Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = direct reduced iron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4926 KB  
Article
A Bipolar Membrane Containing Core–Shell Structured Fe3O4-Chitosan Nanoparticles for Direct Seawater Electrolysis
by Hyeon-Bee Song, Eun-Hye Jang and Moon-Sung Kang
Membranes 2026, 16(1), 23; https://doi.org/10.3390/membranes16010023 - 2 Jan 2026
Viewed by 329
Abstract
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation [...] Read more.
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation by regulating local pH, thereby enhancing DSWE efficiency. Accordingly, this study focuses on the fabrication of a high-performance BPM for DSWE applications. The water-splitting performance of BPMs is strongly dependent on the properties of the catalyst at the bipolar junction. Herein, iron oxide (Fe3O4) nanoparticles were coated with cross-linked chitosan to improve solvent dispersibility and catalytic activity. The resulting core–shell catalyst exhibited excellent dispersibility, facilitating uniform incorporation into the BPM. Water-splitting flux measurements identified an optimal catalyst loading of approximately 3 μg cm−2. The BPM containing Fe3O4–chitosan nanoparticles achieved a water-splitting flux of 26.2 μmol cm−2 min−1, which is 18.6% higher than that of a commercial BPM (BP-1E, Astom Corp., Tokyo, Japan). DSWE tests using artificial seawater as the catholyte and NaOH as the anolyte demonstrated lower cell voltage and stable catholyte acidification over 100 h compared to the commercial membrane. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

20 pages, 4458 KB  
Article
In Situ Calibration Method for an MGT Detection System Based on Helmholtz Coils
by Ziqiang Yuan, Chen Wang, Yanzhang Xie, Yingzi Zhang and Wenyi Liu
Sensors 2026, 26(1), 191; https://doi.org/10.3390/s26010191 - 27 Dec 2025
Viewed by 334
Abstract
Vector magnetometer arrays are essential for ferromagnetic target detection and MGT measurement, but their performance is limited by proportional factor errors, triaxial non-orthogonality, soft/hard iron interference, and inconsistent array orientations. Traditional rotation-based scalar calibration requires magnetic-free turntables or manual multi-orientation operations, introducing mechanical [...] Read more.
Vector magnetometer arrays are essential for ferromagnetic target detection and MGT measurement, but their performance is limited by proportional factor errors, triaxial non-orthogonality, soft/hard iron interference, and inconsistent array orientations. Traditional rotation-based scalar calibration requires magnetic-free turntables or manual multi-orientation operations, introducing mechanical noise, orientation perturbations, and poor repeatability. This paper proposes an in situ rapid calibration method for MGT systems using triaxial Helmholtz coils. By generating three-dimensional magnetic field sequences of constant magnitude and random directions while keeping the sensors stationary, the method replaces conventional rotational excitation. A two-stage rapid calibration algorithm is developed to achieve individual sensor error modeling and array relative calibration. Experimental results show substantial improvements. The tensor invariant CT decreased from 6287.84 nT/m to 7.57 nT/m, with variance reduced from 1.46 × 106 to 13.47 nT2/m2; inter-sensor output differences were suppressed to 1–3 nT; and the magnetic field magnitude error dropped from ~940 nT to 3 × 10−4 nT, achieving a 5–6-order-of-magnitude enhancement. These results verify the method’s effectiveness in eliminating rotational errors, improving array consistency, and enabling high-precision in situ calibration with strong engineering value. Full article
(This article belongs to the Special Issue Advances in Magnetic Field Sensing and Measurement)
Show Figures

Figure 1

9 pages, 1830 KB  
Proceeding Paper
Adopting Multi-Material Wire DED-LB in Naval Industry: A Case Study in Stainless Steel and Nickel-Based Alloys
by Konstantinos Tzimanis, Nikolas Gavalas, Nikolas Porevopoulos and Panagiotis Stavropoulos
Eng. Proc. 2025, 119(1), 37; https://doi.org/10.3390/engproc2025119037 - 23 Dec 2025
Viewed by 161
Abstract
Multi-material Directed Energy Deposition (DED) Additive Manufacturing (AM) processes enable the integration of different material properties into a single structure, addressing the requirements of various applications and working environments. Laser-based Directed Energy Deposition (DED-LB) has been employed in the past for surface coatings [...] Read more.
Multi-material Directed Energy Deposition (DED) Additive Manufacturing (AM) processes enable the integration of different material properties into a single structure, addressing the requirements of various applications and working environments. Laser-based Directed Energy Deposition (DED-LB) has been employed in the past for surface coatings as well as for the repair and repurposing of high-value industrial components, with the goal of extending product lifetime without relying on expensive and time-consuming manufacturing from scratch. While powder DED-LB has traditionally been used for multi-material AM, the more resource-efficient and cost-effective wire DED-LB process is now being explored as a solution for creating hybrid materials. This work focuses on the critical aspects of implementing multi-material DED-LB, specifically defining an optimal operating process window that ensures the best quality and performance of the final parts. By investigating the possibility of combining stainless steel and nickel-based alloys, this study seeks to unlock new possibilities for the repair and optimization of naval components, ultimately improving operational efficiency and reducing downtime for critical naval equipment. The analysis of the experimental results has revealed strong compatibility of stainless steel 316 with Inconel 718 and stainless steel 17-4PH, while the gray cast iron forms acceptable fusion only with stainless steel 17-4PH. Finally, during the experimental phase, substrate pre-heating and process monitoring with thermocouples will be employed to manage and assess heat distribution in the working area, ensuring defect-free material joining. Full article
Show Figures

Figure 1

16 pages, 5705 KB  
Article
Study on the Recrystallization Behavior and Texture Evolution of 0.5 mm Electromagnetic Pure Iron Cold-Rolled Strip
by Qing Li, Huaying Li, Yinghui Wei, Yipu Shi, Baosheng Liu and Yong Jiang
Metals 2026, 16(1), 3; https://doi.org/10.3390/met16010003 - 19 Dec 2025
Viewed by 201
Abstract
The control of recrystallization in submillimeter-gauge electromagnetic pure iron strips is critical for developing high-sensitivity electromagnetic devices, yet the microstructure–property relationship during annealing remains poorly understood. This study systematically investigates the recrystallization topology, texture evolution, and their direct links to the electromagnetic properties [...] Read more.
The control of recrystallization in submillimeter-gauge electromagnetic pure iron strips is critical for developing high-sensitivity electromagnetic devices, yet the microstructure–property relationship during annealing remains poorly understood. This study systematically investigates the recrystallization topology, texture evolution, and their direct links to the electromagnetic properties in an industrially produced 0.5 mm thick DT4 electromagnetic pure iron cold-rolled strip (80% reduction) during annealing at 900 °C. By combining EBSD, XRD, and VSM, we found that recrystallization initiates at shear bands after 7 s and completes within 25 s, yielding equiaxed grains with an average size of 27.5 μm. Prolonged annealing to 180 s led to grain coarsening to 64 μm. Concurrently, the fraction of low-angle grain boundaries decreased dramatically from 69.6% to 9.09%. The recrystallization texture, dominated by oriented nucleation at shear bands, showed a stable γ-fiber component (~20% volume fraction) and a significantly attenuated α-fiber component (decreasing from 66.3% to 21.5%). The Goss texture ({110}<001>) increased notably from 0.54% to 14.0%, attributable to grain boundary energy minimization in the later stages. Recrystallization kinetics obeyed the JMAK model Xrex = 1 − exp (−2.29 × 10−8 t6.434). Crucially, the completed recrystallization process reduced the coercivity (Hc) by 78.5% and increased the magnetic induction B10000 by 0.045T. These findings elucidate the recrystallization mechanism and establish a quantitative microstructure–property correlation, providing a theoretical foundation for optimizing industrial annealing processes for thin-gauge electromagnetic pure iron strips. Full article
(This article belongs to the Special Issue Advanced Rolling Technologies of Steels and Alloys)
Show Figures

Figure 1

27 pages, 4159 KB  
Article
Research on Intelligent Control Method of Camber for Medium and Heavy Plate Based on Machine Vision
by Chunyu He, Chunpo Yue, Zhong Zhao, Zhiqiang Wu and Zhijie Jiao
Materials 2025, 18(24), 5668; https://doi.org/10.3390/ma18245668 - 17 Dec 2025
Viewed by 209
Abstract
With the continuous development of intelligent manufacturing in the iron and steel industry, there are increasing requirements for the quality control and precision of steel products. Camber is one of the critical defects affecting product quality in medium and heavy plates. Its occurrence [...] Read more.
With the continuous development of intelligent manufacturing in the iron and steel industry, there are increasing requirements for the quality control and precision of steel products. Camber is one of the critical defects affecting product quality in medium and heavy plates. Its occurrence during the rolling process not only reduces the yield of plates but also leads to serious production accidents such as rolling scrap and equipment damage, increasing the operational costs of enterprises. Addressing the difficulties that camber is influenced by complex factors and direct modeling control is challenging, this study proposes a camber detection and control method for medium and heavy plates based on image processing and machine learning algorithms, relying on an actual plate production line. The Optuna-XGBoost model is used to mine and train the production data of plates rolling, extracting the optimal control experience of operators as the pre-control values for camber. The Optuna-XGBoost model achieves an R2 of 0.9999 on the training set and 0.9794 on the test set, demonstrating excellent fitting performance. Meanwhile, a camber detection technology during the plate rolling process is developed based on machine vision. A feedback control model for camber of medium and heavy plates based on distal lateral movement is established. The combined application of pre-control and feedback control reduces the occurrence of camber, ensuring the overall flatness of steel plates during the rolling process. This paper establishes an intelligent control framework for plate camber, synergized by data-driven pre-control and machine vision-based feedback control, offering a novel approach for the online optimal control of complex nonlinear industrial processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

11 pages, 1986 KB  
Article
Laser-Induced Reconfiguration of Magnetic Domain Structure in Iron Garnet Films with Strong In-Plane Anisotropy
by Mikhail A. Stepanov, Nikolai V. Mitetelo, Andrey A. Guskov, Alexey S. Kaminskiy and Alexander P. Pyatakov
Nanomaterials 2025, 15(23), 1830; https://doi.org/10.3390/nano15231830 - 4 Dec 2025
Viewed by 430
Abstract
In this work we demonstrate the laser-driven reconfiguration of stripe domains in a thick bismuth-substituted iron garnet film with the (210) crystallographic orientation exhibiting strong in-plane anisotropy. Under a weak in-plane external magnetic field (H), laser irradiation leads to local “twisting” [...] Read more.
In this work we demonstrate the laser-driven reconfiguration of stripe domains in a thick bismuth-substituted iron garnet film with the (210) crystallographic orientation exhibiting strong in-plane anisotropy. Under a weak in-plane external magnetic field (H), laser irradiation leads to local “twisting” of the magnetic domains; domains with opposite magnetization rotate in different directions. The twisting angle increases linearly with the in-plane magnetic field (H) (above a threshold of approximately 6 Oe) and also changes linearly with the average laser intensity, being fully reversible after the irradiation process. The magnitude of the domain rotation effect does not depend on the light polarization state or its orientation. After optical irradiation, the magnetization distribution in the sample returns to its initial state. It is also observed that moving the focused beam spot along the surface can lead to irreversible modifications in the domain topology in several ways: there is a shift in the dislocations in stripe domain structure (domain “heads”) across the beam transfer direction, expanding the area with a specific magnetization vector orientation, and the stabilization of domain wall positions by their pinning on crystallographic defects. The proposed analytical model based on a local reducing of the effective anisotropy fully describes the rotation type and angle of domains and domain walls, defining their possible trajectories and certain values of the area heating or local anisotropy modulation and the rotation angles. The experimental results and the theoretical model demonstrate a thermal origin of the laser-induced effect in this type of magnetic domain structure. Full article
Show Figures

Figure 1

24 pages, 4187 KB  
Review
Climate-Driven Changes in the Nutritional Value and Food Safety of Legume Seeds
by Mateusz Labudda, Wesley Borges Wurlitzer, Tomasz Niedziński, Julia Renata Schneider, Jakub Frankowski, Szymon Florczak, Ewa Muszyńska, Mirosława Górecka, Monika Tomczykowa, Beata Prabucka, Anna Rybarczyk-Płońska, Wojciech Makowski, Maria Goreti de Almeida Oliveira, Katarzyna Leszczyńska, Iwona Morkunas, Noeli Juarez Ferla and Michał Tomczyk
Nutrients 2025, 17(23), 3703; https://doi.org/10.3390/nu17233703 - 26 Nov 2025
Viewed by 766
Abstract
Background/Objectives: Leguminous plants (Fabaceae) are essential for global food and nutritional security due to their high protein content, bioactive compounds, and ecological role in nitrogen fixation. However, climate change poses significant threats to their productivity, quality, and safety. This review aims to summarize [...] Read more.
Background/Objectives: Leguminous plants (Fabaceae) are essential for global food and nutritional security due to their high protein content, bioactive compounds, and ecological role in nitrogen fixation. However, climate change poses significant threats to their productivity, quality, and safety. This review aims to summarize the nutritional, biochemical, and health-related importance of legumes, while highlighting the effects of climate change—particularly heat stress and pest pressure—on their nutritional value and public health implications. Methods: This review is based on an integrative literature review drawing on scientific databases including Web of Science, Scopus, ScienceDirect, Google Scholar, and PubMed (March–October 2025). The relevant literature on climate change, legume composition, stress physiology, pest–plant interactions, and nutrition- and health-related outcomes was identified using targeted search terms. Evidence from diverse study types was synthesized to provide a broad, interdisciplinary perspective rather than a systematic assessment. Results: Legume seeds are rich in proteins, complex carbohydrates, fibers, and essential fatty acids, and contain valuable phytochemicals, including polyphenols, carotenoids, saponins, and bioactive peptides, with antioxidant, anti-inflammatory, and cardioprotective effects. Nevertheless, elevated CO2 levels and temperature stress can reduce protein, iron, and zinc contents, while altering phenolic and isoflavone profiles. Simultaneously, warming enhances pest proliferation and fungal contamination, increasing mycotoxin exposure and associated health risks. Integrated pest management (IPM) strategies, particularly those emphasizing biological control, show promise in mitigating these risks while ensuring sustainable legume production. Conclusions: Safeguarding the nutritional and ecological value of legumes under changing climatic conditions requires coordinated efforts across plant breeding, agronomy, and food science. Enhancing thermotolerance and pest resistance, reducing pesticide use through IPM, and valorizing legume by-products are key to preserving food safety and human health. Legumes, thus, represent both a challenge and an opportunity in achieving resilient, climate-smart nutrition systems for future generations. Full article
(This article belongs to the Special Issue Food Security, Food Insecurity, and Nutritional Health)
Show Figures

Figure 1

28 pages, 1093 KB  
Review
Targeting Ferroptosis in Nasopharyngeal Carcinoma: Mechanisms, Resistance, and Precision Therapeutic Opportunities
by Jaewang Lee and Jong-Lyel Roh
Int. J. Mol. Sci. 2025, 26(23), 11439; https://doi.org/10.3390/ijms262311439 - 26 Nov 2025
Viewed by 858
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck malignancy strongly associated with Epstein–Barr virus (EBV) infection and characterized by high radiosensitivity but frequent therapy resistance. Despite advances in radiotherapy, chemotherapy, and immunotherapy, relapse and metastasis remain major challenges, underscoring the need for novel [...] Read more.
Nasopharyngeal carcinoma (NPC) is a head and neck malignancy strongly associated with Epstein–Barr virus (EBV) infection and characterized by high radiosensitivity but frequent therapy resistance. Despite advances in radiotherapy, chemotherapy, and immunotherapy, relapse and metastasis remain major challenges, underscoring the need for novel therapeutic approaches. This review aims to provide an integrated overview of the molecular mechanisms governing ferroptosis in NPC and to clarify how these pathways contribute to therapy resistance while revealing potential therapeutic vulnerabilities. Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a promising target in NPC. Core regulators include the system xCT–GSH–GPX4 antioxidant axis, iron metabolism, and lipid remodeling enzymes such as ACSL4, with epigenetic modifiers (METTL3, IGF2BP2, HOXA9) and EBV-driven signaling further shaping ferroptosis responses. EBV-driven oncogenic programs substantially reshape ferroptosis sensitivity in NPC by activating the Nrf2/Keap1 antioxidant axis, stabilizing SLC7A11 and GPX4, and modulating iron and redox metabolism. These viral mechanisms suppress ferroptotic stress and contribute to both radioresistance and chemoresistance. Suppression of ferroptosis underlies both radioresistance and chemoresistance, whereas restoration of ferroptosis re-sensitizes tumors to treatment. Natural compounds including solasodine, berberine, cucurbitacin B, and celastrol-curcumin combinations, as well as pharmacologic modulators such as HO-1 inhibitors and GPX4 antagonists, have shown ferroptosis-inducing effects in preclinical models, although their translational potential remains to be clarified. Nanotechnology-based platforms (e.g., Bi2Se3 nanosheet hydrogels) further enhance efficacy and reduce toxicity by enabling controlled drug delivery. Biomarker discovery, encompassing ferroptosis-related gene signatures, epigenetic regulators, immune infiltration patterns, EBV DNA load, and on-treatment redox metabolites, provides a foundation for patient stratification. Integration of ferroptosis modulation with radiotherapy, chemotherapy, and immunotherapy represents a compelling strategy to overcome therapy resistance. In synthesizing these findings, this review highlights both the mechanistic basis and the translational promise of ferroptosis modulation as a strategy to overcome treatment resistance in NPC. Future directions include biomarker validation, optimization of drug delivery, early-phase clinical trial development, and multidisciplinary collaboration to balance ferroptosis induction in tumors while protecting normal tissues. Collectively, ferroptosis is emerging as both a vulnerability and a therapeutic opportunity for improving outcomes in NPC. Full article
Show Figures

Figure 1

22 pages, 8956 KB  
Article
Preparation of High-Energy Activated SiC Particles and Their Dispersion and Reaction Behavior in Hypoeutectic Gray Cast-Iron Melt
by Chunfeng Wang, Zhejun Li, Chuangang Huang, Runze Li, Qingyan Liang, Kebin Li, Jie Hu and Feng Jiang
Materials 2025, 18(23), 5264; https://doi.org/10.3390/ma18235264 - 21 Nov 2025
Viewed by 384
Abstract
This study addresses the issues of coarse primary austenite dendrites and uneven graphite distribution in hypoeutectic gray cast iron. High-energy mechanical activation technology was used to prepare high-energy activated SiC particles (EASiCp), and the regulatory mechanisms of trace additions (0–0.15 wt.%) on the [...] Read more.
This study addresses the issues of coarse primary austenite dendrites and uneven graphite distribution in hypoeutectic gray cast iron. High-energy mechanical activation technology was used to prepare high-energy activated SiC particles (EASiCp), and the regulatory mechanisms of trace additions (0–0.15 wt.%) on the solidification process and microstructure properties of hypoeutectic gray cast iron were systematically investigated. The results indicate that high-energy activation treatment reduced the average particle size of SiC particles from 26.53 μm to 9.51 μm and increased their specific surface area from 0.35 m2/g to 1.78 m2/g. X-ray diffraction (XRD) analysis revealed that the grain size was refined from 55.5 nm to 17.4 nm, with significant lattice distortion. The absorption rate of EASiCp in the melt stabilized between 68–72%, with particles predominantly dispersed within the grains (78.12%) and at grain boundaries (21.88%) in sizes ranging from 0.3 to 2 μm. The addition of EASiCp enhanced the solidification undercooling from 5.3 °C to 8.4 °C and reduced the latent heat of crystallization from 162.6 J/g to 99.96 J/g due to its endothermic reaction in the melt (SiC + Fe → FeSi + C) and heterogeneous nucleation effects. In terms of microstructure, the addition of 0.15 wt.% EASiCp increased the primary austenite dendrite content by 35.29%, reduced the secondary dendrite arm spacing by 57.98%, shortened the graphite length from 0.46 mm to 0.20 mm, and refined the eutectic colony size from over 500 μm to 180 μm. The final material achieved a tensile strength of 308 MPa, an improvement of 12.82% compared to the unadded group. Mechanistic analysis showed that EASiCp facilitated direct nucleation, reaction-induced “micro-area carbon enrichment,” and a synergistic effect in suppressing grain growth, thereby optimizing the solidification microstructure and enhancing performance. This study provides a new method for the efficient nucleation control of hypoeutectic gray cast iron. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 1709 KB  
Article
Iron Removal from Quartz Ore by Acid Leaching: From Lab- to Pilot-Scale
by Svetlana Zueva, Valentina Innocenzi, Nicolò Maria Ippolito, Ionela Birloaga, Francesco Vegliò and Francesco Ferella
Sustainability 2025, 17(22), 10008; https://doi.org/10.3390/su172210008 - 9 Nov 2025
Viewed by 762
Abstract
Quartz in high-purity form, i.e., with an iron content <100 mg/kg, has valuable properties such as superior UV transmission, thermal stability, and resistance to devitrification, which are highly useful for optical applications. In this study, acid leaching was tested to optimize the production [...] Read more.
Quartz in high-purity form, i.e., with an iron content <100 mg/kg, has valuable properties such as superior UV transmission, thermal stability, and resistance to devitrification, which are highly useful for optical applications. In this study, acid leaching was tested to optimize the production of optical-grade quartz from mined quartz, transforming an environmentally polluting process into a sustainable one, aligning with several United Nations Sustainable Development Goals (SDGs). Initially, when iron removal was obtained with direct, cross-current, and counter-current leaching methods, the results were unsatisfactory. However, a variation consisting of incorporating sulfuric acid regenerated via membrane filtration into the typical counter-current scheme was proven effective, reducing acid consumption and enhancing water recycling in the process, mitigating the environmental impact. The best optimized combination was the three-step counter-current method, with acid regeneration and fresh make-up after each cycle. The conditions were temperature 90 °C, solid-to-liquid ratio 30% wt/vol, time 3 h, and H2SO4 concentration of 1 M. The iron extraction yield was close to 89%. Full article
Show Figures

Figure 1

23 pages, 2462 KB  
Article
Mechanistic Insights into the Differential Effects of Biochar and Organic Fertilizer on Nitrogen Loss Pathways in Vegetable Soils: Linking Soil Carbon, Aggregate Stability, and Denitrifying Microbes
by Shixiong Li, Linsong Hu, Chun Ma, Manying Li, Yuanyang Peng, Yin Peng, Xilatu Dabu and Jiangling Huang
Agriculture 2025, 15(22), 2326; https://doi.org/10.3390/agriculture15222326 - 8 Nov 2025
Viewed by 614
Abstract
Biochar and organic fertilizer applications are widely recognized as effective strategies for mitigating greenhouse gas emissions and controlling agricultural non-point source pollution in agroecosystems. However, the combined effects of these two approaches on greenhouse gas emissions and agricultural non-point source pollution remain insufficiently [...] Read more.
Biochar and organic fertilizer applications are widely recognized as effective strategies for mitigating greenhouse gas emissions and controlling agricultural non-point source pollution in agroecosystems. However, the combined effects of these two approaches on greenhouse gas emissions and agricultural non-point source pollution remain insufficiently understood. Through consecutive field-based positioning plot trials, this study systematically examined the individual and combined effects of biochar and organic fertilizer amendments on N runoff loss (WTN) and gaseous emissions (N2O and NH3), N-cycling functional microbial communities, and soil physicochemical properties. Results demonstrated that conventional chemical fertilization resulted in 20.70% total N loss (4.48% gaseous emissions, 15.22% runoff losses). Biochar and organic fertilizer applications significantly reduced WTN losses by 8.06% and 7.43%, respectively, and decreased gaseous losses by 2.01% and 1.88%, while concurrently enhancing plant N uptake and soil residual N. Random forest analysis combined with partial least squares structural equation modeling revealed that soil organic carbon directly modulated nitrogen runoff losses and indirectly influenced aggregate stability and macroaggregate formation. Dissolved organic carbon (DOC) and recalcitrant organic carbon (ROC) exhibited dual regulatory effects on NH3 volatilization through both direct pathways and indirect mediation via aggregate stability. Notably, biochar and organic fertilizer amendments induced significant compositional shifts in nirS- and nirK-type denitrifying microbial communities. pH, cation exchange capacity (CEC), and iron oxide–carbon complexes (IOCS) were identified as key factors suppressing N2O emissions through inhibitory effects on Azoarcus and Bosea genera. Our findings demonstrate that biochar and organic fertilizers differentially modulate soil physicochemical properties and denitrifier community structure, with emission reduction disparities attributable to distinct mechanisms’ enhanced aggregate stability and modified denitrification potential through genus-level microbial community restructuring, particularly affecting Azoarcus and Bosea populations. This study offers valuable insights into the regulation of carbon sources for nitrogen management strategies within sustainable acidic soil vegetable production systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 2549 KB  
Article
Techno-Economic Assessment of Hydrogen Integration for Decarbonizing the Steel Industry: A Case Study
by Farhan Haider Joyo, Daniele Groppi, Lorenzo Villani, Irfan and Davide Astiaso Garcia
Hydrogen 2025, 6(4), 104; https://doi.org/10.3390/hydrogen6040104 - 7 Nov 2025
Viewed by 2084
Abstract
The iron and steel industry is one of the largest industrial sources of greenhouse gas emissions. This paper examines the potential of green hydrogen as a reducing agent for decarbonizing primary steel production, focusing on the Taranto integrated steelworks in southern Italy. Producing [...] Read more.
The iron and steel industry is one of the largest industrial sources of greenhouse gas emissions. This paper examines the potential of green hydrogen as a reducing agent for decarbonizing primary steel production, focusing on the Taranto integrated steelworks in southern Italy. Producing about 3.5 Mt of crude steel annually, the plant is also among the country’s biggest emitters, with CO2 emissions of roughly 8 Mt per year at typical blast furnace intensity (2.2 tCO2/t steel). The analysis quantifies the hydrogen demand required to replace fossil fuels in iron ore reduction and evaluates the techno-economic feasibility of meeting it with green hydrogen. Using DWSIM (open-source chemical process simulation software, v9.0.2) for water electrolysis powered by renewables, the study estimates both the CO2 emission reductions and cost impacts of hydrogen-based steelmaking. Results show that integrating green hydrogen at Taranto could achieve deep decarbonization by cutting emissions by over 90%, with a base-case levelized hydrogen cost (LCOH) of 3.6 EUR/kg and green steel production cost 653 EUR/t. With optimistic assumptions (renewable electricity at 40 EUR/MWh and electrolyzer CAPEX halved to 500 EUR/kW), hydrogen cost could be reduced to 2.3 EUR/kg, making green steel cost-competitive with conventional steel and implying a breakeven carbon price of under 60 EUR/t. Sensitivity analyses highlight that falling renewable electricity prices, supportive carbon policies, and successful demonstration projects are key enablers for economic viability. The findings underscore that renewable hydrogen can be a viable decarbonization pathway for steel when coupled with continued technological improvements and policy support. Full article
Show Figures

Figure 1

18 pages, 3681 KB  
Article
Selective Synthesis of FAU- and CHA-Type Zeolites from Fly Ash: Impurity Control, Phase Stability, and Water Sorption Performance
by Selin Cansu Gölboylu, Süleyman Şener Akın and Burcu Akata
Minerals 2025, 15(11), 1153; https://doi.org/10.3390/min15111153 - 31 Oct 2025
Viewed by 659
Abstract
Fly ash from coal-fired power plants is a promising precursor for zeolite synthesis due to its aluminosilicate-rich composition. However, its direct utilization is often limited by impurities and a low silicon-to-aluminum ratio (SAR). This study demonstrates the conversion of Class C fly ash [...] Read more.
Fly ash from coal-fired power plants is a promising precursor for zeolite synthesis due to its aluminosilicate-rich composition. However, its direct utilization is often limited by impurities and a low silicon-to-aluminum ratio (SAR). This study demonstrates the conversion of Class C fly ash from the Soma thermal power plant (Turkey) into FAU- and CHA-type zeolites through optimized acid leaching and hydrothermal synthesis. Acid treatment increased the SAR from 1.33 to 2.85 and effectively reduced calcium-, sulfur-, and iron-bearing impurities. The SAR enhancement by acid leaching was found to be reproducible among Class C fly ashes, whereas Class F materials exhibited a limited response due to their acid-resistant framework. Subsequent optimization of alkaline fusion-assisted synthesis enabled selective crystallization of FAU and CHA, while GIS and MER appeared under prolonged crystallization or higher alkalinity. SEM revealed distinct morphologies, with MER forming rod-shaped clusters, and CHA exhibiting disc-like aggregates. Water sorption analysis showed superior uptake for metastable FAU (~23 wt%) and CHA (~18 wt%) compared to stable GIS and MER (~12–13 wt%). Overall, this study establishes a scalable and sustainable route for producing high-performance zeolites from industrial fly ash waste, offering significant potential for adsorption-based applications in dehumidification, heat pumps, and gas separation. Full article
Show Figures

Figure 1

11 pages, 2368 KB  
Article
Experimental Evaluation of a Line-Start Consequent-Pole Surface Permanent-Magnet Motor with Simple Rotor Design Strategies for Performance Improvement
by Yuichi Yokoi, Yasuhiro Miyamoto and Tsuyoshi Higuchi
Machines 2025, 13(11), 1003; https://doi.org/10.3390/machines13111003 - 31 Oct 2025
Viewed by 457
Abstract
The line-start permanent-magnet (LSPM) motor combines the direct-on-line starting of induction motors with the high efficiency of permanent-magnet (PM) synchronous motors, but conventional interior PM designs are difficult to manufacture and surface PM (SPM) designs often suffer from limited starting torque and reduced [...] Read more.
The line-start permanent-magnet (LSPM) motor combines the direct-on-line starting of induction motors with the high efficiency of permanent-magnet (PM) synchronous motors, but conventional interior PM designs are difficult to manufacture and surface PM (SPM) designs often suffer from limited starting torque and reduced efficiency. This paper investigates consequent-pole SPM designs, in which the number of magnets is reduced by half while maintaining equal magnet volume, enabling simple rotor construction and improved starting performance. A prototype is manufactured and tested, confirming smooth synchronization under load. Efficiency is constrained by the non-sinusoidal flux distribution of the consequent-pole structure. Rotor design strategies enlarging the air gap near the iron poles are analyzed, and a finite element method analysis shows improved torque and efficiency without loss of starting capability. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

14 pages, 2505 KB  
Article
Coupling Granular Activated Carbon with Waste Iron Scraps Enhances Anaerobic Digestion of PBAT Wastewater: Performance Improvement and Mechanistic Insights
by Chunhua He, Jingjing Wen, Zhiqiang Huang, Qilong Jin, Ziyao Li, Hua Zhang, Houyun Yang, Jian Huang, Wei Wang and Hao Hu
Fermentation 2025, 11(11), 614; https://doi.org/10.3390/fermentation11110614 - 28 Oct 2025
Viewed by 1004
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) wastewater, characterized by high chemical oxygen demand (COD) and acidity, poses significant challenges to anaerobic digestion (AD) due to toxicity and volatile fatty acids (VFAs) accumulation. This study coupled granular activated carbon (GAC) and waste iron scraps (WISs) to synergistically [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) wastewater, characterized by high chemical oxygen demand (COD) and acidity, poses significant challenges to anaerobic digestion (AD) due to toxicity and volatile fatty acids (VFAs) accumulation. This study coupled granular activated carbon (GAC) and waste iron scraps (WISs) to synergistically enhance AD performance. Batch experiments demonstrated that, compared with the control, the GAC/WISs group achieved a COD removal efficiency of 53.18% and a methane production of 207.53 ± 5.80 mL/g COD, which were 5.48- and 12.14-fold increases, respectively, while reducing the accumulation of total VFAs by 98.48% (to 15.09 mg/L). Mechanistic analysis revealed that GAC adsorbed inhibitors and enriched methanogens, while WISs buffered pH and promoted direct interspecies electron transfer (DIET) through hydrogenotrophic methanogenesis. Metagenomic sequencing showed shifts in microbial communities, with enrichment of syntrophic bacteria (Syntrophobacter) and functional genes (pta, bcd, and pccA), indicating metabolic reprogramming. This study provided a theoretical foundation and engineering strategy for the anaerobic treatment of PBAT wastewater. Full article
Show Figures

Figure 1

Back to TopTop