Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (197)

Search Parameters:
Keywords = direct radiative effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1895 KiB  
Article
Class-Dependent Solar Flare Effects on Mars’ Upper Atmosphere: MAVEN NGIMS Observations of X8.2 and M6.0 from September 2017
by Junaid Haleem and Shican Qiu
Universe 2025, 11(8), 245; https://doi.org/10.3390/universe11080245 - 25 Jul 2025
Viewed by 114
Abstract
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on [...] Read more.
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on 10 September 2017 and M6.0 on 17 September 2017. This study shows nonlinear, class-dependent effects, compositional changes, and recovery processes not recorded in previous investigations. Species-specific responses deviated significantly from irradiance proportionality, even though the soft X-ray flux in the X8.2 flare was 13 times greater. Argon (Ar) concentrations rose 3.28× (compared to 1.13× for M6.0), and radiative cooling led CO2 heating to approach a halt at ΔT = +40 K (X8.2) against +19 K (M6.0) at exobase altitudes (196–259 km). N2 showed the largest class difference, where temperatures rose by +126 K (X8.2) instead of +19 K (M6.0), therefore displaying flare-magnitude dependent thermal sensitivity. The 1.95× increase in O concentrations during X8.2 and the subsequent decrease following M6.0 (−39 K cooling) illustrate the contradiction between photochemical production and radiative loss. The O/CO2 ratio at 225 km dropped 46% during X8.2, revealing compositional gradients boosted by flares. Recovery timeframes varied by class; CO2 quickly re-equilibrated because of effective cooling, whereas inert species (Ar, N2) stabilized within 1–2 orbits after M6.0 but needed >10 orbits of the MAVEN satellite after the X8.2 flare. The observations of the X8.2 flare came from the western limb of the Sun, but the M6.0 flare happened on the far side. The CME shock was the primary driver of Mars’ EUV reaction. These findings provide additional information on atmospheric loss and planetary habitability by indicating that Mars’ thermosphere has a saturation threshold where strong flares induce nonlinear energy partitioning that encourages the departure of lighter species. Full article
Show Figures

Figure 1

17 pages, 4222 KiB  
Article
Grooved High-Reflective Films for Ultraviolet Emission Enhancement
by Hengrui Zhang, Zhanhua Huang and Lin Zhang
Photonics 2025, 12(7), 644; https://doi.org/10.3390/photonics12070644 - 25 Jun 2025
Viewed by 265
Abstract
Conventional ultraviolet microplasma sources typically lack a back-reflection structure, resulting in radiative power loss from the backside. To enhance the emission efficiency of ultraviolet microplasma devices around 220 nm, we propose a multilayer reflective coating composed of alternating high- and low-refractive-index layers of [...] Read more.
Conventional ultraviolet microplasma sources typically lack a back-reflection structure, resulting in radiative power loss from the backside. To enhance the emission efficiency of ultraviolet microplasma devices around 220 nm, we propose a multilayer reflective coating composed of alternating high- and low-refractive-index layers of Al2O3 and SiO2, within a V-shaped groove. Key structural parameters, including the number of alternating film layer pairs, groove width, and light source position, are investigated to show their effects on ultraviolet reflection characteristics. The results show that reducing the groove width greatly enhances light reflection. When the groove width is 6.5 μm, the device exhibits a reflection efficiency of 47.82% and power enhancement of 91.66%, representing improvements of 2.5-fold and 4.2-fold, respectively, compared to non-optimized cases. Device performance is also influenced by the offset of the light source, which is more sensitive along the horizontal direction. This study provides a practical solution for developing high-efficiency ultraviolet emission devices. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

25 pages, 29384 KiB  
Article
Efficient Multi-Material Volume Rendering for Realistic Visualization with Complex Transfer Functions
by Chunxiao Xu, Xinran Xu, Jiatian Zhang, Yiheng Cao and Lingxiao Zhao
J. Imaging 2025, 11(6), 193; https://doi.org/10.3390/jimaging11060193 - 11 Jun 2025
Viewed by 1280
Abstract
Physically based realistic direct volume rendering (DVR) is a critical area of research in scientific data visualization. The prevailing realistic DVR methods are primarily rooted in outdated theories of participating media rendering and often lack comprehensive analyses of their applicability to realistic DVR [...] Read more.
Physically based realistic direct volume rendering (DVR) is a critical area of research in scientific data visualization. The prevailing realistic DVR methods are primarily rooted in outdated theories of participating media rendering and often lack comprehensive analyses of their applicability to realistic DVR scenarios. As a result, the fidelity of material representation in the rendered output is frequently limited. To address these challenges, we present a novel multi-material radiative transfer model (MM-RTM) designed for realistic DVR, grounded in recent advancements in light transport theories. Additionally, we standardize various transfer function techniques and propose five distinct forms of transfer functions along with proxy volumes. This comprehensive approach enables our DVR framework to accommodate a wide range of complex transfer function techniques, which we illustrate through several visualizations. Furthermore, to enhance sampling efficiency, we develop a new multi-hierarchical volumetric acceleration method that supports multi-level searches and volume traversal. Our volumetric accelerator also facilitates real-time structural updates when applying complex transfer functions in DVR. Our MM-RTM, the unified representation of complex transfer functions, and the acceleration structure for real-time updates are complementary components that collectively establish a comprehensive framework for realistic multi-material DVR. Evaluation from a user study indicates that the rendering results produced by our method demonstrate the most realistic effects among various publicly available state-of-the-art techniques. Full article
(This article belongs to the Section Visualization and Computer Graphics)
Show Figures

Figure 1

13 pages, 2094 KiB  
Article
Quantum Mpemba Effect from Non-Normal Dynamics
by Stefano Longhi
Entropy 2025, 27(6), 581; https://doi.org/10.3390/e27060581 - 29 May 2025
Viewed by 564
Abstract
The quantum Mpemba effect refers to the counterintuitive phenomenon in which a system initially farther from equilibrium relaxes faster than one prepared closer to it. Several mechanisms have been identified in open quantum systems to explain this behavior, including the strong Mpemba effect, [...] Read more.
The quantum Mpemba effect refers to the counterintuitive phenomenon in which a system initially farther from equilibrium relaxes faster than one prepared closer to it. Several mechanisms have been identified in open quantum systems to explain this behavior, including the strong Mpemba effect, non-Markovian memory, and initial system–reservoir entanglement. Here, we unveil a distinct mechanism rooted in the non-normal nature of the Liouvillian superoperator in Markovian dynamics. When the Liouvillian’s eigenmodes are non-orthogonal, transient interference between decaying modes can induce anomalous early-time behavior—such as delayed thermalization or transient freezing—even though asymptotic decay rates remain unchanged. This differs fundamentally from strong Mpemba effects, which hinge on suppressed overlap with slow-decaying modes. We demonstrate this mechanism using a waveguide quantum electrodynamics model, where quantum emitters interact with the photonic modes of a one-dimensional waveguide. The directional and radiative nature of these couplings naturally introduces non-normality into the system’s dynamics. As a result, certain initial states—despite being closer to equilibrium—can exhibit slower relaxation at short times. This work reveals a previously unexplored and universal source of Mpemba-like behavior in memoryless quantum systems, expanding the theoretical framework for anomalous relaxation and opening new avenues for control in engineered quantum platforms. Full article
(This article belongs to the Section Non-equilibrium Phenomena)
Show Figures

Figure 1

22 pages, 7688 KiB  
Article
Numerical Study on Coupled Combustion of PMMA Counter-Directional Flame Spread at Variable Slope
by Qiong Liu, Kehong Li, Chao Yuan, Ning Bian, Zhi Li, Weilin Xu and Jinrong Chen
Fire 2025, 8(6), 219; https://doi.org/10.3390/fire8060219 - 29 May 2025
Cited by 1 | Viewed by 906
Abstract
This paper investigates the dual effects of slope variation and flame interaction on counter-directional flame propagation through numerical simulations of polymethylmethacrylate (PMMA) plates. Critical flame propagation parameters, including flame morphology, flame spread speed, mass loss rate, and radiative heat flux density, were analyzed [...] Read more.
This paper investigates the dual effects of slope variation and flame interaction on counter-directional flame propagation through numerical simulations of polymethylmethacrylate (PMMA) plates. Critical flame propagation parameters, including flame morphology, flame spread speed, mass loss rate, and radiative heat flux density, were analyzed using the Fire Dynamics Simulator (FDS v6.7.5) software. By comparing counter-directional flames and unilateral flames under varying slope conditions, we evaluated how flame interactions influence flame spread speed and mass loss rate, as well as the role of the view factor in radiative heat flux distribution. Numerical results revealed that the counter-directional fire propagation process on slopes could be divided into four distinct stages based on variations in flame spread rate and mass loss rate. Moreover, we propose a novel method to quantify flame interaction intensity on slopes using flame spread time. These findings enhance the mechanistic understanding of slope-dependent counter-directional flame propagation. Full article
Show Figures

Figure 1

41 pages, 3917 KiB  
Article
Dust Aerosol Radiative Effects During a Dust Event and Heatwave in Summer 2019 Simulated with a Regional Climate Atmospheric Model over the Iberian Peninsula
by Cristina Gil-Díaz, Michäel Sicard, Pierre Nabat, Marc Mallet, Constantino Muñoz-Porcar, Adolfo Comerón, Alejandro Rodríguez-Gómez and Daniel Camilo Fortunato dos Santos Oliveira
Remote Sens. 2025, 17(11), 1817; https://doi.org/10.3390/rs17111817 - 22 May 2025
Viewed by 439
Abstract
Mineral dust particles significantly influence the Earth’s climate through direct and semi-direct radiative effects. This study investigates these effects and their meteorological impacts during a dust intrusion and heatwave over the Iberian Peninsula in summer 2019 using a regional climate model. Three simulations [...] Read more.
Mineral dust particles significantly influence the Earth’s climate through direct and semi-direct radiative effects. This study investigates these effects and their meteorological impacts during a dust intrusion and heatwave over the Iberian Peninsula in summer 2019 using a regional climate model. Three simulations with different spectral nudging configurations are evaluated. During the central period, the mean direct and semi-direct radiative effects in the shortwave spectrum at the top of the atmosphere (bottom of the atmosphere) are −0.4 ± 0.4 (−3.9 ± 2.3) Wm−2 and +0.1 ± 1.7 (−0.1 ± 1.9) Wm−2, respectively. In the longwave spectrum, these effects are +0.1 ± 0.1 (+0.3 ± 0.1) WmWm−2 and 0.0 ± 0.6 (+0.9 ± 1.1) Wm−2, respectively. The semi-direct effect mitigates 18.8% of the dust-induced warming in the full atmosphere and alters meteorological variables. The liquid water path decreases by −0.2 ± 4.5 mg m−2, the cloud fraction in the upper (lower) troposphere reduces (increases) by −0.2 ± 1.2 (+0.1 ± 1.3) %, and the near-surface air temperature drops slightly by −0.2 ± 0.2 °C. The results highlight substantial spatial variability and underscore the importance of considering semi-direct radiative effects in radiative analysis. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

16 pages, 4346 KiB  
Article
First-Principles Calculations of Plasmon-Induced Hot Carrier Properties of μ-Ag3Al
by Zihan Zhao, Hai Ren, Yucheng Wang, Xiangchao Ma, Jiali Jiang, Linfang Wei and Delian Liu
Nanomaterials 2025, 15(10), 761; https://doi.org/10.3390/nano15100761 - 19 May 2025
Viewed by 403
Abstract
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as [...] Read more.
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as Au, Ag, and Cu. In this article, we report an Ag-Al alloy material, μ-Ag3Al, in which the surface plasmon operating bandwidth is 1.7 times that of Ag and hot carrier transport properties are comparable with those of AuAl. The results show that μ-Ag3Al allows efficient direct interband electronic transitions from ultraviolet (UV) to near infrared range. Spherical nanoparticles of μ-Ag3Al exhibit the localized surface plasmon resonance (LSPR) effect in the ultraviolet region. Its surface plasmon polariton (SPP) shows strong non-radiative decay at 3.36 eV, which is favorable for the generation of high-energy hot carriers. In addition, the penetration depth of SPP in μ-Ag3Al remains high across the UV to the near-infrared range. Moreover, the transport properties of hot carriers in μ-Ag3Al are comparable with those in Al, borophene and Au-Al intermetallic compounds. These properties can provide guidance for the design of plasmon-based photodetectors, solar cells, and photocatalytic reactors. Full article
Show Figures

Figure 1

32 pages, 21417 KiB  
Article
Retrievals of Biomass Burning Aerosol and Liquid Cloud Properties from Polarimetric Observations Using Deep Learning Techniques
by Michal Segal Rozenhaimer, Kirk Knobelspiesse, Daniel Miller and Dmitry Batenkov
Remote Sens. 2025, 17(10), 1693; https://doi.org/10.3390/rs17101693 - 12 May 2025
Viewed by 439
Abstract
Biomass burning (BB) aerosols are the largest source of absorbing aerosols on Earth. Coupled with marine stratocumulus clouds (MSC), their radiative effects are enhanced and can cause cloud property changes (first indirect effect) or cloud burn-off and warm up the atmospheric column (semi-direct [...] Read more.
Biomass burning (BB) aerosols are the largest source of absorbing aerosols on Earth. Coupled with marine stratocumulus clouds (MSC), their radiative effects are enhanced and can cause cloud property changes (first indirect effect) or cloud burn-off and warm up the atmospheric column (semi-direct effect). Nevertheless, the derivation of their quantity and optical properties in the presence of MSC clouds is confounded by the uncertainties in the retrieval of the underlying cloud properties. Therefore, a robust methodology is needed for the coupled retrievals of absorbing aerosol above clouds. Here, we present a new retrieval approach implemented for a Spectro radiometric multi-angle polarimetric airborne platform, the research scanning polarimeter (RSP), during the ORACLES campaign over the Southeast Atlantic Ocean. Our approach transforms the 1D measurements over multiple angles and wavelengths into a 3D image-like input, which is then processed using various deep learning (DL) schemes to yield aerosol single scattering albedos (SSAs), aerosol optical depths (AODs), aerosol effective radii, and aerosol complex refractive indices, together with cloud optical depths (CODs), cloud effective radii and variances. We present a comparison between the different DL approaches, as well as their comparison to existing algorithms. We discover that the Vision Transformer (ViT) scheme, traditionally used by natural language models, is superior to the ResNet convolutional Neural-Network (CNN) approach. We show good validation statistics on synthetic and real airborne data and discuss paths forward for making this approach flexible and readily applicable over multiple platforms. Full article
Show Figures

Figure 1

33 pages, 5090 KiB  
Article
Aerosol Forcing from Ground-Based Synergies over a Decade in Barcelona, Spain
by Daniel Camilo Fortunato dos Santos Oliveira, Michaël Sicard, Alejandro Rodríguez-Gómez, Adolfo Comerón, Constantino Muñoz-Porcar, Cristina Gil-Díaz, Oleg Dubovik, Yevgeny Derimian, Masahiro Momoi and Anton Lopatin
Remote Sens. 2025, 17(8), 1439; https://doi.org/10.3390/rs17081439 - 17 Apr 2025
Viewed by 615
Abstract
This research aims to estimate long-term aerosol radiative effects by combining radiation and Aerosol Optical Depth (AOD) observations in Barcelona, Spain. Aerosol Radiative Forcing and Aerosol Forcing Efficiency (ARF and AFE) were estimated by combining shortwave radiation measurements from a SolRad-Net CM-21 pyranometer [...] Read more.
This research aims to estimate long-term aerosol radiative effects by combining radiation and Aerosol Optical Depth (AOD) observations in Barcelona, Spain. Aerosol Radiative Forcing and Aerosol Forcing Efficiency (ARF and AFE) were estimated by combining shortwave radiation measurements from a SolRad-Net CM-21 pyranometer (level 1.5) and AERONET AOD (level 2), using the direct method. The shortwave AFE was derived from the slope between net solar radiation and AOD at 440, 675, 879, and 1020 nm, and the ARF was computed by multiplying the AFE by AOD at six solar zenith angles (20°, 30°, 40°, 50°, 60°, and 70°). Clear-sky conditions were selected from all-skies days by a quadratic fitting. The aerosol was classified to investigate the forcing contributions from each aerosol type. The aerosol classification was based on Pace and Toledano’s thresholds from AOD vs. Ångström Exponent (AE). The GRASP inversions were performed by combined AOD, radiation, Degree of Linear Polarization (DoLP) by zenith angles from the polarized sun–sky–lunar photometer and the elastic signal from the UPC-ACTRIS lidar system. The long-term AFE and ARF are both negative, with an increasing tendency (in absolute value) of +24% (AFE) and +40% (ARF) in 14 years. The yearly AFE varied from −331 to −10 Wm−2τ−1, and the ARF varied from −64 to −2 Wm−2, associated with an AOD (440 nm) from 0.016 to 0.690. The three types of aerosols on clear-sky days are mixed aerosols (61%), desert dust (10%), and urban/industrial-biomass burning aerosols (29%). Combined with Gobbi’s method, this classification clustered the aerosols into four groups by AE analysis (two coarse- and two fine-mode aerosols). Then, the contribution of the aerosol types to the ARF showed that the desert dust forcing had the largest cooling effect in Barcelona (−61.5 to −37.4 Wm−2), followed by urban/industrial-biomass burning aerosols (−40.4 to −20.4 Wm−2) and mixed aerosols (−31.8 and −24.0 Wm−2). Regarding the comparison among Generalized Retrieval of Atmosphere and Surface Properties (GRASP) inversions, AERONET inversions, and direct method estimations, the AFE and ARF had some differences owing to their definitions in the algorithms. The DoLP, used as GRASP input, decreased the ARF overestimation for high AOD. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

12 pages, 4152 KiB  
Article
Cost-Effective Inorganic Multilayer Film for High-Performance Daytime Radiative Cooling
by Huan Liu, Yingxin Yang, Atsha Ambar, Zhiqiang Fan, Ying Sun and Cong Wang
Materials 2025, 18(8), 1729; https://doi.org/10.3390/ma18081729 - 10 Apr 2025
Cited by 1 | Viewed by 589
Abstract
Inorganic multilayer films for radiative cooling have garnered significant attention due to their exceptional resistance to photothermal degradation. However, the design and fabrication of structurally simple and cost-effective inorganic multilayer films remain challenging due to limitations in material properties and the preparation process. [...] Read more.
Inorganic multilayer films for radiative cooling have garnered significant attention due to their exceptional resistance to photothermal degradation. However, the design and fabrication of structurally simple and cost-effective inorganic multilayer films remain challenging due to limitations in material properties and the preparation process. This study develops a structurally simple inorganic multilayer film (Si3N4/SiO2/Al2O3/Si3N4/Al) for daytime radiative cooling. Instead of the conventional periodic alternation of high and low refractive indices (H-L…H-L), this work proposes a H-L-L-H symmetric multilayer film structure to achieve improved radiative cooling performance. The fabricated multilayer film demonstrates superior radiative cooling properties and lower thickness than that in the current studies using Al as the reflective layer, achieving a solar reflectance of 89.57%, an atmospheric window (8–13 μm) emissivity of 83.41%, and a net cooling power of 63.38 W·m−2. Under direct sunlight, the multilayer film demonstrated a maximum temperature reduction of approximately 3 °C compared to the reference sample. By employing a thermal treatment process for the Si3N4 layer, the poor adhesion between the Al layer and the Si3N4 layer is successfully addressed without compromising optical performance. The underlying physical mechanisms are also elucidated. This work provides an effective strategy for developing daytime radiative cooling inorganic multilayer films suitable for large-scale industrial production. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

27 pages, 45366 KiB  
Article
U-Shaped Dual Attention Vision Mamba Network for Satellite Remote Sensing Single-Image Dehazing
by Tangyu Sui, Guangfeng Xiang, Feinan Chen, Yang Li, Xiayu Tao, Jiazu Zhou, Jin Hong and Zhenwei Qiu
Remote Sens. 2025, 17(6), 1055; https://doi.org/10.3390/rs17061055 - 17 Mar 2025
Cited by 1 | Viewed by 863
Abstract
In remote sensing single-image dehazing (RSSID), adjacency effects and the multi-scale characteristics of the land surface–atmosphere system highlight the importance of a network’s effective receptive field (ERF) and its ability to capture multi-scale features. Although multi-scale hybrid models combining convolutional neural networks and [...] Read more.
In remote sensing single-image dehazing (RSSID), adjacency effects and the multi-scale characteristics of the land surface–atmosphere system highlight the importance of a network’s effective receptive field (ERF) and its ability to capture multi-scale features. Although multi-scale hybrid models combining convolutional neural networks and Transformers show promise, the quadratic complexity of Transformer complicates the balance between ERF and efficiency. Recently, Mamba achieved global ERF with linear complexity and excelled in modeling long-range dependencies, yet its design for sequential data and channel redundancy limits its direct applicability to RSSID. To overcome these challenges and improve performance in RSSID, we present a novel Mamba-based dehazing network, U-shaped Dual Attention Vision Mamba Network (UDAVM-Net) for Satellite RSSID, which integrates multi-path scanning and incorporates dual attention mechanisms to better capture non-uniform haze features while reducing redundancy. The core module, Residual Vision Mamba Blocks (RVMBs), are stacked within a U-Net architecture to enhance multi-scale feature learning. Furthermore, to enhance the model’s applicability to real-world remote sensing data, we abandoned overly simplified haze image degradation models commonly used in existing works, instead adopting an atmospheric radiative transfer model combined with a cloud distortion model to construct a submeter-resolution satellite RSSID dataset. Experimental results demonstrate that UDAVM-Net consistently outperforms competing methods on the StateHaze1K dataset, our newly proposed dataset, and real-world remote sensing images, underscoring its effectiveness in diverse scenarios. Full article
Show Figures

Figure 1

27 pages, 1056 KiB  
Article
Quantum Mechanical Numerical Model for Interaction of Dark Atom with Atomic Nucleus of Matter
by Timur Bikbaev, Maxim Khlopov and Andrey Mayorov
Physics 2025, 7(1), 8; https://doi.org/10.3390/physics7010008 - 7 Mar 2025
Viewed by 1153
Abstract
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with [...] Read more.
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with sodium nuclei. Since this effect is not observed in other underground WIMP (weakly interacting massive particle) search experiments, it is necessary to explain these results by investigating the possibility of the existence of low-energy bound states between dark atoms and the nuclei of matter. Numerical modeling is used to solve this problem, since the study of the XHe–nucleus system is a three-body problem and leaves no possibility of an analytical solution. To understand the key properties and patterns underlying the interaction of dark atoms with the nuclei of baryonic matter, we develop the quantum mechanical description of such an interaction. In the numerical quantum mechanical model presented, takes into account the effects of quantum physics, self-consistent electromagnetic interaction, and nuclear attraction. This approach allows us to obtain a numerical model of the interaction between the dark atom and the nucleus of matter and interpret the results of direct experiments on the underground search for dark matter, within the framework of the dark atom hypothesis. Thus, in this paper, for the first time, steps are taken towards a consistent quantum mechanical description of the interaction of dark atoms, with unshielded nuclear attraction, with the nuclei of atoms of matter. The total effective interaction potential of the OHe–Na system has therefore been restored, the shape of which allows for the preservation of the integrity and stability of the dark atom, which is an essential requirement for confirming the validity of the OHe hypothesis. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology: 2nd Edition)
Show Figures

Figure 1

8 pages, 490 KiB  
Article
Diagnostics of Spin-Polarized Ions at Storage Rings
by Anna Maiorova, Stephan Fritzsche, Andrey Surzhykov and Thomas Stöhlker
Atoms 2025, 13(2), 15; https://doi.org/10.3390/atoms13020015 - 4 Feb 2025
Viewed by 706
Abstract
Polarized heavy ions in storage rings are seen as a valuable tool for a wide range of research, from the study of spin effects in relativistic atomic collisions to the tests of the Standard Model. For forthcoming experiments, several important challenges need to [...] Read more.
Polarized heavy ions in storage rings are seen as a valuable tool for a wide range of research, from the study of spin effects in relativistic atomic collisions to the tests of the Standard Model. For forthcoming experiments, several important challenges need to be addressed to work efficiently with such ions. Apart from the production and preservation of ion polarization in storage rings, its measurement is an extremely important issue. In this contribution, we employ the radiative recombination (RR) of polarized electrons into the ground state of initially hydrogen-like, finally helium-like, ions as a probe process for beam diagnostics. Our theoretical study clearly demonstrates that the RR cross section, integrated over photon emission angles, is highly sensitive to both the degree and the direction of ion polarization. Since the (integrated) cross-section measurements are well established, the proposed method offers promising prospects for ion spin tomography at storage rings. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

14 pages, 3033 KiB  
Article
Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films
by Bong Lee, Agnieszka Jablonska, Danh Pham, Rajveer Sagoo, Zygmunt Gryczynski, Trang Thien Pham and Ignacy Gryczynski
Int. J. Mol. Sci. 2025, 26(2), 514; https://doi.org/10.3390/ijms26020514 - 9 Jan 2025
Viewed by 1179
Abstract
We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence [...] Read more.
We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.74), as determined relative to a quinine sulfate standard. In addition, we observed that HOE-doped PVA films exhibit room temperature phosphorescence (RTP) that remains visible for several seconds after UV excitation ceases. The slightly negative phosphorescence anisotropy implies that the triplet–singlet radiative transition is orthogonal to the singlet–singlet transition governing fluorescence. Notably, we observed that direct triplet-state excitation at longer wavelengths (beyond the primary absorption band) produces highly polarized RTP. We believe this possibility of direct triplet-state excitation opens new avenues for studying RTP in polymer-immobilized molecules. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulation of Biomolecules)
Show Figures

Figure 1

23 pages, 19058 KiB  
Article
Retrieval of Vegetation Indices and Vegetation Fraction in Highly Compact Urban Areas: A 3D Radiative Transfer Approach
by Wenya Xue, Liping Feng, Jinxin Yang, Yong Xu, Hung Chak Ho, Renbo Luo, Massimo Menenti and Man Sing Wong
Remote Sens. 2025, 17(1), 143; https://doi.org/10.3390/rs17010143 - 3 Jan 2025
Viewed by 1232
Abstract
Vegetation indices, especially the normalized difference vegetation index (NDVI), are widely used in urban vegetation assessments. However, estimating the vegetation abundance in urban scenes using the NDVI has constraints due to the complex spectral signature related to the urban structure, materials and other [...] Read more.
Vegetation indices, especially the normalized difference vegetation index (NDVI), are widely used in urban vegetation assessments. However, estimating the vegetation abundance in urban scenes using the NDVI has constraints due to the complex spectral signature related to the urban structure, materials and other factors compared to natural ground surfaces. This paper employs the 3D discrete anisotropic radiative transfer (DART) model to simulate the spectro-directional reflectance of synthetic urban scenes with various urban geometries and building materials using a flux-tracking method under shaded and sunlit conditions. The NDVI is calculated using the spectral radiance in the red (0.6545 μm) and near-infrared bands (0.865 μm). The effects of the urban material heterogeneity and 3D structure on the NDVI, and the performance of three NDVI-based fractional vegetation cover (FVC) inversion algorithms, are evaluated. The results show that the effects of the building material heterogeneity on the NDVI are negligible under sunlit conditions but not negligible under shaded conditions. The NDVI value of building components within synthetic scenes is approximately zero. The shaded road exhibits a higher NDVI value in comparison to the illuminated road because of scattering from adjacent pixels. In order to correct the effects of scattering caused by building geometry, the reflectance of the Landsat 8/OLI image is corrected using the sky view factor (SVF) and then used to calculate the FVC. Jilin-1 satellite images with high spatial resolution (0.5 m) are used to extract the vegetation cover and then aggregated to 30 m spatial resolution to calculate the FVC for validation. The results show that the RMSE is up to 0.050 after correction, while the RMSE is 0.169 before correction. This study makes a contribution to the understanding of the effects of the urban 3D structure and material reflectance on the NDVI and provides insights into the retrieval of the FVC in different urban scenes. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

Back to TopTop