Retrievals of Biomass Burning Aerosol and Liquid Cloud Properties from Polarimetric Observations Using Deep Learning Techniques
Abstract
:1. Introduction
- Developing a new coupled retrieval approach for aerosol and clouds from polarimetric measurements that takes into account multi-dimensional inputs and their spectral and angular spatial relations.
- Achieving better or similar accuracy compared to existing algorithms in retrieving aerosol optical properties, while maintaining fast computation time.
2. Data
2.1. Simulations
2.2. Observations
- (1)
- Level 1 radiometric and polarimetric data were organized so they represent a multi-angle view of cloud top.
- (2)
- For each level 1 observation, if they represent clouds, then the above cloud water vapor pressure from model and reanalysis (MERRA-2 and standard atmosphere vertical profiles) are used to correct for trace gas absorption. This correction is performed since the training set did not include trace gas in the simulations.
- (3)
- The corrected data are then standardized according to Equation (4).
- (4)
3. Methodology
3.1. ResNet
3.2. Vision Transformers (ViT)
3.3. MLP-NN
3.4. Training and Model Setup
4. Results
4.1. Comparing the Different Models on Test Data
4.2. Validation
4.2.1. Clouds
4.2.2. Aerosols
Comparing with AirMSPI ACA Algorithm
Comparing with HSRL
5. Discussion
- Limited spectral information: retrievals often rely on only one or two wavelengths, missing valuable information encoded across broader spectral ranges.
- Separate aerosol and cloud retrieval schemes: aerosols and clouds are typically retrieved independently, each utilizing different regions of spectral and angular measurements. This separation inherently reduces the accuracy and consistency of combined aerosol-cloud retrievals and hinders accurate quantification of aerosol-cloud interactions.
- Strongly simplified assumptions: many traditional retrieval algorithms assume horizontally homogeneous aerosol layers extending over large spatial scales, as well as fixed empirical relationships between cloud optical depth (COD) and effective radius (Reff). These simplifying assumptions often fail under realistic atmospheric conditions, reducing retrieval accuracy and limiting the valid retrievals across heterogeneous cloud-aerosol scenes, as observed during ORACLES. Furthermore, algorithms like the RSP MAPP (Microphysical Aerosol Properties from Polarimetry) retrievals can only provide aerosol properties under clear-sky conditions, severely limiting the quantity and representativeness of the retrieval data in cloudy regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Redemann, J.; Wood, R.; Zuidema, P.; Doherty, S.J.; Luna, B.; LeBlanc, S.E.; Diamond, M.S.; Shinozuka, Y.; Chang, I.Y.; Ueyama, R.; et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmos. Meas. Tech. 2021, 21, 1507–1563. [Google Scholar] [CrossRef]
- Muhlbauer, A.; McCoy, I.L.; Wood, R. Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Meas. Tech. 2014, 14, 6695–6716. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus Clouds. Mon. Weather. Rev. 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Zuidema, P.; Redemann, J.; Haywood, J.; Wood, R.; Piketh, S.; Hipondoka, M.; Formenti, P. Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate. Bull. Am. Meteorol. Soc. 2016, 97, 1131–1135. [Google Scholar] [CrossRef]
- Haywood, J.M.; Abel, S.J.; Barrett, P.A.; Bellouin, N.; Blyth, A.; Bower, K.N.; Brooks, M.; Carslaw, K.; Che, H.; Coe, H.; et al. The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign. Atmos. Chem. Phys. 2021, 21, 1049–1084. [Google Scholar] [CrossRef]
- Painemal, D.; Kato, S.; Minnis, P. Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation. J. Geophys. Res. Atmos. 2014, 119, 11288–11302. [Google Scholar] [CrossRef]
- Sakaeda, N.; Wood, R.; Rasch, P.J. Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res. 2011, 116, D12205-1-19. [Google Scholar] [CrossRef]
- Chang, I.; Christopher, S.A. Identifying Absorbing Aerosols Above Clouds From the Spinning Enhanced Visible and Infrared Imager Coupled With NASA A-Train Multiple Sensors. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3163–3173. [Google Scholar] [CrossRef]
- Waquet, F.; Péré, J.; Peers, F.; Goloub, P.; Ducos, F.; Thieuleux, F.; Tanré, D. Global detection of absorbing aerosols over the ocean in the red and near-infrared spectral region. J. Geophys. Res. Atmos. 2016, 121, 10902–10918. [Google Scholar] [CrossRef]
- McCoy, I.L.; Wood, R.; Fletcher, J.K. Identifying Meteorological Controls on Open and Closed Mesoscale Cellular Convection Associated with Marine Cold Air Outbreaks. J. Geophys. Res. Atmos. 2017, 122, 11678–11702. [Google Scholar] [CrossRef]
- Peers, F.; Francis, P.; Fox, C.; Abel, S.J.; Szpek, K.; Cotterell, M.I.; Davies, N.W.; Langridge, J.M.; Meyer, K.G.; Platnick, S.E.; et al. Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI—Part 1: Method description and sensitivity. Atmos. Meas. Tech. 2019, 19, 9595–9611. [Google Scholar] [CrossRef]
- Meyer, K.; Platnick, S.; Zhang, Z. Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS. J. Geophys. Res. Atmos. 2015, 120, 5524–5547. [Google Scholar] [CrossRef]
- Knobelspiesse, K.; Cairns, B.; Redemann, J.; Bergstrom, R.W.; Stohl, A. Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign. Atmos. Meas. Tech. 2011, 11, 6245–6263. [Google Scholar] [CrossRef]
- Waquet, F.; Cornet, C.; Deuzé, J.-L.; Dubovik, O.; Ducos, F.; Goloub, P.; Herman, M.; Lapyonok, T.; Labonnote, L.C.; Riedi, J.; et al. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements. Atmos. Meas. Tech. 2013, 6, 991–1016. [Google Scholar] [CrossRef]
- Xu, F.; van Harten, G.; Diner, D.J.; Davis, A.B.; Seidel, F.C.; Rheingans, B.; Tosca, M.; Alexandrov, M.D.; Cairns, B.; Ferrare, R.A.; et al. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). J. Geophys. Res. Atmos. 2018, 123, 3175–3204. [Google Scholar] [CrossRef]
- Di Noia, A.; Hasekamp, O.P.; van Diedenhoven, B.; Zhang, Z. Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach. Atmos. Meas. Tech. 2019, 12, 1697–1716. [Google Scholar] [CrossRef]
- Miller, D.J.; Segal-Rozenhaimer, M.; Knobelspiesse, K.; Redemann, J.; Cairns, B.; Alexandrov, M.; van Diedenhoven, B.; Wasilewski, A. Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm. Atmos. Meas. Tech. 2020, 13, 3447–3470. [Google Scholar] [CrossRef]
- Segal-Rozenhaimer, M.; Miller, D.J.; Knobelspiesse, K.; Redemann, J.; Cairns, B.; Alexandrov, M.D. Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations. J. Quant. Spectrosc. Radiat. Transf. 2018, 220, 39–51. [Google Scholar] [CrossRef]
- Di Noia, A.; Hasekamp, O.P.; Wu, L.; van Diedenhoven, B.; Cairns, B.; Yorks, J.E. Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter. Atmos. Meas. Tech. 2017, 10, 4235–4252. [Google Scholar] [CrossRef]
- Gao, M.; Franz, B.A.; Zhai, P.-W.; Knobelspiesse, K.; Sayer, A.M.; Xu, X.; Martins, J.V.; Cairns, B.; Castellanos, P.; Fu, G.; et al. Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models. Atmos. Meas. Tech. 2023, 16, 5863–5881. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Koonce, B. ResNet 50. In Convolutional Neural Networks with Swift for Tensorflow; Apress: Berkeley, CA, USA, 2021. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rozenhaimer, M.S.; Nukrai, D.; Che, H.; Wood, R.; Zhang, Z. Cloud Mesoscale Cellular Classification and Diurnal Cycle Using a Convolutional Neural Network (CNN). Remote Sens. 2023, 15, 1607. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, F.; Liu, Y.; Zhao, B.; Jiao, H.; Zhang, L. SatCNN: Satellite image dataset classification using agile convolutional neural networks. Remote Sens. Lett. 2016, 8, 136–145. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Segal-Rozenhaimer, M.; Li, A.; Das, K.; Chirayath, V. Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN). Remote Sens. Environ. 2020, 237, 111446. [Google Scholar] [CrossRef]
- Malmgren-Hansen, D.; Laparra, V.; Nielsen, A.A.; Camps-Valls, G. Statistical retrieval of atmospheric profiles with deep convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2019, 158, 231–240. [Google Scholar] [CrossRef]
- Martins, J.V.; Fernandez-Borda, R.; McBride, B.; Remer, L.; Barbosa, H.M.J. The Harp Hype Ran Gular Imaging Polarimeter and the Need for Small Satellite Payloads with High Science Payoff for Earth Science Remote Sensing. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6304–6307. [Google Scholar]
- McBride, B.A.; Martins, J.; Puthukuddy, A.; Xu, X.; Borda, R.F.; Barbosa, H.M.J.; Hasekamp, O.; Remer, L.A. The Hyper-Angular Rainbow Polarimeter-2 (HARP2): A wide FOV polarimetric imager for high-resolution spatial and angular characterization of aerosol and cloud microphysics. In Proceedings of the 70th International Astronautical Congress (IAC), Washington, DC, USA, 21–25 October 2019. [Google Scholar]
- Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp, O.; et al. The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances. Bull. Am. Meteorol. Soc. 2019, 100, 1775–1794. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.; Poulin, C.; Allen, J.; Cairns, B.; Caplan, S.; Cetinić, I.; Craig, S.; Gao, M.; Hasekamp, O.; et al. Life after launch: A snapshot of the first six months of NASA’s plankton, aerosol, cloud, ocean ecosystem (PACE) mission. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXVIII, Edinburgh, UK, 16–18 September 2024; SPIE: Pune, India, 2024; Volume 13192, pp. 70–84. [Google Scholar]
- Cairns, B.; Russell, E.E.; LaVeigne, J.D.; Tennant, P.M. Research scanning polarimeter and airborne usage for remote sensing of aerosols. Polariz. Sci. Remote Sens. 2003, 5158, 33–44. [Google Scholar]
- Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527–610. [Google Scholar] [CrossRef]
- Zuidema, P.; Chiu, C.; Fairall, C.W.; Ghan, S.J.; Kollias, P.; McFarguhar, G.M.; Mechem, D.B.; Romps, D.M.; Wong, H.; Yuter, S.E.; et al. Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan. (No. DOE/SC-ARM-14-037). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States). 2015. Available online: https://www.arm.gov/research/campaigns/amf2016lasic (accessed on 8 May 2025).
- Gupta, S.; McFarquhar, G.M.; O’Brien, J.R.; Delene, D.J.; Poellot, M.R.; Dobracki, A.; Podolske, J.R.; Redemann, J.; LeBlanc, S.E.; Segal-Rozenhaimer, M.; et al. Impact of the variability in vertical separation between biomass burning aerosols and marine stratocumulus on cloud microphysical properties over the Southeast Atlantic. Atmos. Meas. Tech. 2021, 21, 4615–4635. [Google Scholar] [CrossRef]
- Zhang, L.; Segal-Rozenhaimer, M.; Che, H.; Dang, C.; Iii, A.J.S.; Lewis, E.R.; Dobracki, A.; Wong, J.P.S.; Formenti, P.; Howell, S.G.; et al. Light absorption by brown carbon over the South-East Atlantic Ocean. Atmos. Meas. Tech. 2022, 22, 9199–9213. [Google Scholar] [CrossRef]
- Zuidema, P.; Sedlacek, A.J.; Flynn, C.; Springston, S.; Delgadillo, R.; Zhang, J.; Aiken, A.C.; Koontz, A.; Muradyan, P. The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky. Geophys. Res. Lett. 2018, 45, 4456–4465. [Google Scholar] [CrossRef]
- Pistone, K.; Redemann, J.; Doherty, S.; Zuidema, P.; Burton, S.; Cairns, B.; Cochrane, S.; Ferrare, R.; Flynn, C.; Freitag, S.; et al. Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016. Atmos. Meas. Tech. 2019, 19, 9181–9208. [Google Scholar] [CrossRef]
- Knobelspiesse, K.; Tan, Q.; Bruegge, C.; Cairns, B.; Chowdhary, J.; van Diedenhoven, B.; Diner, D.; Ferrare, R.; van Harten, G.; Jovanovic, V.; et al. Intercomparison of airborne multi-angle polarimeter observations from the Polarimeter Definition Experiment. Appl. Opt. 2019, 58, 650–669. [Google Scholar] [CrossRef]
- LeBlanc, S.E.; Redemann, J.; Flynn, C.; Pistone, K.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.; Dunagan, S.; Dahlgren, R.P.; Meyer, K.; et al. Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic. Atmos. Chem. Phys. 2020, 20, 1565–1590. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Mascarenhas, S.; Agarwal, M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; pp. 96–99. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Chen, X.; Hsieh, C.-J.; Gong, B. When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations. arXiv 2022, arXiv:2106.01548. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Alexandrov, M.D.; Cairns, B.; Emde, C.; Ackerman, A.S.; van Diedenhoven, B. Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter. Remote Sens. Environ. 2012, 125, 92–111. [Google Scholar] [CrossRef]
- Miller, D.J.; Zhang, Z.; Platnick, S.; Ackerman, A.S.; Werner, F.; Cornet, C.; Knobelspiesse, K. Comparisons of bispectral and polarimetric retrievals of marine boundary layer cloud microphysics: Case studies using a LES–satellite retrieval simulator. Atmos. Meas. Tech. 2018, 11, 3689–3715. [Google Scholar] [CrossRef]
- Diner, D.J.; Xu, F.; Garay, M.J.; Martonchik, J.V.; Rheingans, B.E.; Geier, S.; Davis, A.; Hancock, B.R.; Jovanovic, V.M.; Bull, M.A.; et al. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): A new tool for aerosol and cloud remote sensing. Atmos. Meas. Tech. 2013, 6, 2007–2025. [Google Scholar] [CrossRef]
- Jethva, H.T.; Torres, O.; Ferrare, R.A.; Burton, S.P.; Cook, A.L.; Harper, D.B.; Hostetler, C.A.; Redemann, J.; Kayetha, V.; LeBlanc, S.; et al. Retrieving UV–Vis spectral single-scattering albedo of absorbing aerosols above clouds from synergy of ORACLES airborne and A-train sensors. Atmos. Meas. Tech. 2024, 17, 2335–2366. [Google Scholar] [CrossRef]
- Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space: An Overview for Decision Makers and the Public; The National Academies Press: Washington, DC, USA, 2018. [CrossRef]
- Hair, J.W.; Hostetler, C.A.; Cook, A.L.; Harper, D.B.; Ferrare, R.A.; Mack, T.L.; Welch, W.; Izquierdo, L.R.; Hovis, F.E. Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt. 2008, 47, 6734–6752. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Qin, T.; Lu, W.; Chen, Y.; Zeng, W.; Yu, P. Generalizing to Unseen Domains: A Survey on Domain Generalization. IEEE Trans. Knowl. Data Eng. 2023, 35, 8052–8072. [Google Scholar] [CrossRef]
- Kellenberger, B.; Tasar, O.; Damodaran, B.B.; Courty, N.; Tuia, D. Deep domain adaptation in earth observation. In Deep Learning for the Earth Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; Chapter 7; pp. 90–104. [Google Scholar] [CrossRef]
- Mateo-García, G.; Laparra, V.; López-Puigdollers, D.; Gómez-Chova, L. Transferring deep learning models for cloud detection between Landsat-8 and Proba-V. ISPRS J. Photogramm. Remote Sens. 2020, 160, 1–17. [Google Scholar] [CrossRef]
- Fang, Y.; Yap, P.-T.; Lin, W.; Zhu, H.; Liu, M. Source-free unsupervised domain adaptation: A survey. Neural Netw. 2024, 174, 106230. [Google Scholar] [CrossRef]
Parameter Description | Value (Unit) |
---|---|
Aircraft Altitude | 6100 (m) |
Cloud droplet size distribution | Monomodal 2 parameter modified Gamma distribution (Hansen and Travis, 1974 [34], Equation 2.56) |
Aerosol size distribution | Bimodal 2 parameter lognormal distribution (Hansen and Travis, 1974 [34], Equation 2.60) |
Aerosol coarse size mode refractive index | 1.47-i0.01 |
Aerosol coarse size mode effective radius | 6.91 (μm) |
Aerosol coarse size mode effective variance | 0.867 |
Trace gas absorption | Neglected (corrected in observational data) |
Atmospheric surface pressure | 1013.25 (mbar) |
Surface temperature | 288.15° (K) |
Ocean surface reflectance | & None |
Simulation geometry | Slab, plane parallel |
MLP | ResNet | ViT | |
---|---|---|---|
Layers | 4 hidden layers (1024 neurons) | 50 convolutional layers (ResNet50) | 10 transformer blocks, 8 multi-head attention each |
Batch Size | 4000 | 4500 | 500 |
Epochs | 500 | 500 | 500 |
Learning Rate | 0.001 | 0.001 | 0.001 |
Inputs | 1414 (2 channels) or 2121 (3 channels) + 2 | 2 × 7 × 101 or 3 × 7 × 101 +2 | 2 × 7 × 101 or 3 × 7 × 101 +2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segal Rozenhaimer, M.; Knobelspiesse, K.; Miller, D.; Batenkov, D. Retrievals of Biomass Burning Aerosol and Liquid Cloud Properties from Polarimetric Observations Using Deep Learning Techniques. Remote Sens. 2025, 17, 1693. https://doi.org/10.3390/rs17101693
Segal Rozenhaimer M, Knobelspiesse K, Miller D, Batenkov D. Retrievals of Biomass Burning Aerosol and Liquid Cloud Properties from Polarimetric Observations Using Deep Learning Techniques. Remote Sensing. 2025; 17(10):1693. https://doi.org/10.3390/rs17101693
Chicago/Turabian StyleSegal Rozenhaimer, Michal, Kirk Knobelspiesse, Daniel Miller, and Dmitry Batenkov. 2025. "Retrievals of Biomass Burning Aerosol and Liquid Cloud Properties from Polarimetric Observations Using Deep Learning Techniques" Remote Sensing 17, no. 10: 1693. https://doi.org/10.3390/rs17101693
APA StyleSegal Rozenhaimer, M., Knobelspiesse, K., Miller, D., & Batenkov, D. (2025). Retrievals of Biomass Burning Aerosol and Liquid Cloud Properties from Polarimetric Observations Using Deep Learning Techniques. Remote Sensing, 17(10), 1693. https://doi.org/10.3390/rs17101693