Malays. 2023, 21, 75–84. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.; Trombelli, L.; Heitz, F.; Needleman, I.; Moles, D. A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. J. Clin. Periodontol. 2002, 29 (Suppl. 3), 92–102. [Google Scholar] [CrossRef] [PubMed]
- Teughels, W.; Feres, M.; Oud, V.; Martin, C.; Matesanz, P.; Herrera, D. Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47 (Suppl. 22), 257–281. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.J.; Lang, N.P. Surgical and nonsurgical periodontal therapy. Learned and unlearned concepts. Periodontology 2000 2013, 62, 218–231. [Google Scholar] [CrossRef]
- Rams, T.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic resistance in human chronic periodontitis microbiota. J. Periodontol. 2014, 85, 160–169. [Google Scholar] [CrossRef]
- Larsson, L.; Decker, A.M.; Nibali, L.; Pilipchuk, S.P.; Berglundh, T.; Giannobile, W.V. Regenerative Medicine for Periodontal and Peri-implant Diseases. J. Dent. Res. 2016, 95, 255–266. [Google Scholar] [CrossRef]
- Mousaei Ghasroldasht, M.; Seok, J.; Park, H.S.; Liakath Ali, F.B.; Al-Hendy, A. Stem Cell Therapy: From Idea to Clinical Practice. Int. J. Mol. Sci. 2022, 23, 2850. [Google Scholar] [CrossRef]
- Ashammakhi, N.; GhavamiNejad, A.; Tutar, R.; Fricker, A.; Roy, I.; Chatzistavrou, X.; Hoque Apu, E.; Nguyen, K.L.; Ahsan, T.; Pountos, I.; et al. Highlights on Advancing Frontiers in Tissue Engineering. Tissue Eng. Part. B Rev. 2022, 28, 633–664. [Google Scholar] [CrossRef]
- Carmagnola, D.; Pellegrini, G.; Dellavia, C.; Rimondini, L.; Varoni, E. Tissue engineering in periodontology: Biological mediators for periodontal regeneration. Int. J. Artif. Organs 2019, 42, 241–257. [Google Scholar] [CrossRef]
- El-Kadiry, A.E.; Rafei, M.; Shammaa, R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front. Med. 2021, 8, 756029. [Google Scholar] [CrossRef]
- Mount, N.M.; Ward, S.J.; Kefalas, P.; Hyllner, J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20150017. [Google Scholar] [CrossRef]
- Shammaa, R.; El-Kadiry, A.E.; Abusarah, J.; Rafei, M. Mesenchymal Stem Cells Beyond Regenerative Medicine. Front. Cell Dev. Biol. 2020, 8, 72. [Google Scholar] [CrossRef]
- Nunez, J.; Vignoletti, F.; Caffesse, R.G.; Sanz, M. Cellular therapy in periodontal regeneration. Periodontology 2000 2019, 79, 107–116. [Google Scholar] [CrossRef]
- Nguyen-Thi, T.D.; Nguyen-Huynh, B.H.; Vo-Hoang, T.T.; Nguyen-Thanh, T. Stem cell therapies for periodontal tissue regeneration: A meta-analysis of clinical trials. J. Oral Biol. Craniofac. Res. 2023, 13, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Bharuka, T.; Reche, A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus 2024, 16, e54115. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zheng, X.; Yin, W.; Liu, Y.; Wang, R.; Zhao, Y.; Liu, Z.; Li, C.; Zeng, J.; Rong, M. Dental stem cell dynamics in periodontal ligament regeneration: From mechanism to application. Stem Cell Res. Ther. 2024, 15, 389. [Google Scholar] [CrossRef]
- Zhao, J.; Faure, L.; Adameyko, I.; Sharpe, P.T. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells 2021, 39, 92–102. [Google Scholar] [CrossRef] [PubMed]
- d’Aquino, R.; De Rosa, A.; Lanza, V.; Tirino, V.; Laino, L.; Graziano, A.; Desiderio, V.; Laino, G.; Papaccio, G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur. Cell Mater. 2009, 18, 75–83. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Inchingolo, A.D.; Nardelli, P.; Latini, G.; Trilli, I.; Ferrante, L.; Malcangi, G.; Palermo, A.; Inchingolo, F.; Dipalma, G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J. Funct. Biomater. 2024, 15, 308. [Google Scholar] [CrossRef]
- Alvites, R.; Branquinho, M.; Sousa, A.C.; Lopes, B.; Sousa, P.; Mauricio, A.C. Mesenchymal Stem/Stromal Cells and Their Paracrine Activity-Immunomodulation Mechanisms and How to Influence the Therapeutic Potential. Pharmaceutics 2022, 14, 381. [Google Scholar] [CrossRef]
- Foo, J.B.; Looi, Q.H.; Chong, P.P.; Hassan, N.H.; Yeo, G.E.C.; Ng, C.Y.; Koh, B.; How, C.W.; Lee, S.H.; Law, J.X. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int. 2021, 2021, 2616807. [Google Scholar] [CrossRef]
- Su, W.; Liao, C.; Liu, X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int. Endod. J. 2025, 58, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, S.; Shi, W.; Liu, Q.; Huo, F.; Wu, Y.; Tian, W. Bone Marrow Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Promote Periodontal Regeneration. Tissue Eng. Part. A 2021, 27, 962–976. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Tasdogan, A.; Ubellacker, J.M.; Zhang, J.; Nosyreva, E.D.; Du, L.; Murphy, M.M.; Hu, S.; Yi, Y.; Kara, N.; et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 2021, 591, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Iqbal, Z.; Zhao, Z.; Liu, J.; Alabsi, A.M.; Shabbir, M.; Mahmood, A.; Liang, Y.; Li, W.; Deng, Z. Cellular crosstalk in the bone marrow niche. J. Transl. Med. 2024, 22, 1096. [Google Scholar] [CrossRef]
- Prasad, P.; Cancelas, J.A. From Marrow to Bone and Fat: Exploring the Multifaceted Roles of Leptin Receptor Positive Bone Marrow Mesenchymal Stromal Cells. Cells 2024, 13, 910. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Carreira, M.; Correia, C.R.; Mano, J.F. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Eng. Part. B Rev. 2022, 28, 379–392. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Hernandez-Lemus, E. Periodontal Inflammation and Systemic Diseases: An Overview. Front. Physiol. 2021, 12, 709438. [Google Scholar] [CrossRef]
- Li, P.; Ou, Q.; Shi, S.; Shao, C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol. Immunol. 2023, 20, 558–569. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020, 53, e12712. [Google Scholar] [CrossRef]
- Ji, W.; Sun, L.; Wang, D.; Zhu, W. Mesenchymal stem cells alleviate inflammatory responses through regulation of T-cell subsets. Eur. J. Pharmacol. 2024, 983, 176996. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Miao, B.; Zhu, J.; Wang, H.; Zhou, Z. Transplantation of periodontal ligament cell sheets expressing human beta-defensin-3 promotes anti-inflammation in a canine model of periodontitis. Mol. Med. Rep. 2017, 16, 7459–7467. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wen, Y.; Chen, L.; Li, M.; Yu, J.; Tian, W.; Wu, Y.; Guo, S. Xenogenous implanted dental follicle stem cells promote periodontal regeneration through inducing the N2 phenotype of neutrophils. Stem Cell Res. Ther. 2024, 15, 270. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.T.; Dhadse, P.V.; Salian, S. Cell Sheet Engineering in Periodontology: A Review. J. Clin. Diagn. Res. 2024, 18, ZE01–ZE05. [Google Scholar] [CrossRef]
- Iwata, T.; Washio, K.; Yoshida, T.; Ishikawa, I.; Ando, T.; Yamato, M.; Okano, T. Cell sheet engineering and its application for periodontal regeneration. J. Tissue Eng. Regen. Med. 2015, 9, 343–356. [Google Scholar] [CrossRef]
- Washio, K.; Tsutsumi, Y.; Tsumanuma, Y.; Yano, K.; Srithanyarat, S.S.; Takagi, R.; Ichinose, S.; Meinzer, W.; Yamato, M.; Okano, T.; et al. In Vivo Periodontium Formation Around Titanium Implants Using Periodontal Ligament Cell Sheet. Tissue Eng. Part. A 2018, 24, 1273–1282. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, N.; Zhu, D.; Ren, L.; Shao, Q.; Yu, K.; Yang, G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials 2021, 275, 120908. [Google Scholar] [CrossRef]
- McGuire, M.K.; Tavelli, L.; Feinberg, S.E.; Rasperini, G.; Zucchelli, G.; Wang, H.L.; Giannobile, W.V. Living cell-based regenerative medicine technologies for periodontal soft tissue augmentation. J. Periodontol. 2020, 91, 155–164. [Google Scholar] [CrossRef]
- Kwon, S.G.; Kwon, Y.W.; Lee, T.W.; Park, G.T.; Kim, J.H. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater. Res. 2018, 22, 36. [Google Scholar] [CrossRef]
- Yürük, G.; Demir, Y.D.; Vural, Ş.; Kehr, N.S. Polymeric biomaterials for periodontal tissue engineering and periodontitis. RSC Appl. Polym. 2024, 2, 534–556. [Google Scholar] [CrossRef]
- Alqahtani, A.M.; Moorehead, R.; Asencio, I.O. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers 2023, 15, 3355. [Google Scholar] [CrossRef]
- Almeida, N.D.; Carneiro, C.A.; de Marco, A.C.; Porto, V.C.; Franca, R. 3D Bioprinting Techniques and Bioinks for Periodontal Tissues Regeneration-A Literature Review. Biomimetics 2024, 9, 480. [Google Scholar] [CrossRef]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef]
- Lestari, W.; Irfanita, N.; Haris, M.S.; Lin, G.S.S.; Jaswir, I.; Darnis, D.S.; Ruziantee, N.; Mazlan, N.; Idrus, E.; Amir, L.R.; et al. Advancements and applications of gelatin-based scaffolds in dental engineering: A narrative review. Odontology 2025, 1–16. [Google Scholar] [CrossRef]
- Atia, G.A.N.; Shalaby, H.K.; Zehravi, M.; Ghobashy, M.M.; Attia, H.A.N.; Ahmad, Z.; Khan, F.S.; Dey, A.; Mukerjee, N.; Alexiou, A.; et al. Drug-Loaded Chitosan Scaffolds for Periodontal Tissue Regeneration. Polymers 2022, 14, 3192. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, C.S. Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering. Gels 2023, 9, 588. [Google Scholar] [CrossRef]
- Ramamurthy, J.; Bajpai, D. Role of Alginate-based Scaffolds for Periodontal Regeneration of Intrabony Defects: A Systematic Review. World J. Dent. 2024, 15, 181–187. [Google Scholar] [CrossRef]
- Deng, R.; Xie, Y.; Chan, U.; Xu, T.; Huang, Y. Biomaterials and biotechnology for periodontal tissue regeneration: Recent advances and perspectives. J. Dent. Res. Dent. Clin. Dent. Prospect. 2022, 16, 1–10. [Google Scholar] [CrossRef]
- Lopez-Valverde, N.; Lopez-Valverde, A.; Montero, J.; Rodriguez, C.; Macedo de Sousa, B.; Aragoneses, J.M. Antioxidant, anti-inflammatory and antimicrobial activity of natural products in periodontal disease: A comprehensive review. Front. Bioeng. Biotechnol. 2023, 11, 1226907. [Google Scholar] [CrossRef] [PubMed]
- Gholami, Z.; Hasanpour, S.; Sadigh, S.; Johari, S.; Shahveghar, Z.; Ataei, K.; Javari, E.; Amani, M.; Javadi Kia, L.; Delir Akbari, Z.; et al. Antibacterial agent-releasing scaffolds in dental tissue engineering. J. Adv. Periodontol. Implant. Dent. 2021, 13, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Kang, W.; Li, J.; Yu, L.; Ge, S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J. Nanobiotechnol. 2021, 19, 247. [Google Scholar] [CrossRef]
- Mijiritsky, E.; Assaf, H.D.; Peleg, O.; Shacham, M.; Cerroni, L.; Mangani, L. Use of PRP, PRF and CGF in Periodontal Regeneration and Facial Rejuvenation-A Narrative Review. Biology 2021, 10, 317. [Google Scholar] [CrossRef]
- Ul Hassan, S.; Bilal, B.; Nazir, M.S.; Naqvi, S.A.R.; Ali, Z.; Nadeem, S.; Muhammad, N.; Palvasha, B.A.; Mohyuddin, A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem. Biol. Drug Des. 2021, 98, 1007–1024. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Bronckaers, A.; Willems, G.; He, H.; Cadenas de Llano-Perula, M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J. Funct. Biomater. 2023, 14, 290. [Google Scholar] [CrossRef] [PubMed]
- Suo, L.; Wu, H.; Wang, P.; Xue, Z.; Gao, J.; Shen, J. The improvement of periodontal tissue regeneration using a 3D-printed carbon nanotube/chitosan/sodium alginate composite scaffold. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; Hou, Y.; Zhang, Z.; Chen, M.; Wang, M.; Liu, J.; Wang, J.; Zhao, Z.; Xie, C.; et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater. 2022, 18, 213–227. [Google Scholar] [CrossRef]
- Shue, L.; Yufeng, Z.; Mony, U. Biomaterials for periodontal regeneration: A review of ceramics and polymers. Biomatter 2012, 2, 271–277. [Google Scholar] [CrossRef]
- Jasser, R.A.; AlSubaie, A.; AlShehri, F. Effectiveness of beta-tricalcium phosphate in comparison with other materials in treating periodontal infra-bony defects around natural teeth: A systematic review and meta-analysis. BMC Oral Health 2021, 21, 219. [Google Scholar] [CrossRef]
- Dai, P.; Qi, G.; Zhu, M.; Du, Q.; Wang, K.; Gao, Y.; Li, M.; Feng, X.; Zhang, X. Periodontal ligament stem cell tissue engineering scaffolds can guide and promote canine periodontal tissue regeneration. Front. Vet. Sci. 2024, 11, 1465879. [Google Scholar] [CrossRef]
- Matsumura, N.; Li, X.; Uchikawa-Kitaya, E.; Li, N.; Dong, H.; Chen, K.; Yoshizawa, M.; Kagami, H. Tissue Engineering with Compact Bone-Derived Cell Spheroids Enables Bone Formation around Transplanted Tooth. Tissue Eng. Regen. Med. 2022, 19, 377–387. [Google Scholar] [CrossRef]
- Apatzidou, D.A.; Bakopoulou, A.A.; Kouzi-Koliakou, K.; Karagiannis, V.; Konstantinidis, A. A tissue-engineered biocomplex for periodontal reconstruction. A proof-of-principle randomized clinical study. J. Clin. Periodontol. 2021, 48, 1111–1125. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, N.; Fierravanti, L.; Nunez, J.; Vignoletti, F.; Gonzalez-Zamora, M.; Santamaria, S.; Suarez-Sancho, S.; Fernandez-Santos, M.E.; Figuero, E.; Herrera, D.; et al. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: A 12-month quasi-randomized controlled pilot clinical trial. J. Clin. Periodontol. 2020, 47, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Abdal-Wahab, M.; Abdel Ghaffar, K.A.; Ezzatt, O.M.; Hassan, A.A.A.; El Ansary, M.M.S.; Gamal, A.Y. Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). J. Periodontal Res. 2020, 55, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Amir, L.R.; Soeroso, Y.; Fatma, D.; Sunarto, H.; Sulijaya, B.; Idrus, E.; Rahdewati, H.; Tjokrovonco, A.M.; Izumi, K.; Abbas, B.; et al. Periodontal Ligament Cell Sheets and RGD-Modified Chitosan Improved Regeneration in the Horizontal Periodontal Defect Model. Eur. J. Dent. 2020, 14, 306–314. [Google Scholar] [CrossRef]
- An, N.; Yan, X.; Qiu, Q.; Zhang, Z.; Zhang, X.; Zheng, B.; Zhao, Z.; Guo, J.; Liu, Y. Human periodontal ligament stem cell sheets activated by graphene oxide quantum dots repair periodontal bone defects by promoting mitochondrial dynamics dependent osteogenic differentiation. J. Nanobiotechnol. 2024, 22, 133. [Google Scholar] [CrossRef]
- Balaban, Y.E.; Akbaba, S.; Bozkurt, S.B.; Buyuksungur, A.; Akgun, E.E.; Gonen, Z.B.; Salkin, H.; Tezcaner, A.; Hakki, S.S. Local application of gingiva-derived mesenchymal stem cells on experimental periodontitis in rats. J. Periodontol. 2024, 95, 456–468. [Google Scholar] [CrossRef]
- Zong, C.; Van Holm, W.; Bronckaers, A.; Zhao, Z.; Cokic, S.; Aktan, M.K.; Castro, A.B.; Van Meerbeek, B.; Braem, A.; Willems, G.; et al. Biomimetic Periodontal Ligament Transplantation Activated by Gold Nanoparticles Protects Alveolar Bone. Adv. Healthc. Mater. 2023, 12, e2300328. [Google Scholar] [CrossRef]
- Chang, Y.T.; Lai, C.C.; Lin, D.J. Collagen Scaffolds Laden with Human Periodontal Ligament Fibroblasts Promote Periodontal Regeneration in SD Rat Model. Polymers 2023, 15, 2649. [Google Scholar] [CrossRef]
- Wang, W.; Wang, A.; Hu, G.; Bian, M.; Chen, L.; Zhao, Q.; Sun, W.; Wu, Y. Potential of an Aligned Porous Hydrogel Scaffold Combined with Periodontal Ligament Stem Cells or Gingival Mesenchymal Stem Cells to Promote Tissue Regeneration in Rat Periodontal Defects. ACS Biomater. Sci. Eng. 2023, 9, 1961–1975. [Google Scholar] [CrossRef]
- Fraser, D.; Benoit, D. Dual peptide-functionalized hydrogels differentially control periodontal cell function and promote tissue regeneration. Biomater. Adv. 2022, 141, 213093. [Google Scholar] [CrossRef]
- Hasani-Sadrabadi, M.M.; Sarrion, P.; Pouraghaei, S.; Chau, Y.; Ansari, S.; Li, S.; Aghaloo, T.; Moshaverinia, A. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci. Transl. Med. 2020, 12, eaay6853. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, X.; Chen, Y.; Zhang, J.; Gai, K.; Chen, J.; Huo, F.; Guo, Q.; Guo, W.; Gou, M.; et al. Biomimetic Peridontium Patches for Functional Periodontal Regeneration. Adv. Healthc. Mater. 2023, 12, e2202169. [Google Scholar] [CrossRef]
- Miao, G.; Liang, L.; Li, W.; Ma, C.; Pan, Y.; Zhao, H.; Zhang, Q.; Xiao, Y.; Yang, X. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Biomolecules 2023, 13, 1062. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Y.; Wang, X.; Yuan, S.; Huo, F.; Yi, G.; Zhang, J.; Yang, B.; Tian, W. A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration. Adv. Sci. 2023, 10, e2205041. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.L.; Yun, S.; Cao, H.L.; Ahn, G.; Shim, J.H.; Woo, S.H.; Choung, P.H. Bioprinting on 3D Printed Titanium Scaffolds for Periodontal Ligament Regeneration. Cells 2021, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.; Ferreira, J.A.; Malda, J.; Bhaduri, S.B.; Bottino, M.C. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. ACS Appl. Mater. Interfaces 2020, 12, 23752–23763. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, B.; Zhang, Y.; Bao, X.; Li, D.; Lin, J. Injectable hypoxia-preconditioned human exfoliated deciduous teeth stem cells encapsulated within GelMA-AMP microspheres for bone regeneration in periodontitis. Colloids Surf. B Biointerfaces 2025, 247, 114452. [Google Scholar] [CrossRef]
- Luo, J.; Chen, H.; Wang, G.; Lyu, J.; Liu, Y.; Lin, S.; Zhou, M.; Jiang, X. CGRP-Loaded Porous Microspheres Protect BMSCs for Alveolar Bone Regeneration in the Periodontitis Microenvironment. Adv. Healthc. Mater. 2023, 12, e2301366. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Wang, M.; Zhou, J.; Zhang, Q.; Yang, W.; Li, Y.; Yan, F. Gold Nanoparticles Combined Human beta-Defensin 3 Gene-Modified Human Periodontal Ligament Cells Alleviate Periodontal Destruction via the p38 MAPK Pathway. Front. Bioeng. Biotechnol. 2021, 9, 631191. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Li, M.; Ouyang, Z.; Gao, F.; Liu, C.; Li, C.; Liu, D.; Zhou, Z. PLGA hybrid porous microspheres as human periodontal ligament stem cell delivery carriers for periodontal regeneration. Chem. Eng. J. 2021, 420, 129703. [Google Scholar] [CrossRef]
- Dziedzic, D.S.M.; Mogharbel, B.F.; Irioda, A.C.; Stricker, P.E.F.; Perussolo, M.C.; Franco, C.R.C.; Chang, H.W.; Abdelwahid, E.; de Carvalho, K.A.T. Adipose-Derived Stromal Cells and Mineralized Extracellular Matrix Delivery by a Human Decellularized Amniotic Membrane in Periodontal Tissue Engineering. Membranes 2021, 11, 606. [Google Scholar] [CrossRef]
- Norahan, M.H.; Amroon, M.; Ghahremanzadeh, R.; Mahmoodi, M.; Baheiraei, N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J. Biomed. Mater. Res. A 2019, 107, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Katrilaka, C.; Karipidou, N.; Petrou, N.; Manglaris, C.; Katrilakas, G.; Tzavellas, A.N.; Pitou, M.; Tsiridis, E.E.; Choli-Papadopoulou, T.; Aggeli, A. Freeze-Drying Process for the Fabrication of Collagen-Based Sponges as Medical Devices in Biomedical Engineering. Materials 2023, 16, 4425. [Google Scholar] [CrossRef] [PubMed]
- Angraini, N.; Syarifuddin, S.; Rauf, N.; Tahir, D. Advancements in Bone Tissue Engineering: A Comprehensive Review of Biomaterial Scaffolds and Freeze-Drying Techniques from Perspective Global and Future Research. Artif. Organs 2025, 49, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Adachi, T.; Miyamoto, N.; Imamura, H.; Yamamoto, T.; Marin, E.; Zhu, W.; Kobara, M.; Sowa, Y.; Tahara, Y.; Kanamura, N.; et al. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. Int. J. Mol. Sci. 2022, 23, 8099. [Google Scholar] [CrossRef]
- Vercimakova, K.; Karbowniczek, J.; Sedlar, M.; Stachewicz, U.; Vojtova, L. The role of glycerol in manufacturing freeze-dried chitosan and cellulose foams for mechanically stable scaffolds in skin tissue engineering. Int. J. Biol. Macromol. 2024, 275, 133602. [Google Scholar] [CrossRef]
- Basurto, I.M.; Bandara, G.C.; Boudreau, R.D.; Shriver, S.B.; Muhammad, S.A.; Christ, G.J.; Caliari, S.R. Freeze-Dried Porous Collagen Scaffolds for the Repair of Volumetric Muscle Loss Injuries. ACS Biomater. Sci. Eng. 2025, 11, 1598–1611. [Google Scholar] [CrossRef]
- Mishan, M.A.; Balagholi, S.; Chamani, T.; Feizi, S.; Soheili, Z.S.; Rezaei Kanavi, M. Potential of a novel scaffold composed of human platelet lysate and fibrin for human corneal endothelial cells. Cell Tissue Bank. 2022, 23, 171–183. [Google Scholar] [CrossRef]
- Yan, M.; Wang, L.; Wu, Y.; Wang, L.; Lu, Y. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Acta Biomater. 2023, 157, 252–262. [Google Scholar] [CrossRef]
- Ghorbani, S.; Eyni, H.; Norahan, M.H.; Zarrintaj, P.; Urban, N.; Mohammadzadeh, A.; Mostafavi, E.; Sutherland, D.S. Advanced bioengineering of female germ cells to preserve fertility. Biol. Reprod. 2022, 107, 1177–1204. [Google Scholar] [CrossRef]
- Wang, J.; Huang, D.; Chen, D.; Ren, H.; Zhao, Y. Emerging Functional Porous Scaffolds for Liver Tissue Engineering. Adv. Healthc. Mater. 2024, 14, e2403741. [Google Scholar] [CrossRef] [PubMed]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part. B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [PubMed]
- Millan, C.; Vivanco, J.F.; Benjumeda-Wijnhoven, I.M.; Bjelica, S.; Santibanez, J.F. Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. Adv. Exp. Med. Biol. 2018, 1107, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Norahan, M.H.; Pedroza-Gonzalez, S.C.; Sanchez-Salazar, M.G.; Alvarez, M.M.; Trujillo de Santiago, G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 2023, 24, 197–235. [Google Scholar] [CrossRef]
- Mishchenko, O.; Yanovska, A.; Sulaieva, O.; Moskalenko, R.; Pernakov, M.; Husak, Y.; Korniienko, V.; Deineka, V.; Kosinov, O.; Varakuta, O.; et al. From Synthesis to Clinical Trial: Novel Bioinductive Calcium Deficient HA/beta-TCP Bone Grafting Nanomaterial. Nanomaterials 2023, 13, 1876. [Google Scholar] [CrossRef]
- Ouchi, T.; Nakagawa, T. Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regen. Ther. 2020, 14, 72–78. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Li, L.; Liu, S.; Wu, P.; Zhou, M.; Li, C.; Li, X.; Luo, G.; Zhang, J. Stem Cell-Niche Engineering via Multifunctional Hydrogel Potentiates Stem Cell Therapies for Inflammatory Bone Loss. Adv. Funct. Mater. 2023, 33, e2209466. [Google Scholar] [CrossRef]
- Huettner, N.; Dargaville, T.R.; Forget, A. Discovering Cell-Adhesion Peptides in Tissue Engineering: Beyond RGD. Trends Biotechnol. 2018, 36, 372–383. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Dong, Y. Collagen-Based Biomaterials for Tissue Engineering. ACS Biomater. Sci. Eng. 2023, 9, 1132–1150. [Google Scholar] [CrossRef]
- Chen, K.; Li, X.; Li, N.; Dong, H.; Zhang, Y.; Yoshizawa, M.; Kagami, H. Spontaneously Formed Spheroids from Mouse Compact Bone-Derived Cells Retain Highly Potent Stem Cells with Enhanced Differentiation Capability. Stem Cells Int. 2019, 2019, 8469012. [Google Scholar] [CrossRef]
- Horie, M.; Yamaguchi, Y.; Saito, A.; Nagase, T.; Lizio, M.; Itoh, M.; Kawaji, H.; Lassmann, T.; Carninci, P.; Forrest, A.R.; et al. Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis. Sci. Rep. 2016, 6, 33666. [Google Scholar] [CrossRef]
- Garimella, A.; Ghosh, S.B.; Bandyopadhyay-Ghosh, S. Biomaterials for bone tissue engineering: Achievements to date and future directions. Biomed. Mater. 2024, 20, 012001. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.; Dos Santos, A.B.; Carvalho, M.S. New Insights in Hydrogels for Periodontal Regeneration. J. Funct. Biomater. 2023, 14, 545. [Google Scholar] [CrossRef] [PubMed]
- Holly, D.; Klein, M.; Mazreku, M.; Zamborsky, R.; Polak, S.; Danisovic, L.; Csobonyeiova, M. Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 11746. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Jiang, J.; Wang, Y.; Jiang, H.; Zhang, J.; Nie, X.; Liu, B. Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicol. Sci. 2019, 167, 269–281. [Google Scholar] [CrossRef]
- Perez, R.A.; Mestres, G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 922–939. [Google Scholar] [CrossRef] [PubMed]
- Zweifler, L.E.; Patel, M.K.; Nociti, F.H., Jr.; Wimer, H.F.; Millan, J.L.; Somerman, M.J.; Foster, B.L. Counter-regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis. Int. J. Oral Sci. 2015, 7, 27–41. [Google Scholar] [CrossRef]
- Bhat, S.; Uthappa, U.T.; Altalhi, T.; Jung, H.Y.; Kurkuri, M.D. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater. Sci. Eng. 2022, 8, 4039–4076. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; Baker, C.; Murphy, W.L.; McDevitt, T.C. Mineral particles modulate osteo-chondrogenic differentiation of embryonic stem cell aggregates. Acta Biomater. 2016, 29, 42–51. [Google Scholar] [CrossRef]
- Han, L.; Yan, L.; Wang, K.; Fang, L.; Zhang, H.; Tang, Y.; Ding, Y.; Weng, L.-T.; Xu, J.; Weng, J.; et al. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. 2017, 9, e372. [Google Scholar] [CrossRef]
- Saini, G.; Segaran, N.; Mayer, J.L.; Saini, A.; Albadawi, H.; Oklu, R. Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. J. Clin. Med. 2021, 10, 4966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, H.; Liu, X.; Sheng, Y.; Liu, X.; Jiang, C. Dental Follicle Stem Cells: Tissue Engineering and Immunomodulation. Stem Cells Dev. 2019, 28, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Ke, X.; Liu, A.; Sun, M.; He, Y.; Yang, X.; Fu, J.; Liu, Y.; Zhang, L.; Yang, G.; et al. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication 2017, 9, 025003. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Tun, H.W.; Wang, T.; Naing, M.W. Organ-Derived Decellularized Extracellular Matrix: A Game Changer for Bioink Manufacturing? Trends Biotechnol. 2018, 36, 787–805. [Google Scholar] [CrossRef]
- Laurenti, M.; Al Subaie, A.; Abdallah, M.N.; Cortes, A.R.; Ackerman, J.L.; Vali, H.; Basu, K.; Zhang, Y.L.; Murshed, M.; Strandman, S.; et al. Two-Dimensional Magnesium Phosphate Nanosheets Form Highly Thixotropic Gels That Up-Regulate Bone Formation. Nano Lett. 2016, 16, 4779–4787. [Google Scholar] [CrossRef]
- Liu, J.; Song, Q.; Yin, W.; Li, C.; An, N.; Le, Y.; Wang, Q.; Feng, Y.; Hu, Y.; Wang, Y. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations. Exploration 2025, 5, 20230078. [Google Scholar] [CrossRef]
- Zhang, G.; Zhen, C.; Yang, J.; Wang, J.; Wang, S.; Fang, Y.; Shang, P. Recent advances of nanoparticles on bone tissue engineering and bone cells. Nanoscale Adv. 2024, 6, 1957–1973. [Google Scholar] [CrossRef]
- Murphy, J.F.; Lavelle, M.; Asciak, L.; Burdis, R.; Levis, H.J.; Ligorio, C.; McGuire, J.; Polleres, M.; Smith, P.O.; Tullie, L.; et al. Biofabrication and biomanufacturing in Ireland and the UK. Bio-Des. Manuf. 2024, 7, 825–856. [Google Scholar] [CrossRef]
- Jakab, K.; Neagu, A.; Mironov, V.; Markwald, R.R.; Forgacs, G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA 2004, 101, 2864–2869. [Google Scholar] [CrossRef]
- Marga, F.; Neagu, A.; Kosztin, I.; Forgacs, G. Developmental biology and tissue engineering. Birth Defects Res. C Embryo Today 2007, 81, 320–328. [Google Scholar] [CrossRef]
- Griffith, L.G.; Naughton, G. Tissue engineering--current challenges and expanding opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Neagu, A.; Jakab, K.; Jamison, R.; Forgacs, G. Role of physical mechanisms in biological self-organization. Phys. Rev. Lett. 2005, 95, 178104. [Google Scholar] [CrossRef] [PubMed]
- Jakab, K.; Damon, B.; Neagu, A.; Kachurin, A.; Forgacs, G. Three-dimensional tissue constructs built by bioprinting. Biorheology 2006, 43, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Jakab, K.; Norotte, C.; Damon, B.; Marga, F.; Neagu, A.; Besch-Williford, C.L.; Kachurin, A.; Church, K.H.; Park, H.; Mironov, V.; et al. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part. A 2008, 14, 413–421. [Google Scholar] [CrossRef]
- Mironov, V.; Visconti, R.P.; Kasyanov, V.; Forgacs, G.; Drake, C.J.; Markwald, R.R. Organ printing: Tissue spheroids as building blocks. Biomaterials 2009, 30, 2164–2174. [Google Scholar] [CrossRef]
- Yang, D.L.; Faraz, F.; Wang, J.X.; Radacsi, N. Combination of 3D Printing and Electrospinning Techniques for Biofabrication. Adv. Mater. Technol. 2022, 7, e2101309. [Google Scholar] [CrossRef]
- Sanicola, H.W.; Stewart, C.E.; Mueller, M.; Ahmadi, F.; Wang, D.; Powell, S.K.; Sarkar, K.; Cutbush, K.; Woodruff, M.A.; Brafman, D.A. Guidelines for establishing a 3-D printing biofabrication laboratory. Biotechnol. Adv. 2020, 45, 107652. [Google Scholar] [CrossRef]
- Albrecht, F.B.; Ahlfeld, T.; Klatt, A.; Heine, S.; Gelinsky, M.; Kluger, P.J. Biofabrication’s Contribution to the Evolution of Cultured Meat. Adv. Healthc. Mater. 2024, 13, e2304058. [Google Scholar] [CrossRef]
- Budharaju, H.; Sundaramurthi, D.; Sethuraman, S. Biofabrication & cryopreservation of tissue engineered constructs for on-demand applications. Biofabrication 2024, 16, 042008. [Google Scholar] [CrossRef]
- Inselman, D.W.; Medberry, C.J.; Czaja, W.K. Bacterially derived medical devices: How commercialization of bacterial nanocellulose and other biofabricated products requires challenging of standard industrial practices. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1953–1959. [Google Scholar] [CrossRef]
- Kort-Mascort, J.; Flores-Torres, S.; Peza-Chavez, O.; Jang, J.H.; Pardo, L.A.; Tran, S.D.; Kinsella, J. Decellularized ECM hydrogels: Prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater. Sci. 2023, 11, 400–431. [Google Scholar] [CrossRef]
- Filippi, M.; Mekkattu, M.; Katzschmann, R.K. Sustainable biofabrication: From bioprinting to AI-driven predictive methods. Trends Biotechnol. 2025, 43, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.A.; Danilova, T.I.; Kuznetsova, A.V.; Popova, O.P.; Yanushevich, O.O. Decellularized Matrix Induced Spontaneous Odontogenic and Osteogenic Differentiation in Periodontal Cells. Biomolecules 2023, 13, 122. [Google Scholar] [CrossRef]
- Liang, C.; Liao, L.; Tian, W. Advances Focusing on the Application of Decellularized Extracellular Matrix in Periodontal Regeneration. Biomolecules 2023, 13, 673. [Google Scholar] [CrossRef] [PubMed]
- Dalton, P.D.; Woodfield, T.B.F.; Mironov, V.; Groll, J. Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. Adv. Sci. 2020, 7, 1902953. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.W.; Schuftan, D.R.; Ramahdita, G.; Huebsch, N. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS Appl. Mater. Interfaces 2023, 15, 25313–25323. [Google Scholar] [CrossRef]
- Iwasaki, K.; Nagata, M.; Akazawa, K.; Watabe, T.; Morita, I. Changes in characteristics of periodontal ligament stem cells in spheroid culture. J. Periodontal Res. 2019, 54, 364–373. [Google Scholar] [CrossRef]
- Yasunaga, M.; Ishikawa, H.; Tamaoki, S.; Maeda, H.; Ohno, J. Embedded Human Periodontal Ligament Stem Cells Spheroids Enhance Cementogenic Differentiation via Plasminogen Activator Inhibitor 1. Int. J. Mol. Sci. 2022, 23, 2340. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, S.; Wu, J.; Liu, P.; Sun, J.; Xie, X.; Ge, M.; Li, C.; Zhang, M.; Lei, L. Spheroid culture of human periodontal ligament stem cells on agarose enhances stemness and osteogenic differentiation potential. Am. J. Transl. Res. 2025, 17, 5257–5270. [Google Scholar] [CrossRef]
- Mishra, A.; Kai, R.; Atkuru, S.; Dai, Y.; Piccinini, F.; Preshaw, P.M.; Sriram, G. Fluid flow-induced modulation of viability and osteodifferentiation of periodontal ligament stem cell spheroids-on-chip. Biomater. Sci. 2023, 11, 7432–7444. [Google Scholar] [CrossRef]
- Murata, D.; Arai, K.; Nakayama, K. Scaffold-Free Bio-3D Printing Using Spheroids as “Bio-Inks” for Tissue (Re-)Construction and Drug Response Tests. Adv. Healthc. Mater. 2020, 9, e1901831. [Google Scholar] [CrossRef]
- Moldovan, N.I.; Hibino, N.; Nakayama, K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting. Tissue Eng. Part. B Rev. 2017, 23, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ayan, B.; Heo, D.N.; Zhang, Z.; Dey, M.; Povilianskas, A.; Drapaca, C.; Ozbolat, I.T. Aspiration-assisted bioprinting for precise positioning of biologics. Sci. Adv. 2020, 6, eaaw5111. [Google Scholar] [CrossRef] [PubMed]
- LaBarge, W.; Morales, A.; Pretorius, D.; Kahn-Krell, A.M.; Kannappan, R.; Zhang, J. Scaffold-Free Bioprinter Utilizing Layer-By-Layer Printing of Cellular Spheroids. Micromachines 2019, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.C.; Davidson, M.D.; Burdick, J.A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 2021, 12, 753. [Google Scholar] [CrossRef]
- Ugurluoglu, Y.F.; Ferreira, A.M.; Gentile, P.; Munguia, J. Conceptual design and development of a progressive cavity pump for extrusion-based additive manufacturing applications. CIRP J. Manuf. Sci. Technol. 2023, 46, 191–203. [Google Scholar] [CrossRef]
- Dharmaraj, J.J.J.; Navasingh, R.J.H.; Krolczyk, G.; Pitchumani, S.V. Extrusion-Based Bioprinting in a Cost-Effective Bioprinter. Machines 2024, 12, 518. [Google Scholar] [CrossRef]
- Gu, Z.; Fu, J.; Lin, H.; He, Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J. Pharm. Sci. 2020, 15, 529–557. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Lai, Y.; Meng, C.; Ning, X.; Xu, T.; Song, G.; Zhang, Y.; Lin, Y.; Han, B. Advances of 3D bioprinting technology for periodontal tissue regeneration. iScience 2025, 28, 112532. [Google Scholar] [CrossRef]
- Acharya, J.R.; Kumar, S.; Girdhar, G.A.; Patel, S.; Parekh, N.H.; Patadiya, H.H.; Zinjala, A.N.; Haque, M. 3D Bioprinting: Shaping the Future of Periodontal Tissue Regeneration and Disease Management. Cureus 2025, 17, e82432. [Google Scholar] [CrossRef]
- Itoh, M.; Nakayama, K.; Noguchi, R.; Kamohara, K.; Furukawa, K.; Uchihashi, K.; Toda, S.; Oyama, J.; Node, K.; Morita, S. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae. PLoS ONE 2015, 10, e0136681. [Google Scholar] [CrossRef]
- Heo, D.N.; Ayan, B.; Dey, M.; Banerjee, D.; Wee, H.; Lewis, G.S.; Ozbolat, I.T. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Biofabrication 2020, 13, 015013. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, I.N.; Smith, L.J.; Olivos, D.J., 3rd; Chu, T.G.; Kacena, M.A.; Wagner, D.R. Scaffold-free Bioprinting of Mesenchymal Stem Cells with the Regenova Printer: Optimization of Printing Parameters. Bioprinting 2019, 15, e00048. [Google Scholar] [CrossRef] [PubMed]
- Ostrovidov, S.; Ramalingam, M.; Bae, H.; Orive, G.; Fujie, T.; Shi, X.; Kaji, H. Bioprinting and biomaterials for dental alveolar tissue regeneration. Front. Bioeng. Biotechnol. 2023, 11, 991821. [Google Scholar] [CrossRef] [PubMed]
- Vurat, M.T.; Seker, S.; Lalegul-Ulker, O.; Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: Towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes. Dis. 2022, 9, 1008–1023. [Google Scholar] [CrossRef]
- Fisch, P.; Holub, M.; Zenobi-Wong, M. Improved accuracy and precision of bioprinting through progressive cavity pump-controlled extrusion. Biofabrication 2020, 13, 015012. [Google Scholar] [CrossRef]
- Wenger, L.; Strauß, S.; Hubbuch, J. Automated and dynamic extrusion pressure adjustment based on real-time flow rate measurements for precise ink dispensing in 3D bioprinting. Bioprinting 2022, 28, e00229. [Google Scholar] [CrossRef]
- Kim, M.H.; Banerjee, D.; Celik, N.; Ozbolat, I.T. Aspiration-assisted freeform bioprinting of mesenchymal stem cell spheroids within alginate microgels. Biofabrication 2022, 14, 024103. [Google Scholar] [CrossRef]
- Woods, P.; Smith, C.; Clark, S.; Habib, A. Integrating Pneumatic and Thermal Control in 3D Bioprinting for Improved Bio-Ink Handling. Designs 2024, 8, 83. [Google Scholar] [CrossRef]
- Pazhouhnia, Z.; Beheshtizadeh, N.; Namini, M.S.; Lotfibakhshaiesh, N. Portable hand-held bioprinters promote in situ tissue regeneration. Bioeng. Transl. Med. 2022, 7, e10307. [Google Scholar] [CrossRef]
- Lindner, N.; Blaeser, A. Scalable Biofabrication: A Perspective on the Current State and Future Potentials of Process Automation in 3D-Bioprinting Applications. Front. Bioeng. Biotechnol. 2022, 10, 855042. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Mistewicz, K.; Nowacki, B.; In-Na, P.; Krushynska, A.; Mishra, Y.K.; Kim, H.J. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater. Sci. 2022, 10, 5054–5080. [Google Scholar] [CrossRef]
- Arslan-Yildiz, A.; El Assal, R.; Chen, P.; Guven, S.; Inci, F.; Demirci, U. Towards artificial tissue models: Past, present, and future of 3D bioprinting. Biofabrication 2016, 8, 014103. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Rizzo, R.; Surman, F.; Zenobi-Wong, M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem. Rev. 2020, 120, 10950–11027. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Munguia-Lopez, J.G.; Flores-Torres, S.; Kort-Mascort, J.; Kinsella, J.M. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Appl. Phys. Rev. 2019, 6, 011310. [Google Scholar] [CrossRef]
- Bersini, S.; Gilardi, M.; Arrigoni, C.; Talo, G.; Zamai, M.; Zagra, L.; Caiolfa, V.; Moretti, M. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach. Biomaterials 2016, 76, 157–172. [Google Scholar] [CrossRef]
- van Erp, R.; Soleimanzadeh, R.; Nela, L.; Kampitsis, G.; Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 2020, 585, 211–216. [Google Scholar] [CrossRef]
- Jiang, T.; Munguia-Lopez, J.G.; Flores-Torres, S.; Grant, J.; Vijayakumar, S.; Leon-Rodriguez, A.; Kinsella, J.M. Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Sci. Rep. 2017, 7, 4575. [Google Scholar] [CrossRef]
- Nair, K.; Gandhi, M.; Khalil, S.; Yan, K.C.; Marcolongo, M.; Barbee, K.; Sun, W. Characterization of cell viability during bioprinting processes. Biotechnol. J. 2009, 4, 1168–1177. [Google Scholar] [CrossRef]
- Davoudinejad, A. Vat photopolymerization methods in additive manufacturing. In Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 159–181. [Google Scholar]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhang, Z.; Guo, W. The 3-dimensional printing for dental tissue regeneration: The state of the art and future challenges. Front. Bioeng. Biotechnol. 2024, 12, 1356580. [Google Scholar] [CrossRef]
- Hong, J.; Yeo, M.; Yang, G.H.; Kim, G. Cell-Electrospinning and Its Application for Tissue Engineering. Int. J. Mol. Sci. 2019, 20, 6208. [Google Scholar] [CrossRef]
- Yin, B.; Dodda, J.M.; Wong, S.H.D.; Roshan Deen, G.; Bate, J.S.; Pachauri, A.; Shiroud Heidari, B.; Kovarik, T.; Luo, C.A.; Tsai, S.W. Smart injectable hydrogels for periodontal regeneration: Recent advancements in biomaterials and biofabrication strategies. Mater. Today Bio 2025, 32, 101855. [Google Scholar] [CrossRef]
- Samandari, M.; Mostafavi, A.; Quint, J.; Memic, A.; Tamayol, A. In situ bioprinting: Intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022, 40, 1229–1247. [Google Scholar] [CrossRef]




| Ref | Biomaterials and Additives | Biomaterial Form | Cell Type | In Vivo Model | Main Result |
|---|---|---|---|---|---|
| [69] | Chitosan, β-glycerol phosphate, and biphasic calcium phosphate | Freeze-dried scaffold | Canine PDLSCs | Dog periodontal bone defect | Immunomodulatory effects and new periodontal ligament formation in the defect region. |
| [70] | Collagen | Atelocollagen sponge | BM-MNCs or CB-MSC spheroids | Defect around transplanted tooth in mice | Notable bone formation external to the root was observed in the group of MSCs derived from cortical bone. |
| [71] | Collagen with aFPL | Porous scaffold | a-BMMSCs | Human intra-bony periodontal defects | The cell-containing scaffolds exhibited a significant reduction in the distance from the cemento-enamel junction to the bottom defect. |
| [72] | Collagen | Porous scaffold | Autologous PDLMSCs | Human intra-bony periodontal defects | Scaffolds seeded with PDL-MSCs resulted in a marked gain in clinical attachment level and a reduction in probing pocket depth. |
| [73] | β-TCP and Collagen | β-TCP scaffold covered by a non-perforated collagen membrane | Autogenous GMSCs | Human intra-bony periodontal defects | The cell containing scaffolds demonstrated a decrease in vertical pocket depth and clinical attachment level improvement. |
| [74] | (RGD)-modified chitosan | Freeze-dried scaffold | PDLs collected from Macaque nemestrina | Macaque nemestrina periodontal defect model | The incorporation of RGD peptide into the chitosan scaffold diminished the distance between the cement-enamel junction and the alveolar bone crest. |
| [75] | GelMA and GOQDs | Hydrogel | hPDLSCs | Rat periodontitis model | Favorable growth and osteogenic differentiation in vitro, along with enhanced repair of mandibular periodontal bone defects in vivo. |
| [76] | Fibroin/Chitosan | Hydrogel | Rat GMSCs | Rat periodontitis model | µCT analysis revealed new bone formation in the fibroin/chitosan/GMSC treated group. |
| [39] | Poloxamer 407 (PX), β-cyclodextrin-based nanoparticle, and PPLFMLLKGSTR adhesive peptide | Hydrogel | EMSCs | Rat periodontitis model | Reduction in cementoenamel junction to the alveolar bone crest distance and improved trabecular bone parameters. |
| [77] | Collagen and AuNCs for cell pretreatment | Hydrogel | hPDLSCs pretreated with AuNCs | Rat Orthodontic Tooth Movement model | In vitro, AuNCs markedly improved the osteogenic differentiation of hPDLSCs. In vivo, the biomimetic transplantation of AuNCs maintained higher bone mineral density. |
| [78] | Collagen and Riboflavin | Hydrogel | Human periodontal ligament fibroblasts (HPLFs) | Rat periodontitis model | Significant reduction in epithelial downgrowth, allowing for the growth of bone |
| [79] | Chitosan and oxidized chondroitin sulfate | Hydrogel | PDLSCs or GMSCs | Rat periodontitis model | The treatment groups of aligned porous hydrogel with PDLSCs or GMSCs demonstrated enhanced bone regeneration. |
| [80] | PEG functionalized with RGD and GFOGER | Hydrogel | PDLC | Rat periodontal defect | Improved cementum formation in periodontal defects in rats. Hydrogels specifically designed for in vitro mineralization promoted new bone formation. |
| [81] | Alginate, dopamine, RGD peptide and HAp | Hydrogel | Human GMSCs | Rat Peri-Implantitis Model | Competent adherence to oral tissues in moist conditions because of dopamin-mediated hydrogen bonding and mussel-inspired interfacial interactions. Hydrogels loaded with GMSC aggregates and HAp surpassed cell-only formulations in achieving full bone regeneration around infected implants. |
| [82] | GelMA | 3D Bioprinted structure via DLP bioprinter | DFCs | Rat and beagle dog periodontal defect model | The biomimetic microarchitecture that directed DFC alignment and their development into ligament-forming cells led to a full recovery of the alveolar bone-PDL-cementum complex. |
| [83] | GelMA, sodium alginate, BGM, BMP2 and PDGF | 3D Bioprinted structure via extrusion bioprinting | BMSCs | Beagle dog periodontal defect | BGM improved osteogenic differentiation of bone marrow mesenchymal stem cells and apatite formation. |
| [84] | GelMA and dental follicle-derived decellularized ECM | 3D Bioprinted structure via DLP and direct ink writing bioprinter | Human DFCs | Beagle dog periodontal defect | Promoted aligned PDL fibers in vivo, highly mineralized alveolar bone, and functional bone-ligament interfaces in beagle defects, as well as reduced inflammation. |
| [85] | Collagen and FGF-2 | 3D Bioprinted structure via extrusion bioprinting on a titanium 3D printed scaffold | hPDLSCs | Rat mandibular defect model | Organized periodontal ligament-like connective tissue between the scaffold and bone, expressing periostin, HLA, vWF, and CEMP1. |
| [86] | Commercially available ECM-based hydrogel and magnesium phosphate | 3D Bioprinted structure via microvalve-based bioprinting (inkjet-based) | hPDLSCs | Rat calvarial defect model | In vivo, ECM/AMP resulted in higher bone density associated with Mg2+-mediated osteoblast activation and mineral mobilization. |
| [87] | GelMA, HIF-1α, and Antimicrobial peptide | Microspheres | Dental pulp stem cells | Rat periodontitis model | HIF-1α + GelMA + Antimicrobial peptide + Dental pulp stem cells microspheres reduced pro-inflammatory cytokines (e.g., IL-6, TNF-α) and enhanced vascularization, resulting in significant alveolar bone regeneration. |
| [88] | PLGA, polydopamine and CGRP | Microspheres | BMSCs | Mice periodontitis model | Decreased osteoclast activity and facilitated alveolar bone regeneration, leading to enhancements in bone volume and bone mineralized density |
| [89] | AuNPs conjugated with adenovirus-mediated human β-defensin 3 | Nanoparticles | Human and rat PDLSC | Rat periodontal defect | Diminished alveolar bone loss in rat periodontal defects, resulting in increased bone mineralized density and bone volume. |
| [90] | PLGA, silk fibroin and hydroxyapatite | Microspheres | hPDLSCs | Rat periodontal defect | HAp-SF-PLGA microspheres surpassed unmodified PLGA exhibiting reduced cementoenamel junction-alveolar bone crest distances and enhanced bone mineral density. |
| [91] | Human DAM, ASCs and mineralized ECM | Decellularized tissue | ADSCs | Rat periodontal defect | Improved bone regeneration at the gingival level due to and facilitated periodontal ligament regeneration, characterized by perpendicular collagen fibers connecting new cementum-like tissue and bone. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norahan, M.H.; Sivarasu, S.; Fayzullin, A.; Mbanefo, C.; Bikmulina, P.; Ashurko, I.; Khristidis, I.; Timashev, P. Bioengineering of Periodontal Tissues: Cell Therapy and Biomaterials Application. Bioengineering 2025, 12, 1213. https://doi.org/10.3390/bioengineering12111213
Norahan MH, Sivarasu S, Fayzullin A, Mbanefo C, Bikmulina P, Ashurko I, Khristidis I, Timashev P. Bioengineering of Periodontal Tissues: Cell Therapy and Biomaterials Application. Bioengineering. 2025; 12(11):1213. https://doi.org/10.3390/bioengineering12111213
Chicago/Turabian StyleNorahan, Mohammad Hadi, Sudesh Sivarasu, Alexey Fayzullin, Chibuike Mbanefo, Polina Bikmulina, Igor Ashurko, Iana Khristidis, and Peter Timashev. 2025. "Bioengineering of Periodontal Tissues: Cell Therapy and Biomaterials Application" Bioengineering 12, no. 11: 1213. https://doi.org/10.3390/bioengineering12111213
APA StyleNorahan, M. H., Sivarasu, S., Fayzullin, A., Mbanefo, C., Bikmulina, P., Ashurko, I., Khristidis, I., & Timashev, P. (2025). Bioengineering of Periodontal Tissues: Cell Therapy and Biomaterials Application. Bioengineering, 12(11), 1213. https://doi.org/10.3390/bioengineering12111213

