Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (798)

Search Parameters:
Keywords = direct tunneling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2608 KiB  
Article
Quality and Quantity Losses of Tomatoes Grown by Small-Scale Farmers Under Different Production Systems
by Tintswalo Molelekoa, Edwin M. Karoney, Nazareth Siyoum, Jarishma K. Gokul and Lise Korsten
Horticulturae 2025, 11(8), 884; https://doi.org/10.3390/horticulturae11080884 (registering DOI) - 1 Aug 2025
Abstract
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess [...] Read more.
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess postharvest tomato losses under different production systems within the small-scale supply chain using the indirect assessment (questionnaires and interviews) and direct quantification of losses. Farmers reported tomato losses due to insects (82.35%), cracks, bruises, and deformities (70.58%), and diseases (64.71%). Chemical sprays were the main form of pest and disease control reported by all farmers. The direct quantification sampling data revealed that 73.07% of the tomatoes were substandard at the farm level, with 47.92% and 25.15% categorized as medium-quality and poor-quality, respectively. The primary contributors to the losses were decay (39.92%), mechanical damage (31.32%), and blotchiness (27.99%). Postharvest losses were significantly higher under open-field production systems compared to closed tunnels. The fungi associated with decay were mainly Geotrichum, Fusarium spp., and Alternaria spp. These findings demonstrate the main drivers behind postharvest losses, which in turn highlight the critical need for intervention through training and support, including the use of postharvest loss reduction technologies to enhance food security. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

18 pages, 3817 KiB  
Article
The Distribution Characteristics of Frost Heaving Forces on Tunnels in Cold Regions Based on Thermo-Mechanical Coupling
by Yujia Sun, Lei Peng and Qionglin Li
Appl. Sci. 2025, 15(15), 8537; https://doi.org/10.3390/app15158537 (registering DOI) - 31 Jul 2025
Abstract
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall [...] Read more.
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall frost heaves in a freeze–thaw cycle. Using a COMSOL Multiphysics 6.0 platform and the sequential coupling method, the temperature field evolution of tunnel-surrounding rock, freezing cycle development, and distribution characteristics of the frost heaving force of a tunnel lining under different minimum temperatures, numbers of negative temperature days, frost heave ratios, and anisotropy coefficients of frost heave deformation were systematically simulated. The results revealed that the response of the temperature field of tunnel-surrounding rock to the external temperature varies spatially with time lags, the shallow surface temperatures and the area around the lining fluctuate with the climate, and the temperature of the deep surrounding rock is dominated by the geothermal gradient. The extent of the freezing cycle and the frost heaving force increase significantly when lowering the minimum temperature. The maximum frost heaving force usually occurs in the region of the side wall and the spring line, and tensile stress is prone to be generated at the spring line; the influence of slight fluctuations in the minimum temperature or the short shift in the coldest day on the frost heaving force is limited. A substantial increase in frost heaving force is observed with higher frost heave ratios; for example, an increase from 0.25% to 2.0% results in a 116% rise at the sidewall. Although the increase in the anisotropy coefficient of frost heave deformation does not change the overall distribution pattern of frost heaving force, it can exacerbate the directional concentration of frost heave strain, which can increase the frost heaving force at the periphery of the top arch of the lining. This study revealed the distribution pattern and key influencing factors of the freezing cycle and frost heaving force for tunnels, providing a theoretical basis and data reference for the frost resistance design of tunnels in cold regions. Full article
Show Figures

Figure 1

22 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

21 pages, 3822 KiB  
Article
Mechanisms of Tunnel Rockburst Development Under Complex Geostress Conditions in Plateau Regions
by Can Yang, Jinfeng Li, Yuan Qian, Wu Bo, Gen Zhang, Cheng Zhao and Kunming Zhao
Appl. Sci. 2025, 15(15), 8517; https://doi.org/10.3390/app15158517 (registering DOI) - 31 Jul 2025
Abstract
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of [...] Read more.
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of tunnel rockbursts in high-altitude regions, using geostress orientation, lateral pressure coefficient, and tunnel depth as the primary independent variables. Secondary development of FLAC3D 7.00.126 was carried out using FISH language to enable the recording and visualization of tangential stress, the Russense rockburst criterion, and elastic strain energy. Based on this, the influence mechanisms of these key geostress parameters on the location, extent, and intensity of rockbursts within tunnel cross sections were analyzed. Results indicate that geostress orientation predominantly affects the location of rockbursts, with the surrounding rock in the direction of the minimum principal stress on the tunnel cross section being particularly prone to rockburst risks. The lateral pressure coefficient primarily influences the rockburst intensity and pit range within local stress concentration zones, with higher values leading to greater rockburst intensity. Notably, when structural stress is sufficiently large, rockbursts may occur even in tunnels with shallow burial depths. Tunnel depth determines the magnitude of geostress, mainly affecting the overall risk and potential extent of rockbursts within the cross section, with greater depths leading to higher rockburst intensities and a wider affected area. Full article
Show Figures

Figure 1

17 pages, 3564 KiB  
Article
Three-Dimensional Deformation Calculation of Wind Tunnel Flexible Wall Using Orthogonal Beam Function
by Xiuxuan Yang, Yueyin Ma, Guishan Wang, Can Yang and Chengguo Yu
Materials 2025, 18(15), 3593; https://doi.org/10.3390/ma18153593 (registering DOI) - 31 Jul 2025
Viewed by 113
Abstract
Transonic/supersonic wind tunnels are indispensable equipment for advanced aircraft to operate across subsonic, transonic, and supersonic regimes. The deformation of the flexible nozzle is the key to accurately controlling the Mach number of transonic wind tunnels. However, solving the deformation of flexible wall [...] Read more.
Transonic/supersonic wind tunnels are indispensable equipment for advanced aircraft to operate across subsonic, transonic, and supersonic regimes. The deformation of the flexible nozzle is the key to accurately controlling the Mach number of transonic wind tunnels. However, solving the deformation of flexible wall plates remains challenging due to the highly nonlinear relationship between wall loading and deformation, as well as the lack of simple yet effective mathematical models under complex boundary conditions. To accurately describe the deformation of flexible wall plates and improve computational efficiency, this study systematically investigates the deformation characteristics of flexible walls in two orthogonal directions and proposes an orthogonal beam function (OBF) model for characterizing small-deflection deformations. For large-deflection deformations in a flexible wall, an elliptic integral (EI) solution is introduced, and the OBF model is correspondingly modified. Experimental validation confirms that the OBF model effectively describes large-deflection deformations in a flexible wall. This research contributes to solving large-deflection deformation in flexible wall plates, enhancing both computational efficiency and accuracy. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

14 pages, 6710 KiB  
Article
Bow Thruster at Normal and Off-Design Conditions
by Mehrdad Kazemi and Nikolai Kornev
J. Mar. Sci. Eng. 2025, 13(8), 1463; https://doi.org/10.3390/jmse13081463 - 30 Jul 2025
Viewed by 107
Abstract
Reliable prediction of tunnel thruster performance under reverse, or off-design, reverse operating direction (ROD) conditions, is crucial for modern vessels that require bidirectional thrust from a single unit—such as yachts and offshore support vessels. Despite the increasing demand for such a capability, there [...] Read more.
Reliable prediction of tunnel thruster performance under reverse, or off-design, reverse operating direction (ROD) conditions, is crucial for modern vessels that require bidirectional thrust from a single unit—such as yachts and offshore support vessels. Despite the increasing demand for such a capability, there remains limited understanding of the unsteady hydrodynamic behavior and performance implications of ROD operation. This study addresses this gap through a scale-resolving computational fluid dynamics (CFD) investigation of a full-scale, fixed-pitch propeller with a diameter of 0.62, installed in a tunnel geometry representative of yacht-class side thrusters. Using advanced turbulence modeling, we compare the thruster’s performance under both the normal operating direction (NOD) and ROD. The results reveal notable differences: in ROD, the upstream separation zone was more compact and elongated, average thrust increases by approximately 3–4%, and torque and pressure fluctuations rise by 15–30%. These findings demonstrate that a single tunnel thruster can meet bidirectional manoeuvring requirements. However, the significantly elevated unsteady loads during ROD operation offer a plausible explanation for the increased noise and vibration frequently observed in practice. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 179
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

8 pages, 1609 KiB  
Proceeding Paper
Development of a Multidirectional BLE Beacon-Based Radio-Positioning System for Vehicle Navigation in GNSS Shadow Roads
by Tae-Kyung Sung, Jae-Wook Kwon, Jun-Yeong Jang, Sung-Jin Kim and Won-Woo Lee
Eng. Proc. 2025, 102(1), 9; https://doi.org/10.3390/engproc2025102009 - 29 Jul 2025
Viewed by 63
Abstract
In outdoor environments, GNSS is commonly used for vehicle navigation and various location-based ITS services. However, in GNSS shadow roads such as tunnels and underground highways, it is challenging to provide these services. With the rapid expansion of GNSS shadow roads, the need [...] Read more.
In outdoor environments, GNSS is commonly used for vehicle navigation and various location-based ITS services. However, in GNSS shadow roads such as tunnels and underground highways, it is challenging to provide these services. With the rapid expansion of GNSS shadow roads, the need for radio positioning technology that can serve the role of GNSS in these areas has become increasingly important to provide accurate vehicle navigation and various location-based ITS services. This paper proposes a new GNSS shadow road radio positioning technology using multidirectional BLE beacon signals. The structure of a multidirectional BLE beacon that radiates different BLE beacon signals in two or four directions is introduced, and explains the principle of differential RSSI technology to determine the vehicle’s location using these signals. Additionally, the technology used to determine the vehicle’s speed is described. A testbed was constructed to verify the performance of the developed multidirectional BLE beacon-based radio navigation system. The current status and future plans of the testbed installation are introduced, and the results of position and speed experiments using the testbed for constant speed and deceleration driving are presented. Full article
Show Figures

Figure 1

36 pages, 7310 KiB  
Review
Electrical Properties of Carbon Nanotubes: From Individual to Assemblies
by Yuxin Xiang, Lili Zhang and Chang Liu
Nanomaterials 2025, 15(15), 1165; https://doi.org/10.3390/nano15151165 - 28 Jul 2025
Viewed by 332
Abstract
Carbon nanotubes (CNTs) have attracted intense research interest owing to their unique one-dimensional structure and exceptional properties. However, when individual CNTs are assembled to macrostructures such as films and fibers, their electrical performance often deteriorates significantly. This review offers a comprehensive look at [...] Read more.
Carbon nanotubes (CNTs) have attracted intense research interest owing to their unique one-dimensional structure and exceptional properties. However, when individual CNTs are assembled to macrostructures such as films and fibers, their electrical performance often deteriorates significantly. This review offers a comprehensive look at the recent progress in the electrical properties and measurement techniques of CNTs, ranging from individual nanotubes to their assemblies. Firstly, we explore the methods for measuring the electrical properties of individual CNTs, including scanning tunnelling microscopy, electron microscope-based nanoprobes, and measurements using nanodevices. Secondly, we examine how structural characteristics of CNTs (e.g., chirality, diameter, and defects) influence their electrical behaviors. A critical comparison between individual CNTs and their assemblies reveals the difficulties in transferring the electrical properties from nanoscale to bulk materials. Finally, we put forward strategies to boost the electrical conductivity of CNT assemblies and also sketch out future research and development directions. Full article
Show Figures

Figure 1

18 pages, 7521 KiB  
Article
Study on Optimization of Construction Parameters and Schemes for Complex Connecting Tunnels of Extra-Long Highway Tunnels Based on Field Monitoring and Numerical Simulation
by Shaohui He, Jiaxuan Liu, Dawei Huang and Jianfei Ma
Infrastructures 2025, 10(8), 197; https://doi.org/10.3390/infrastructures10080197 - 26 Jul 2025
Viewed by 219
Abstract
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, [...] Read more.
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, established an on-site monitoring scheme and a refined numerical simulation model. It systematically analyzed the impact of various construction parameters on the construction process of connecting tunnels and the main tunnel, and on this basis, optimized the construction scheme, improving construction efficiency. The research results show that (1) after the excavation of the connecting tunnel, the confining pressure at the top of the working face decreases rapidly, while the confining pressure on both sides increases rapidly; the extreme point of the confining pressure decrease is located at the central point at the top of the excavated working face. (2) For Class III surrounding rock excavated using the full-face blasting method, the maximum influence range of working face excavation on the stratum along the tunneling direction is approximately 4D (where D represents the excavation step). (3) The larger the excavation step of the connecting tunnel, the more obvious the stress concentration phenomenon at the central point of the working face arch crown, and the excavation step should be optimally controlled within the range of 2–3 m. (4) When explosives in the blast hole adopt decoupled charging, the ratio of borehole diameter to charge diameter can be increased to utilize the air gap to buffer the energy generated by the explosion. Full article
Show Figures

Figure 1

21 pages, 4145 KiB  
Article
Advances in Illumination of Lengthy Road Tunnels by Means of Innovative Vaulting and Sustainable Control of Flicker Perturbations
by Joseph Cabeza-Lainez and Antonio Peña-García
Sustainability 2025, 17(15), 6680; https://doi.org/10.3390/su17156680 - 22 Jul 2025
Viewed by 276
Abstract
Traditional approaches in tunnel lighting have been directed toward the installation of appropriate luminaires in the intermediate and transitional sections with the simple objective of diminishing the effect of delayed visual accommodation during daylight hours. Such efforts run in parallel with the target [...] Read more.
Traditional approaches in tunnel lighting have been directed toward the installation of appropriate luminaires in the intermediate and transitional sections with the simple objective of diminishing the effect of delayed visual accommodation during daylight hours. Such efforts run in parallel with the target of keeping the huge electrical use at the lowest level. Nevertheless, inadequate attention has been conceded to the interior areas, whose noticeable longitude in several instances, and subsequently the duration of occupancy of the users, can produce discomfort in the majority of the tunnel or underground passageway. It is in this region where the flicker effect presents a more remarkable impact. Although such effect is in fact uncomfortable, the strategies to eliminate it efficiently have not been developed in depth and the result is still deserving, especially in terms of sustainability. The reasons for this neglect, as well as some particularities and solutions, are exposed and discussed in the present article. Specifically, it is proved that the use of sunlight can be an adequate initiative and a positive energy input into design and retrofit tunnels capable of hampering or totally avoiding such unwanted effect. The innovative tunnel geometry explained in this manuscript is not cylindrical, and it is not based in revolution forms. Thus, it prevents the appearance of such unnerving visual effects, which compromise sustainability and endanger security. We are in the position to explain how the vector field generated by the normal to the points of the novel surface displayed remains non-parallel, ensuring appropriate diffusivity and, consequently, an even distribution of radiated energy. In the same manner, the notion of the tunnel is extended from a linear system to a veritable network of galleries, which can traverse in space bi- or even three-dimensionally. Accordingly, we will offer diverse instances of junctions and splices that further enhance the permeability into the terrain, augmenting the resilience capabilities of this disruptive technology. With all the former, a net reduction of costs reaching 25% can be easily expected with revenues. Full article
Show Figures

Figure 1

16 pages, 3620 KiB  
Article
Wind Tunnel Experimental Study on Dynamic Coupling Characteristics of Flexible Refueling Hose–Drogue System
by Yinzhu Wang, Jiangtao Huang, Qisheng Chen, Enguang Shan and Yufeng Guo
Aerospace 2025, 12(7), 646; https://doi.org/10.3390/aerospace12070646 - 21 Jul 2025
Viewed by 151
Abstract
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping [...] Read more.
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping phenomenon, which greatly limits the success rate and safety of aerial refueling operations. Based on a 2.4 m transonic wind tunnel, high-speed wind tunnel test technology of a flexible aerial refueling hose–drogue system was established to carry out experimental research on the coupling characteristics of aerodynamics and multi-body dynamics. Based on the aid of Videogrammetry Model Deformation (VMD), high-speed photography, dynamic balance, and other wind tunnel test technologies, the dynamic characteristics of the hose–drogue system in a high-speed airflow and during the approach of the receiver are obtained. Adopting flexible multi-body dynamics, a dynamic system of the tanker, hose, drogue, and receiver is modeled. The cable/beam model is based on an arbitrary Lagrange–Euler method, and the absolute node coordinate method is used to describe the deformation, movement, and length variation in the hose during both winding and unwinding. The aerodynamic forces of the tanker, receiver, hose, and drogue are modeled, reflecting the coupling influence of movement of the tanker and receiver, the deformation of the hose and drogue, and the aerodynamic forces on each other. The tests show that during the approach of the receiver (distance from 1000 mm to 20 mm), the sinking amount of the drogue increases by 31 mm; due to the offset of the receiver probe, the drogue moves sideways from the symmetric plane of the receiver. Meanwhile, the oscillation magnitude of the drogue increases (from 33 to 48 and from 48 to 80 in spanwise and longitudinal directions, respectively). The simulation results show that the shear force induced by the oscillation of the hose and the propagation velocity of both the longitudinal and shear waves are affected by the hose stiffness and Mach number. The results presented in this work can be of great reference to further increase the safety of aerial refueling. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 15575 KiB  
Article
Transport Properties of One-Dimensional van der Waals Heterostructures Based on Molybdenum Dichalcogenides
by Daulet Sergeyev and Kuanyshbek Shunkeyev
Crystals 2025, 15(7), 656; https://doi.org/10.3390/cryst15070656 - 18 Jul 2025
Viewed by 547
Abstract
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based [...] Read more.
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based on MoS2(24,24) and MoTe2(24,24), the effect of resonant tunneling is suppressed due to electron–phonon scattering. This suppression arises from the fact that these materials are semiconductors with an indirect band gap, where phonon participation is required to conserve momentum during transitions between the valence and conduction bands. In contrast, nanodevices incorporating MoSe2(24,24), which possesses a direct band gap, exhibit resonant tunneling, as quasiparticles can tunnel between the valence and conduction bands without a change in momentum. It was demonstrated that the presence of vacancy defects in the CNT segment significantly degrades quasiparticle transport compared to Stone–Wales (SW) defects. Furthermore, it was revealed that resonant interactions between SW defects in MoTe2(24,24)–hBN(27,27)–CNT(24,24) nanodevices can enhance the differential conductance under certain voltages. These findings may be beneficial for the design and development of nanoscale diodes, back nanodiodes, and tunneling nanodiodes. Full article
Show Figures

Figure 1

13 pages, 3483 KiB  
Article
The “Double-Row Shoelace” Capsulodesis: A Novel Technique for the Repair and Reconstruction of the Scapholunate Ligament of the Wrist
by Adriano Cannella, Rocco De Vitis, Arturo Militerno, Giuseppe Taccardo, Vitale Cilli, Lorenzo Rocchi, Giulia Maria Sassara and Marco Passiatore
Surgeries 2025, 6(3), 57; https://doi.org/10.3390/surgeries6030057 - 16 Jul 2025
Viewed by 168
Abstract
Introduction: The scapholunate interosseus ligament (SLIL) is critical for wrist stability, with injuries causing carpal instability and potential scapholunate advanced collapse (SLAC). This technical note presents a novel ligament-sparing surgical technique for treating SLIL tears ranging from grade 2 to 4 of the [...] Read more.
Introduction: The scapholunate interosseus ligament (SLIL) is critical for wrist stability, with injuries causing carpal instability and potential scapholunate advanced collapse (SLAC). This technical note presents a novel ligament-sparing surgical technique for treating SLIL tears ranging from grade 2 to 4 of the Garcia-Elias classification. Materials and Methods: A retrospective study was performed on ten patients treated with this novel technique. The technique involves a dorsal approach to the wrist through a 5–7 cm incision ulnar to Lister’s tubercle. After exposing the scapholunate joint, reduction is performed using Kirschner wires (K-wires) as joysticks, followed by stabilisation with three K-wires through the scapholunate, scapho-capitate, and radio-lunate joints. Two 2.3 mm suture anchors with double sutures are placed where the reduction K-wires were removed. One pair of sutures connects the anchors and any remaining SLIL tissue, while the second pair create a shoelace-like capsulodesis. Post-operative care includes staged K-wire removal at one and two months, with progressive rehabilitation before returning to weight-bearing activities at six months. Results: All patients improved in pain and function. The technique addresses SLIL injuries by restoring both coronal alignment through ligament repair and sagittal alignment via dorsal capsulodesis. The use of suture anchors and direct repair preserves the native tissue while reinforcing the dorsal capsule–scapholunate septum complex, avoiding the need for tendon grafts or extensive bone tunnelling. Conclusions: This ligament-sparing technique offers several advantages, including absence of donor site morbidity, minimal damage to carpal cartilage and vascularity, and preservation of surgical options should revision be necessary. The procedure effectively addresses both components of scapholunate instability while maintaining a relatively straightforward surgical approach. Full article
(This article belongs to the Section Hand Surgery and Research)
Show Figures

Figure 1

Back to TopTop