Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (211)

Search Parameters:
Keywords = direct-seeded rice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6219 KiB  
Article
Semi-Supervised Density Estimation with Background-Augmented Data for In Situ Seed Counting
by Baek-Gyeom Sung, Chun-Gu Lee, Yeong-Ho Kang, Seung-Hwa Yu and Dae-Hyun Lee
Agriculture 2025, 15(15), 1682; https://doi.org/10.3390/agriculture15151682 - 4 Aug 2025
Viewed by 76
Abstract
Direct seeding has gained prominence as a labor-efficient and environmentally sustainable alternative to conventional transplanting in rice cultivation. In direct seeding systems, early-stage management is crucial for stable seedling establishment, with sowing uniformity measured by seed counts being a critical indicator of success. [...] Read more.
Direct seeding has gained prominence as a labor-efficient and environmentally sustainable alternative to conventional transplanting in rice cultivation. In direct seeding systems, early-stage management is crucial for stable seedling establishment, with sowing uniformity measured by seed counts being a critical indicator of success. However, conventional manual seed counting methods are time-consuming, prone to human error, and impractical for large-scale or repetitive tasks, necessitating advanced automated solutions. Recent advances in computer vision technologies and precision agriculture tools, offer the potential to automate seed counting tasks. Nevertheless, challenges such as domain discrepancies and limited labeled data restrict robust real-world deployment. To address these issues, we propose a density estimation-based seed counting framework integrating semi-supervised learning and background augmentation. This framework includes a cost-effective data acquisition system enabling diverse domain data collection through indoor background augmentation, combined with semi-supervised learning to utilize augmented data effectively while minimizing labeling costs. The experimental results on field data from unknown domains show that our approach reduces seed counting errors by up to 58.5% compared to conventional methods, highlighting its potential as a scalable and effective solution for agricultural applications in real-world environments. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 1211 KiB  
Review
Physiology, Genetics, and Breeding Strategies for Improving Anaerobic Germinability Under Flooding Stress in Rice
by Panchali Chakraborty and Swapan Chakrabarty
Stresses 2025, 5(3), 49; https://doi.org/10.3390/stresses5030049 - 3 Aug 2025
Viewed by 93
Abstract
Anaerobic germination (AG) is a pivotal trait for successful direct-seeded rice cultivation, encompassing rainfed and irrigated conditions. Elite rice cultivars are often vulnerable to flooding during germination, resulting in poor crop establishment. This drawback has led to the exploration of AG-tolerant rice landraces, [...] Read more.
Anaerobic germination (AG) is a pivotal trait for successful direct-seeded rice cultivation, encompassing rainfed and irrigated conditions. Elite rice cultivars are often vulnerable to flooding during germination, resulting in poor crop establishment. This drawback has led to the exploration of AG-tolerant rice landraces, which offer valuable insights into the genetic underpinnings of AG tolerance. Over the years, substantial progress has been made in identifying significant quantitative trait loci (QTLs) associated with AG tolerance, forming the basis for targeted breeding efforts. However, the intricate gene regulatory network governing AG tolerance remains enigmatic. This comprehensive review presents recent advances in understanding the physiological and genetic mechanisms underlying AG tolerance. It focuses on their practical implications in breeding elite rice cultivars tailored for direct-seeding systems. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

14 pages, 3779 KiB  
Article
Technological Parameter Optimization of Double-Press Precision Depth-Control Seeding and Its Application in Rice Production
by Yangjie Shi, Xingye Shen, Xinhui Cheng, Jintao Xu, Jiawang Hong, Lianjie Han, Xiaobo Xi and Ruihong Zhang
Agronomy 2025, 15(7), 1704; https://doi.org/10.3390/agronomy15071704 - 15 Jul 2025
Viewed by 291
Abstract
Current rice cultivation relies on mechanical transplanting, which is costly and complex, and direct seeding, which suffers from poor quality and low efficiency. To address these issues, a double-press precision depth-control seeding method was developed in this study. Discrete element modeling (DEM) was [...] Read more.
Current rice cultivation relies on mechanical transplanting, which is costly and complex, and direct seeding, which suffers from poor quality and low efficiency. To address these issues, a double-press precision depth-control seeding method was developed in this study. Discrete element modeling (DEM) was employed to optimize key operational parameters—compaction force, soil covering cutter rotational speed, and penetration depth—using qualified seeding depth and missed seeding rates as performance metrics. Optimal results were achieved at a 60 kPa compaction force, a 300 rpm rotational speed, and a 7 cm penetration depth. A prototype seeder was manufactured and evaluated in three-year field trials against conventional dry direct seeders and mechanical transplanters. The double-press seeder demonstrated significantly superior performance compared to conventional direct seeding. It optimized the crop population structure by maintaining a high tiller number while increasing the productive tiller rate, resulting in stable annual yields exceeding 10.11 t·hm−2. Although its yield was slightly lower than that of mechanical transplanting, the double-press seeder offers a compelling practical alternative due to its operational convenience and economic benefits. Full article
Show Figures

Figure 1

23 pages, 11087 KiB  
Article
UAV-Based Automatic Detection of Missing Rice Seedlings Using the PCERT-DETR Model
by Jiaxin Gao, Feng Tan, Zhaolong Hou, Xiaohui Li, Ailin Feng, Jiaxin Li and Feiyu Bi
Plants 2025, 14(14), 2156; https://doi.org/10.3390/plants14142156 - 13 Jul 2025
Viewed by 259
Abstract
Due to the limitations of the sowing machine performance and rice seed germination rates, missing seedlings inevitably occur after rice is sown in large fields. This phenomenon has a direct impact on the rice yield. In the field environment, the existing methods for [...] Read more.
Due to the limitations of the sowing machine performance and rice seed germination rates, missing seedlings inevitably occur after rice is sown in large fields. This phenomenon has a direct impact on the rice yield. In the field environment, the existing methods for detecting missing seedlings based on unmanned aerial vehicle (UAV) remote sensing images often have unsatisfactory effects. Therefore, to enable the fast and accurate detection of missing rice seedlings and facilitate subsequent reseeding, this study proposes a UAV remote-sensing-based method for detecting missing rice seedlings in large fields. The proposed method uses an improved PCERT-DETR model to detect rice seedlings and missing seedlings in UAV remote sensing images of large fields. The experimental results show that PCERT-DETR achieves an optimal performance on the self-constructed dataset, with an mean average precision (mAP) of 81.2%, precision (P) of 82.8%, recall (R) of 78.3%, and F1-score (F1) of 80.5%. The model’s parameter count is only 21.4 M and its FLOPs reach 66.6 G, meeting real-time detection requirements. Compared to the baseline network models, PCERT-DETR improves the P, R, F1, and mAP by 15.0, 1.2, 8.5, and 6.8 percentage points, respectively. Furthermore, the performance evaluation experiments were carried out through ablation experiments, comparative detection model experiments and heat map visualization analysis, indicating that the model has a strong detection performance on the test set. The results confirm that the proposed model can accurately detect the number of missing rice seedlings. This study provides accurate information on the number of missing seedlings for subsequent reseeding operations, thus contributing to the improvement of precision farming practices. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

21 pages, 5660 KiB  
Article
Effect of Priming Treatment on Improving Germination and Seedling Performance of Aged and Iron-Coated Rice Seeds Aiming for Direct Sowing
by Nasratullah Habibi, Parneel, Naoki Terada, Babil Pachakkil, Atsushi Sanada, Atsushi Kamata and Kaihei Koshio
Plants 2025, 14(11), 1683; https://doi.org/10.3390/plants14111683 - 31 May 2025
Viewed by 1605
Abstract
In the case of direct sowing of rice in Japan, cold stress is a critical constraint affecting seed germination and early seedling development, ultimately reducing crop productivity. We evaluated the effects of priming, with or without iron coating on the germination and vigor [...] Read more.
In the case of direct sowing of rice in Japan, cold stress is a critical constraint affecting seed germination and early seedling development, ultimately reducing crop productivity. We evaluated the effects of priming, with or without iron coating on the germination and vigor of rice seeds harvested in 2022, 2023, and 2024. The assessments were conducted at seven temperature conditions: 13 °C, 15 °C, 17 °C, 19 °C, 21 °C, 23 °C, and 25 °C. Seeds were primed with or without PEG6000; coated with or without a mixture of calcined gypsum and iron powder; and tested for germination percentage, germination speed, and seedling vigor index. Under optimal conditions, iron-coated seeds harvested in 2022 showed a significant increase in germination from 58% (non-coated without priming) to 76% (coated with priming), and the seedling vigor index improved from 615 to 890. Under cold stress (15 °C), the coated seeds of the same year achieved 68% germination with priming compared to 46% in non-coated seeds without priming, with a vigor index increase from 480 to 750. Similar improvements were observed in seeds from 2023 and 2024, although the effect was more prominent in older than younger seeds. These results indicate that iron seed coating in combination with PEG priming mitigates the negative impacts of seed aging and enhances tolerance to cold stress during germination. The technique offers a promising, low-cost approach to improving rice establishment in environments facing suboptimal seed storage and early-season cold temperatures, in particular, aiming for direct sowing methods. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

15 pages, 6945 KiB  
Review
Integrated Weed Seed Impact Mills for Southeast Asian Rice Systems: Could They Aid Sustainable Weed Management?
by Leigh Vial, Jhoana Opeña and Jaquie Mitchell
Agronomy 2025, 15(6), 1333; https://doi.org/10.3390/agronomy15061333 - 29 May 2025
Viewed by 479
Abstract
Weed management is a persistent challenge in Southeast Asian rice production, particularly in direct-seeded rice (DSR), due to the diversity of weed species and variable field and environmental conditions that can compromise weed control, necessitating innovative solutions. An integrated weed seed impact mill [...] Read more.
Weed management is a persistent challenge in Southeast Asian rice production, particularly in direct-seeded rice (DSR), due to the diversity of weed species and variable field and environmental conditions that can compromise weed control, necessitating innovative solutions. An integrated weed seed impact mill (iWSIM) reduces weed seed banks by destroying weed seeds during the harvest process. This mixed study is the first to fully explore the applicability of iWSIM technology in Southeast Asian rice systems, focusing on both combine harvester and iWSIM specifications and operation, determinants of efficacy, and field and harvest conditions. Weed seed bank reduction with an iWSIM depends on several factors, including weed seed retention and subsequent capture by the combine at harvest, weed seed separation into the chaff fraction, and the iWSIM’s efficacy against weed seeds captured in the chaff fraction. Observations from Southeast Asia indicate variable seed retention among key weed species, presenting challenges for harvesting strategies and iWSIM effectiveness. To optimize the iWSIM efficacy, recommendations include larger fields to reduce the weed seed produced on bunds, achieving complete early-season weed control, lowering the harvest header height to about 15 cm to capture more weed seeds, cleaning mechanism adjustments to ensure weed seeds are retained in the chaff fraction, and greater combine harvester engine power to allow a lower header height and power the iWSIM. The estimated weed control benefits of the iWSIM should also be weighed against additional equipment operating costs. iWSIM technology holds promise as part of a sustainable solution for weed control in Southeast Asian rice, contingent upon further region-specific research and adaptation. Full article
Show Figures

Figure 1

13 pages, 1296 KiB  
Article
Economic Assessment of Herbicide Use in Rice Under Different Establishment Methods in Northwest India
by Navjot Singh Brar, Parminder Singh Sandhu, Anil Kumar, Prabjeet Singh and Simerjeet Kaur
Agrochemicals 2025, 4(2), 7; https://doi.org/10.3390/agrochemicals4020007 - 20 May 2025
Viewed by 807
Abstract
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of [...] Read more.
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of water resources and food by herbicides is a major health issue. In the present study, the use of herbicides in three different establishment methods of rice was examined with the objective to present and discuss the herbicide use pattern and cost of weed control. For this, a field-wide survey was conducted over an area of 165.4 ha in eight villages of the Tarn Taran District of Punjab, India. For two DSR methods, during the initial stage of crop growth, the weed infestation was reported to be less in moist fields sown with direct seeding (soil moisture in the field capacity stage) after pre-sowing irrigation (DSR-PSI). The herbicide use and cost of weed control under DSR-PSI conditions were similar to that of puddled transplanted rice, but were significantly lower than that of direct seeding in dry fields (rice seeds are sown in dry fields, and irrigation is applied immediately after sowing), i.e., DSR-IAS. Therefore, the DSR-PSI method of rice establishment can ensure minimum dependence on herbicides, as well as other benefits of direct seeding. Thus, there is a need to promote the DSR-PSI method over the DSR-IAS method among farmers in order to reduce herbicide use in DSR and ensure environmental safety. Full article
Show Figures

Figure 1

16 pages, 2715 KiB  
Article
Inter- and Intra-Specific Differences in Seed Germination Responding to Varying Osmotic Potentials in 261 Echinochloa Populations Collected from Rice Fields in Eastern China
by Aatiqa Masoom, Kai An, Yang Chen, Qigen Dai and Guoqi Chen
Agronomy 2025, 15(5), 1169; https://doi.org/10.3390/agronomy15051169 - 11 May 2025
Viewed by 462
Abstract
Echinochloa crus-galli (L.) P. Beauv. (EC), E. crus-galli var. mitis (Pursh) Petermann (ECM), and E. glabrescens Munro ex Hook.f. (EG) are all troublesome weeds and frequently managed as one species on rice (Oryza sativa) fields. To examine inter- and intra-specific differences [...] Read more.
Echinochloa crus-galli (L.) P. Beauv. (EC), E. crus-galli var. mitis (Pursh) Petermann (ECM), and E. glabrescens Munro ex Hook.f. (EG) are all troublesome weeds and frequently managed as one species on rice (Oryza sativa) fields. To examine inter- and intra-specific differences in seed germination responses to drought stresses, we conducted seed germination experiments with 57 EC, 112 ECM, and 92 EG populations. In all drought stress treatments, EC exhibited higher and faster germination than ECM and EG. Under 0 MPa, seed germinations of all populations initiated on 3 DAT (day after treatment). Accumulative seed germination percentages of EC, ECM, and EG under −0.1 MPa did not show significant differences with the same species treated with 0 MPa, while significantly decreased with the osmotic potential treated decreasing to −0.4 MPa or lower. OR50 values (the osmotic potential at which 50% germination occurs) for EC, ECM, and EG were −0.55 MPa, −0.49 MPa, and −0.45 MPa, respectively. Intra-specific variation within all three species increased as osmotic potential decreased from −0.1 MPa to −0.8 MPa. Moreover, seed germination was significantly correlated with 1000-seed weight and latitudes of population-collected locations. In four treatments, seeds produced by Echinochloa weeds growing in transplanted rice fields exhibited significantly higher germination percentages than those from direct-seeded rice fields. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

27 pages, 28696 KiB  
Article
Numerical Simulation of Dry and Wet Rice Seeds in an Air-Suction Seed Metering Device
by Cheng Qian, Zhuorong Fan, Daoqing Yan, Wei Qin, Youcong Jiang, Zishun Huang, He Xing, Zaiman Wang and Ying Zang
Agronomy 2025, 15(5), 1145; https://doi.org/10.3390/agronomy15051145 - 7 May 2025
Viewed by 663
Abstract
Rice direct seeding for bunch planting is a sustainable agricultural production method that reduces production costs, improves rice lodging resistance, and conserves irrigation water in the field. However, there are notable differences in seed treatment between direct seeding on dry land and in [...] Read more.
Rice direct seeding for bunch planting is a sustainable agricultural production method that reduces production costs, improves rice lodging resistance, and conserves irrigation water in the field. However, there are notable differences in seed treatment between direct seeding on dry land and in paddy fields, which can impact the seeding process’s accuracy. This study employs the numerical simulation methods of computational fluid dynamics (CFDs) and discrete element method (DEM) to examine the motion characteristics of dry and wet rice seeds in a fluid–solid coupled domain and their impact on seeding accuracy. The aim is to guide the optimization of the rice air-suction seed metering device. Rice seeds were divided into dry and wet groups, and their physical properties were measured. Discrete element models of rice seeds were constructed and calibrated using a polyhedral method. The results show that the static friction coefficient between the seed meter and the seed ranged from 0.902 to 0.950, and the thousand-grain weights ranged from 25.89 to 32.42 g, which were higher than those of the dry rice seed, which ranged from 0.774 to 0.839, and from 25.89 to 32.42 g. After calibration, the errors between the simulated dynamic stacking angles of HHZD, HYD, YLYD, HHZW, HYW, and YLYW and the physical–dynamic stacking angles were 0.12%, 0.13%, 0.75%, 0.62%, 0.08%, 0.75%, 0.59%, and 1.24%, respectively, which indicated that the discrete element model for rice was reliable. Additionally, a seeding accuracy test revealed that wet seeds of the same variety had higher missing and single indices, while dry seeds had higher triple and multiple indices. Furthermore, CFD-DEM simulations demonstrated that wet seeds’ normal and tangential forces were more significant than those on dry seeds during the seed-filling process. At 40 rpm, the normal and tangential forces during the seed-filling process of HYW are 37.69 × 10−3 N and 12.47 × 10−3 N, respectively, which are higher than those of HYD (25.18 × 10−3 N and 9.19 × 10−3 N). The action force of suctioned rice seeds was directly proportional to the missing and single indices. The primary factors contributing to the discrepancy in seeding accuracy between dry and wet rice are the thousand-grain weight, the static friction coefficient between the seed meter and the seed, and the action force exerted between the rice seeds. In addition, using a shaped hole structure and optimizing the seed chamber structure can reduce normal and tangential forces and improve seeding accuracy. This study provides a reference for the simulation of rice seed flow-solid coupling and optimization of air-suction seed metering devices. Full article
Show Figures

Figure 1

23 pages, 4985 KiB  
Article
Genome-Wide Dissection of Novel QTLs and Genes Associated with Weed Competitiveness in Early-Backcross Selective Introgression-Breeding Populations of Rice (Oryza sativa L.)
by Kim Diane Nocito, Varunseelan Murugaiyan, Jauhar Ali, Ambika Pandey, Carlos Casal, Erik Jon De Asis and Niña Gracel Dimaano
Biology 2025, 14(4), 413; https://doi.org/10.3390/biology14040413 - 13 Apr 2025
Viewed by 1693
Abstract
The direct-seeded rice (DSR) system is poised to become the dominant rice cultivation method due to its advantages, including reduced water usage, less labor requirements, decreased greenhouse gas emissions, and improved adaptation to climate change. However, weeds, particularly jungle rice (Echinochloa colona [...] Read more.
The direct-seeded rice (DSR) system is poised to become the dominant rice cultivation method due to its advantages, including reduced water usage, less labor requirements, decreased greenhouse gas emissions, and improved adaptation to climate change. However, weeds, particularly jungle rice (Echinochloa colona), significantly hinder DSR and cause substantial yield losses. This study aimed to develop rice cultivars competitive against jungle rice through selective breeding, focusing on early seed germination (ESG) and seedling vigor (ESV). We utilized 181 early-backcross selective introgression breeding lines (EB-SILs) developed using Green Super Rice (GSR) technology by backcrossing Weed Tolerant Rice1 (WTR1) with three donor parents, Haoannong, Cheng Hui 448, and Y134. Using the tunable genotyping-by-sequencing (tGBS®, Data2Bio Technologies, Ames, IA, USA) method, we identified 3971 common single nucleotide polymorphisms (SNPs) that facilitated the mapping of 19 novel quantitative trait loci (QTLs) associated with weed competitiveness—eight linked to ESG traits and eleven to ESV traits. Notably, all QTLs were novel except qRPH1, linked to relative plant height at 14 and 21 days after sowing. Key QTLs were located on chromosomes 2, 3, 5, 6, 8, 9, 10, and 12. Candidate genes identified within these QTLs are implicated in the plant’s response to various abiotic and biotic stresses. Our findings enhance the understanding of the genetic basis for ESG and ESV traits critical for weed competitiveness, supporting marker-assisted and genomic selection approaches for breeding improved rice varieties. Furthermore, this research lays the groundwork for employing gene expression, cloning, and CRISPR editing strategies to combat jungle rice, with potential applications for other weed species and contributing to effective integrated weed management in the DSR system. Full article
Show Figures

Figure 1

17 pages, 974 KiB  
Article
Effects of Planting Methods and Varieties on Rice Quality in Northern China
by Lili Wang, Liying Zhang, Na He, Changhua Wang, Yuanlei Zhang, Zuobin Ma, Wenjing Zheng, Dianrong Ma, Hui Wang and Zhiqiang Tang
Foods 2025, 14(7), 1093; https://doi.org/10.3390/foods14071093 - 21 Mar 2025
Cited by 2 | Viewed by 596
Abstract
With the continuous improvement in living standards, consumers’ demand for rice quality has been increasingly growing. This study analyzed the quality characteristics of different rice varieties under various cultivation methods. This study examined the rice variety Liaoxing 21 (LX21), the upland rice variety [...] Read more.
With the continuous improvement in living standards, consumers’ demand for rice quality has been increasingly growing. This study analyzed the quality characteristics of different rice varieties under various cultivation methods. This study examined the rice variety Liaoxing 21 (LX21), the upland rice variety Han 9710 (H9710), and the hybrid rice variety Liaoyou 7362 (LY7362) from Liaoning Province to evaluate the effects of transplanting (TP) and direct seeding (DS) on processing, appearance, nutritional, and tasting quality. The results indicated that the planting method (PM) had a relatively minor impact on processing quality. Compared to TP, DS significantly increased grain length (GL) by 1.19%, grain width (GW) by 2.69%, appearance (A) by 2.61%, stickiness (Ss) by 7.15%, degree of balance (DB) by 3.19%, apparent amylose content (AAC%) by 6.20%, fa by 0.66%, fa/fb3 by 5.34%, and protein content (PC) by 19.93%. However, DS significantly reduced the grain length/width ratio (GL/W) by 1.03%, chalky grain rate (CGR) by 46.00%, chalkiness (CH) by 52.76%, and fb3 by 4.23%. Compared to DS, TP resulted in a higher peak viscosity (PV), final viscosity (FV), and pasting temperature (PaT), whereas setback (SB) was lower. Among the tested varieties, LX21 exhibited superior milled rice rate (MRR), head rice rate (HRR), GL, GL/W, A, Ss, DB, taste value (T), and FV compared to H9710 and LY7362, while demonstrating significantly lower CGR, CH, hardness (H), fa, trough viscosity (TV), and peak time (PeT). Under the same planting conditions, the conventional rice variety LX21 demonstrated excellent processing, appearance, and taste quality, whereas H9710 exhibited favorable nutritional quality and Rapid Visco Analyzer (RVA) characteristics. Meanwhile, we also analyzed the correlation between temperature/light conditions and nutritional quality, as well as RVA profiles. The results showed that variations in temperature and light were closely associated with amylopectin accumulation and starch pasting properties. This study highlights the findings that selecting the appropriate PMs and japonica rice varieties can effectively enhance overall rice quality. In the medium maturing regions of Liaoning Province, adopting DS with medium–early maturing japonica rice varieties offers an optimal production strategy for achieving high quality, high yield, and efficient utilization of temperature and light resources. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

16 pages, 1100 KiB  
Article
The Influence of Planting Method and Short-Term Organic Amendments on Rhizosphere Microbial Communities in Paddies: Preliminary Results
by Ziqi Liu, Zhiqiang Tang, Lili Wang, Li Wen, Yi Liang, Changhua Wang and Hui Wang
Agronomy 2025, 15(3), 540; https://doi.org/10.3390/agronomy15030540 - 23 Feb 2025
Viewed by 568
Abstract
This study assessed the impact of planting techniques and short-term organic additions on soil quality, enzyme activity, and bacterial community composition. Biochar (BC) amendment substantially enhanced the ACE, Chao 1, and Shannon indices in direct-seeded rice (DS). Principal coordinate analysis (PCoA) and dissimilarity [...] Read more.
This study assessed the impact of planting techniques and short-term organic additions on soil quality, enzyme activity, and bacterial community composition. Biochar (BC) amendment substantially enhanced the ACE, Chao 1, and Shannon indices in direct-seeded rice (DS). Principal coordinate analysis (PCoA) and dissimilarity distances confirmed significant differences in the rhizosphere bacterial community composition associated with planting methods and organic applications. At the phylum level, transplanting (TT) significantly increased the abundance of Proteobacteria, Planctomycetes, Bacteroidetes, Firmicutes, and Verrucomicrobia, whereas DS significantly reduced the abundance of Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and WPS-2. Rice straw (RS) application was associated with increased Proteobacteria, Acidobacteria, Chloroflexi, and Gammaproteobacteria, while BC application improved Bacteroidetes, Firmicutes, and Verrucomicrobia. Planting methods and organic amendments were also observed to affect soil enzyme activities and physicochemical properties. DS was associated with an increase in microbial biomass nitrogen (MBN) and carbon (MBC), cellulase activities (CA), total phosphorus (TP), available nitrogen (AN), and available potassium (AK), while TT significantly increased urease activities (UA). Compared to BC and the control (CK), RS significantly increased CA, AN, and available phosphorus (AP). RDA ordination plots were used to examine the interactions between soil bacterial communities and soil physicochemical properties; planting techniques and organic additions had different effects on soil bacterial communities. Compared to RS and CK, BC enhanced MBN, MBC, UA, and AK. According to Pearson’s correlation analysis, Chloroflexi levels were positively associated with those of organic carbon (OC), MBN, and MBC. OC, TP, MBN, and CA positively correlated with gemmatimonadetes. In conclusion, these data reveal that planting practices and short-term organic inputs alter soil’s physicochemical parameters, enzyme activity, and microbial community composition. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

17 pages, 7242 KiB  
Article
Identification of Submergence Tolerance Loci in Dongxiang Wild Rice (DXWR) by Genetic Linkage and Transcriptome Analyses
by Jilin Wang, Cheng Huang, Lijuan Tang, Hongping Chen, Ping Chen, Dazhou Chen and Dianwen Wang
Int. J. Mol. Sci. 2025, 26(5), 1829; https://doi.org/10.3390/ijms26051829 - 20 Feb 2025
Viewed by 627
Abstract
The submergence tolerance of rice is a key factor in promoting rice direct seeding technology and resisting flood disasters. Dongxiang wild rice (DXWR) has strong submergence tolerance, but its genetic basis is still unclear. Here, we report quantitative trait loci (QTLs) analysis for [...] Read more.
The submergence tolerance of rice is a key factor in promoting rice direct seeding technology and resisting flood disasters. Dongxiang wild rice (DXWR) has strong submergence tolerance, but its genetic basis is still unclear. Here, we report quantitative trait loci (QTLs) analysis for hypoxic germination rate (HGR), hypoxic seedling rate (HSR), budlet submergence survival rate (BSSR) and seedling submergence survival rate (SSSR) using a linkage map in the backcross recombinant inbred lines (BRILs) that were derived from a cross of DXWR, and an indica cultivar, GZX49. A total of 20 QTLs related to submergence tolerance of rice were detected, explaining phenotypic variations ranging from 2% to 8.5%. Furthermore, transcriptome sequencing was performed on the seeds and seedlings of DXWR before and after submergence. During the seed hypoxic germination and seedling submergence stages, 6306 and 3226 differentially expressed genes (DEGs) were detected respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted on these differentially expressed genes. Using genetic linkage analysis and transcriptome data, combined with qRT-PCR, sequence comparison, and bioinformatics, LOC_Os05g32820 was putatively identified as a candidate gene for qHGR5.2 co-located with HGR and SSSR. These results will provide insights into the mechanism of rice submergence tolerance and provide a basis for improving rice submergence tolerance. Full article
Show Figures

Figure 1

18 pages, 2405 KiB  
Article
Screening and Assessment of Genetic Diversity of Rice (Oryza sativa L.) Germplasm in Response to Soil Salinity Stress at Germination Stage
by Alia Anwar, Javaria Tabassum, Shakeel Ahmad, Muhammad Ashfaq, Adil Hussain, Muhammad Asad Ullah, Nur Shuhadah Binti Mohd Saad, Abdelhalim I. Ghazy and Muhammad Arshad Javed
Agronomy 2025, 15(2), 376; https://doi.org/10.3390/agronomy15020376 - 31 Jan 2025
Cited by 2 | Viewed by 1317
Abstract
Salinity stress significantly affects rice yield, especially when it occurs during the germination stage. Direct seeding is an emerging method to conserve water in rice cultivation. However, to date, there have been limited efforts to screen rice germplasm for salt tolerance under this [...] Read more.
Salinity stress significantly affects rice yield, especially when it occurs during the germination stage. Direct seeding is an emerging method to conserve water in rice cultivation. However, to date, there have been limited efforts to screen rice germplasm for salt tolerance under this approach. In this study, 40 rice genotypes were evaluated for salt tolerance using a combination of germination and growth parameters. A total of 59 microsatellite markers were used to assess genetic diversity, revealing significant variation in both germination and growth traits. Based on germination parameters, IR36, Sri Malaysia 2, and MR185 performed well under saline conditions, while Hashemi Tarom and BAS2000 exhibited weak tolerance. MR219, MR211, and MR263 were identified as superior salt-tolerant genotypes against all growth parameters. BAS2000 and MCHKAB were identified as salt-sensitive, showing reduced growth in key traits, including root and shoot development. Marker-based genotyping identified a total of 287 alleles. The number of alleles per locus ranged from two to nine with an average of 4.86. The polymorphic information content (PIC) ranged from four to eight. The markers RM21, RM481 RM566, RM488, RM9, RM217, RM333, RM242, RM209, RM38, RM539, RM475, RM267, RM279, and RM430 were found highly polymorphic with PIC value > 0.7 and contain the highest number of alleles (≥6). Model- and distance-based population structures both inferred the presence of three clusters in the studied rice germplasm. Based on cluster analysis, Shiroodi, Hashemi Tarom, and BAS2000 were found as weak salt-tolerant varieties, whereas MR211 and MR219 are two Malaysian varieties found to be highly tolerant and have a high potential for direct seeding methods. An AMOVA test suggested that 95% genetic diversity was within the population, which implies that significant genetic variation was present in rice germplasm to be used to select parents for future breeding programs. Full article
(This article belongs to the Special Issue Genetics and Breeding of Field Crops in the 21st Century)
Show Figures

Figure 1

14 pages, 396 KiB  
Article
Assessment of Optimal Seeding Rate for Fine and Coarse Rice Varieties Using the Direct Seeded Rice (DSR) Method
by Atif Naeem, Madad Ali, Ahmad Jawad, Asif Ameen, Mehwish, Talha Liaqat, Samreen Nazeer, Muhammad Zubair Akram and Shahbaz Hussain
Seeds 2025, 4(1), 1; https://doi.org/10.3390/seeds4010001 - 26 Dec 2024
Viewed by 1408
Abstract
Rice (Oryza sativa L.) is one of the most crucial cereal crops worldwide, serving as a staple food for a significant portion of the global population. Rice is the second most important staple food crop in Pakistan after wheat, and it is [...] Read more.
Rice (Oryza sativa L.) is one of the most crucial cereal crops worldwide, serving as a staple food for a significant portion of the global population. Rice is the second most important staple food crop in Pakistan after wheat, and it is also a major export commodity. Concerning this, the current study aimed to evaluate the effects of different seed rates on the yield and yield-contributing parameters of rice varieties. The experiment was conducted over two consecutive kharif summer seasons, from 2020–21 and 2021–22, at the Pakistan Agricultural Research Council (PARC) Rice Program experimental area in Kala Shah Kaku, Lahore, Pakistan, by following a factorial randomized complete block design with three replications using coarse rice (KSK-133) and fine rice (Super Basmati) varieties. Different seed rates, including 27 kg/ha, 22 kg/ha, 17 kg/ha, and 12 kg/ha, were tested during the experiment. Different growth and yield-related attributes, such as plant height (cm), the number of productive tillers per plant, panicle length (cm), the number of grains per panicle, and grain yield (m−2), were recorded. The results showed that for KSK-133 and Super Basmati, the maximum grain yield was achieved at a sowing rate of 27 kg/ha in direct seed rice (DSR). The lowest yield was observed at a seeding rate of 12 kg/ha for KSK-133 and Super Basmati in DSR. Both basmati (Super Basmati) and coarse-grain (KSK-133) varieties exhibited similar responses to seed rate treatments, with the optimal performance observed at the highest seed rate of 27 kg/ha for both seasons. Grains per panicle and thousand grain weight emerged as critical determinants of yield, highlighting the need to balance vegetative growth with reproductive development. Breeding programs should focus on developing varieties that balance vegetative traits like tiller production and panicle length with reproductive traits to enhance overall yield. Based on these findings, it is concluded that using an optimal seeding rate of 27 kg/ha for direct-seeded fine and coarse rice varieties is beneficial in terms of tillers and higher yield. Full article
Show Figures

Figure 1

Back to TopTop