Quantum Mpemba Effect from Non-Normal Dynamics
Abstract
1. Introduction
2. Mpemba Effect from Non-Normal Dynamics in Markovian Open Quantum Systems
3. Non-Normal Mpemba Effect in Waveguide Quantum Electrodynamics
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Evolution Equations of the Density Matrix Elements
- (i)
- Owing to trace conservation, , instead of integrating Equation (A5), the expression of can be simply obtained from the following relation:
- (ii)
- If the initial state is the pure state
References
- Mpemba, E.B.; Osborne, D.G. Cool? Phys. Educ. 1969, 4, 172. [Google Scholar] [CrossRef]
- Kell, G.S. The Freezing of Hot and Cold Water. Am. J. Phys. 1969, 37, 564. [Google Scholar] [CrossRef]
- Jeng, M. The Mpemba effect: When can hot water freeze faster than cold? Am. J. Phys. 2006, 74, 514. [Google Scholar] [CrossRef]
- Bechhoefer, J.; Kumar, A.; Chétrite, R. A fresh understanding of the Mpemba effect. Nat. Rev. Phys. 2021, 3, 534. [Google Scholar] [CrossRef]
- Lasanta, A.; Reyes, F.V.; Prados, A.; Santos, A. When the Hotter Cools More Quickly: Mpemba Effect in Granular Fluids. Phys. Rev. Lett. 2017, 119, 148001. [Google Scholar] [CrossRef]
- Lu, Z.; Raz, O. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse. Proc. Nat. Acad. Sci. USA 2017, 114, 5083. [Google Scholar] [CrossRef] [PubMed]
- Klich, I.; Raz, O.; Hirschberg, O.; Vucelja, M. Mpemba index and anomalous relaxation. Phys. Rev. X 2019, 9, 021060. [Google Scholar] [CrossRef]
- Kumar, A.; Bechhoefer, J. Exponentially faster cooling in a colloidal system. Nature 2020, 584, 64. [Google Scholar] [CrossRef]
- Baity-Jesi, M.; Calore, E.; Cruz, A.; Fernandez, L.A.; Gil-Narvion, J.M.; Gordillo-Guerrero, A.; Iniguez, D.; Lasanta, A.; Maiorano, A.; Marinari, E.; et al. The Mpemba effect in spin glasses is a persistent memory effect. Proc. Nat. Acad. Sci. USA 2019, 116, 15350. [Google Scholar] [CrossRef]
- Teza, G.; Yaacoby, R.; Raz, O. Relaxation shortcuts through boundary coupling. Phys. Rev. Lett. 2023, 131, 017101. [Google Scholar] [CrossRef]
- Vu, T.V.; Hayakawa, H. Thermomajorization Mpemba Effect. Phys. Rev. Lett. 2025, 134, 107101. [Google Scholar] [PubMed]
- Teza, G.; Bechhoefer, J.; Lasanta, A.; Raz, O.; Vucelja, M. Speedups in nonequilibrium thermal relaxation: Mpemba and related effects. arXiv 2025, arXiv:2502.01758. [Google Scholar]
- Ares, F.; Calabrese, P.; Murciano, S. The quantum Mpemba effects. arXiv 2025, arXiv:2502.08087. [Google Scholar]
- Nava, A.; Fabrizio, M. Lindblad dissipative dynamics in the presence of phase coexistence. Phys. Rev. B 2019, 100, 125102. [Google Scholar] [CrossRef]
- Carollo, F.; Lasanta, A.; Lesanovsky, I. Exponentially Accelerated Approach to Stationarity in Markovian Open Quantum Systems through the Mpemba Effect. Phys. Rev. Lett. 2021, 127, 060401. [Google Scholar] [CrossRef]
- Manikandan, S.K. Equidistant quenches in few-level quantum systems. Phys. Rev. Res. 2021, 3, 043108. [Google Scholar] [CrossRef]
- Kochsiek, S.; Carollo, F.; Lesanovsky, I. Accelerating the approach of dissipative quantum spin systems towards stationarity through global spin rotations. Phys. Rev. A 2022, 106, 012207. [Google Scholar] [CrossRef]
- Ivander, F.; Anto-Sztrikacs, N.; Segal, D. Hyperacceleration of quantum thermalization dynamics by bypassing long-lived coherences: An analytical treatment. Phys. Rev. E 2023, 108, 014130. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; Yu, X.-D.; Wu, C.-W.; Li, X.-Q.; Zhang, J.; Li, W.; Chen, P.X. Accelerating relaxation through Liouvillian exceptional point. Phys. Rev. Res. 2023, 5, 043036. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Takada, S.; Hayakawa, H. Quantum Mpemba effect in a quantum dot with reservoirs. Phys. Rev. Lett. 2023, 131, 080402. [Google Scholar] [CrossRef]
- Moroder, M.; Culhane, O.; Zawadzki, K.; Goold, J. Thermodynamics of the quantum Mpemba effect. Phys. Rev. Lett. 2024, 133, 140404. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.K.; Takada, S.; Hayakawa, H. Multiple quantum Mpemba effect: Exceptional points and oscillations. Phys. Rev. A 2024, 110, 022213. [Google Scholar] [CrossRef]
- Nava, A.; Egger, R. Mpemba effects in open nonequilibrium quantum systems. Phys. Rev. Lett. 2024, 133, 136302. [Google Scholar] [CrossRef]
- Shapira, S.A.; Shapira, Y.; Markov, J.; Teza, G.; Akerman, N.; Raz, O.; Ozeri, R. Inverse Mpemba Effect Demonstrated on a Single Trapped Ion Qubit. Phys. Rev. Lett. 2024, 133, 010403. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J. Mpemba effects in nonequilibrium open quantum systems. Phys. Rev. Res. 2024, 6, 033330. [Google Scholar] [CrossRef]
- Liu, D.; Yuan, J.; Ruan, H.; Xu, Y.; Luo, S.; He, J.; He, X.; Ma, Y.; Wang, J. Speeding up quantum heat engines by the Mpemba effect. Phys. Rev. A 2024, 110, 042218. [Google Scholar] [CrossRef]
- Longhi, S. Bosonic Mpemba effect with non-classical states of light. APL Quantum 2024, 1, 046110. [Google Scholar] [CrossRef]
- Longhi, S. Laser Mpemba effect. Opt. Lett. 2025, 50, 2069–2072. [Google Scholar] [CrossRef]
- Longhi, S. Mpemba effect and super-accelerated thermalization in the damped quantum harmonic oscillator. Quantum 2025, 9, 1677. [Google Scholar] [CrossRef]
- Dong, J.W.; Mu, H.F.; Qin, M.; Cui, H.T. Quantum Mpemba effect of localization in the dissipative mosaic model. Phys. Rev. A 2025, 111, 022215. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, G.; Wu, C.W.; Chen, T.; Zhang, Q.; Xie, Y.; Su, W.B.; Wu, W.; Qiu, C.W.; Chen, P.X.; et al. Observation of quantum strong Mpemba effect. Nat. Commun. 2025, 16, 301. [Google Scholar] [CrossRef] [PubMed]
- Furtado, J.; Santos, A.C. Strong Quantum Mpemba Effect with Squeezed Thermal Reservoirs. arXiv 2024, arXiv:2411.04545. [Google Scholar]
- Qian, D.; Wang, H.; Wang, J. Intrinsic Quantum Mpemba Effect in Markovian Systems and Quantum Circuits. arXiv 2024, arXiv:2411.18417. [Google Scholar]
- Longhi, S. Quantum Mpemba effect from initial system-reservoir entanglement. arXiv 2025, arXiv:2504.21758. [Google Scholar]
- Boubakour, M.; Endo, S.; Fogarty, T.; Busch, T. Dynamical invariant based shortcut to equilibration in open quantum systems. arXiv 2025, arXiv:2401.11659. [Google Scholar] [CrossRef]
- Strachan, D.J.; Purkayastha, A.; Clark, S.R. Non-Markovian Quantum Mpemba effect. arXiv 2024, arXiv:2402.05756. [Google Scholar]
- Ares, F.; Murciano, S.; Calabrese, P. Entanglement asymmetry as a probe of symmetry breaking. Nat. Commun. 2023, 14, 2036. [Google Scholar] [CrossRef] [PubMed]
- Joshi, L.K.; Franke, J.; Rath, A.; Ares, F.; Murciano, S.; Kranzl, F.; Blatt, R.; Zoller, P.; Vermersch, B.; Calabrese, P.; et al. Observing the quantum Mpemba effect in quantum simulations. Phys. Rev. Lett. 2024, 133, 010402. [Google Scholar] [CrossRef]
- Rylands, C.; Klobas, K.; Ares, F.; Calabrese, P.; Murciano, S.; Bertini, B. Microscopic origin of the quantum Mpemba effect in integrable systems. Phys. Rev. Lett. 2024, 133, 010401. [Google Scholar] [CrossRef]
- Murciano, S.; Ares, F.; Klich, I.; Calabrese, P. Entanglement asymmetry and quantum Mpemba effect in the XY spin chain. J. Stat. Mech. 2024, 2024, 013103. [Google Scholar] [CrossRef]
- Caceffo, F.; Murciano, S.; Alba, V. Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems. J. Stat. Mech. 2024, 2024, 063103. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.-K.; Yin, S.; Zhang, S.-X. Symmetry Restoration and Quantum Mpemba Effect in Symmetric Random Circuits. Phys. Rev. Lett. 2024, 133, 140405. [Google Scholar] [CrossRef] [PubMed]
- Chalas, K.; Ares, F.; Rylands, C.; Calabrese, P. Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect. J. Stat. Mech. 2024, 103101. [Google Scholar] [CrossRef]
- Yamashika, S.; Ares, F.; Calabrese, P. Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems. Phys. Rev. B 2024, 110, 085126. [Google Scholar] [CrossRef]
- Yamashika, S.; Calabrese, P.; Ares, F. Quenching from superfluid to free bosons in two dimensions: Entanglement, symmetries, and quantum Mpemba effect. arXiv 2024, arXiv:2410.14299. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.-K.; Yin, S.; Zhang, S.-X.; Yao, H. Quantum Mpemba effects in many-body localization systems. arXiv 2024, arXiv:2408.07750. [Google Scholar]
- Trefethen, L.; Trefethen, A.; Reddy, S.C.; Driscol, T. Hydrodynamic stability without eigenvalues. Science 1993, 261, 578. [Google Scholar] [CrossRef]
- Farrell, B.F.; Ioannou, P.J. Variance maintained by stochastic forcing of non-normal dynamical systems associated with linearly stable shear flows. Phys. Rev. Lett. 1994, 72, 1188. [Google Scholar] [CrossRef]
- Makris, K.G.; Ge, L.; Türeci, H.E. Anomalous Transient Amplification of Waves in Non-normal Photonic Media. Phys. Rev. X 2014, 4, 041044. [Google Scholar] [CrossRef]
- Asllani, M.; Lambiotte, R.; Carletti, T. Structure and dynamical behavior of non-normal networks. Sci. Adv. 2018, 4, eaau9403. [Google Scholar] [CrossRef]
- Longhi, S. Anomalous dynamics in multilevel quantum decay. Phys. Rev. A 2018, 98, 022134. [Google Scholar] [CrossRef]
- Longhi, S. Quantum decay in a topological continuum. Phys. Rev. A 2019, 100, 022123. [Google Scholar] [CrossRef]
- Mori, T.; Shirai, T. Resolving a Discrepancy between Liouvillian Gap and Relaxation Time in Boundary-Dissipated Quantum Many-Body Systems. Phys. Rev. Lett. 2020, 125, 230604. [Google Scholar] [CrossRef]
- Haga, T.; Nakagawa, M.; Hamazaki, R.; Ueda, M. Liouvillian Skin Effect: Slowing Down of Relaxation Processes without Gap Closing. Phys. Rev. Lett. 2021, 127, 070402. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Shirai, T. Symmetrized Liouvillian Gap in Markovian Open Quantum Systems. Phs. Rev. Lett. 2023, 130, 230404. [Google Scholar] [CrossRef]
- Lee, G.; McDonald, A.; Clerk, A. Anomalously large relaxation times in dissipative lattice models beyond the non-Hermitian skin effect. Phys. Rev. B 2023, 108, 064311. [Google Scholar] [CrossRef]
- Shimomura, K.; Sato, M. General Criterion for Non-Hermitian Skin Effects and Application: Fock Space Skin Effects in Many-Body Systems. Phys. Rev. Lett. 2024, 133, 136502. [Google Scholar] [CrossRef]
- Pichler, H.; Ramos, T.; Daley, A.J.; Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 2015, 91, 042116. [Google Scholar] [CrossRef]
- Bello, M.; Platero, G.; Cirac, J.I.; González-Tudela, A. Unconventional quantum optics in topological waveguide QED. Sci. Adv. 2019, 5, eaaw0297. [Google Scholar] [CrossRef]
- Sheremet, A.S.; Petrov, M.I.; Iorsh, I.V.; Poshakinskiy, A.V.; Poddubny, A.N. Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations. Rev. Mod. Phys. 2023, 95, 015002. [Google Scholar] [CrossRef]
- Ciccarello, F.; Lodahl, P.; Schneble, D. Waveguide Quantum Electrodynamics. Opt. Photon. News 2024, 35, 34. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, MS, USA, 2002. [Google Scholar]
- Kumar, S. Wishart and random density matrices: Analytical results for the mean-square Hilbert-Schmidt distance. Phys. Rev. A 2020, 102, 012405. [Google Scholar] [CrossRef]
- Solano, P.; Barberis-Blostein, P.; Fatemi, F.K.; Orozco, L.A.; Rolston, S.L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 2017, 8, 1857. [Google Scholar] [CrossRef] [PubMed]
- Liedl, C.; Tebbenjohanns, F.; Bach, C.; Pucher, S.; Rauschenbeutel, A.; Schneeweiss, P. Observation of Superradiant Bursts in a Cascaded Quantum System. Phys. Rev. X 2024, 14, 011020. [Google Scholar] [CrossRef]
- Goban, A.; Hung, C.-L.; Hood, J.D.; Yu, S.-P.; Muniz, J.A.; Painter, O.; Kimble, H.J. Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. Phys. Rev. Lett. 2015, 115, 063601. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347. [Google Scholar] [CrossRef]
- Forn-Diaz, P.; Garcia-Ripoll, J.J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M.A.; Belyansky, R.; Wilson, C.M.; Lupascu, A. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 2017, 13, 39. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Feng, W.; Song, X.; Song, C.; Liu, W.; Guo, Q.; Zhang, X.; Dong, H.; Zheng, D.; et al. Controllable Switching between Superradiant and Subradiant States in a 10-qubit Superconducting Circuit. Phys. Rev. Lett. 2020, 124, 013601. [Google Scholar] [CrossRef]
- Zanner, M.; Orell, T.; Schneider, C.M.F.; Albert, R.; Oleschko, S.; Juan, M.L.; Silveri, M.; Kirchmair, G. Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nat. Phys. 2022, 18, 538. [Google Scholar] [CrossRef]
- Scigliuzzo, M.; Calaj, G.; Ciccarello, F.; Lozano, D.P.; Bengtsson, A.; Scarlino, P.; Wallraff, A.; Chang, D.; Delsing, P.; Gaspariinetti, S. Controlling Atom-Photon Bound States in an Array of Josephson-Junction Resonators. Phys. Rev. X 2022, 12, 031036. [Google Scholar] [CrossRef]
- Henrici, P. Bounds for Iterates, Inverses, Spectral Variation and Fields of Values of Non-Normal Matrices. Numer. Math. 1962, 4, 24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longhi, S. Quantum Mpemba Effect from Non-Normal Dynamics. Entropy 2025, 27, 581. https://doi.org/10.3390/e27060581
Longhi S. Quantum Mpemba Effect from Non-Normal Dynamics. Entropy. 2025; 27(6):581. https://doi.org/10.3390/e27060581
Chicago/Turabian StyleLonghi, Stefano. 2025. "Quantum Mpemba Effect from Non-Normal Dynamics" Entropy 27, no. 6: 581. https://doi.org/10.3390/e27060581
APA StyleLonghi, S. (2025). Quantum Mpemba Effect from Non-Normal Dynamics. Entropy, 27(6), 581. https://doi.org/10.3390/e27060581