Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films
Abstract
1. Introduction
2. Results
2.1. Absorption and Fluorescence Spectra
2.2. Fluorescence Anisotropy
2.3. Fluorescence Quantum Yield
2.4. Fluorescence Lifetime
2.5. Phosphorescence Spectra
2.6. Phosphorescence Lifetime
2.7. RTP Anisotropy
2.8. RTP with Direct Triplet-State Excitation
3. Materials and Methods
3.1. Film Preparation
3.2. Absorption Spectra
3.3. Fluorescence Spectra
3.4. Fluorescence Anisotropy
3.5. Fluorescence Quantum Yield
3.6. Fluorescence Lifetime
3.7. Phosphorescence Spectra Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bontemps, J.; Houssier, C.; Fredericq, E. Physico-chemical study of the complexes of “33258 Hoechst” with DNA and nucleohistone. Nucleic Acids Res. 1975, 2, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Weisblum, B.; Haenssler, E. Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma 1974, 46, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.K.; Usman, N.; Frederick, C.A.; Wang, A.H. The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic Acids Res. 1988, 16, 2671–2690. [Google Scholar] [CrossRef] [PubMed]
- Latt, S.A.; Stetten, G.; Juergens, L.A.; Willard, H.F.; Scher, C.D. Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. J. Histochem. Cytochem. 1975, 23, 493–505. [Google Scholar] [CrossRef]
- Latt, S.A.; Stetten, G. Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J. Histochem. Cytochem. 1976, 24, 24–33. [Google Scholar] [CrossRef]
- Han, F.; Taulier, N.; Chalikian, T.V. Association of the minor groove binding drug Hoechst 33258 with d(CGCGAATTCGCG)2: Volumetric, calorimetric, and spectroscopic characterizations. Biochemistry 2005, 44, 9785–9794. [Google Scholar] [CrossRef]
- Karg, T.J.; Golic, K.G. Photoconversion of DAPI and Hoechst dyes to green and red-emitting forms after exposure to UV excitation. Chromosoma 2018, 127, 235–245. [Google Scholar] [CrossRef]
- Portugal, J.; Waring, M.J. Assignment of DNA binding sites for 4′,6-diamidine-2-phenylindole and bisbenzimide (Hoechst 33258). A comparative footprinting study. Biochim. Biophys. Acta Gene Struct. Expr. 1988, 949, 158–168. [Google Scholar] [CrossRef]
- Wiederschain, G. The Handbook–A Guide to Fluorescent Probes and Labeling Techniques. Biochemistry 2011, 76, 1235–1237. [Google Scholar] [CrossRef]
- Kubbies, M. Flow cytometric recognition of clastogen induced chromatin damage in G0/G1 lymphocytes by non-stoichiometric Hoechst fluorochrome binding. Cytometry 1990, 11, 386–394. [Google Scholar] [CrossRef]
- Bucevičius, J.; Lukinavičius, G.; Gerasimaitė, R. The Use of Hoechst Dyes for DNA Staining and Beyond. Chemosensors 2018, 6, 18. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, C.; Zhou, X.; Qin, J. Label-free aptamer-based sensors for L-argininamide by using nucleic acid minor groove binding dyes. Chem. Commun. 2011, 47, 3192–3194. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, H.; Nishihira, A.; Wakabayashi, M.; Kuwahara, M.; Sawai, H. Biomolecular sensor based on fluorescence-labeled aptamer. Bioorg. Med. Chem. Lett. 2006, 16, 4381–4384. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, N.; Kellish, P.; King, A.; Arya, D.P. Impact of Linker Length and Composition on Fragment Binding and Cell Permeation: Story of a Bisbenzimidazole Dye Fragment. Biochemistry 2017, 56, 6434–6447. [Google Scholar] [CrossRef]
- Hara, D.; Umehara, Y.; Son, A.; Asahi, W.; Misu, S.; Kurihara, R.; Kondo, T.; Tanabe, K. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex. ChemBioChem 2018, 19, 956–962. [Google Scholar] [CrossRef]
- Dasari, M.; Acharya, A.P.; Kim, D.; Lee, S.; Lee, S.; Rhea, J.; Molinaro, R.; Murthy, N. H-gemcitabine: A new gemcitabine prodrug for treating cancer. Bioconjug. Chem. 2013, 24, 4–8. [Google Scholar] [CrossRef]
- Dasari, M.; Lee, S.; Sy, J.; Kim, D.; Lee, S.; Brown, M.; Michael Davis, M.; Murthy, N. Hoechst-IR: An imaging agent that detects necrotic tissue in vivo by binding extracellular DNA. Org. Lett. 2010, 12, 3300–3303. [Google Scholar] [CrossRef]
- Nakamura, A.; Takigawa, K.; Kurishita, Y.; Kuwata, K.; Ishida, M.; Shimoda, Y.; Hamachi, I.; Tsukiji, S. Hoechst tagging: A modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging. Chem. Commun. 2014, 50, 6149–6152. [Google Scholar] [CrossRef]
- Szczurek, A.T.; Prakash, K.; Lee, H.K.; Żurek-Biesiada, D.J.; Best, G.; Hagmann, M.; Dobrucki, J.W.; Cremer, C.; Birk, U. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes. Nucleus 2014, 5, 331–340. [Google Scholar] [CrossRef]
- Ji, M.; Ma, X. Recent progress with the application of organic room-temperature phosphorescent materials. Ind. Chem. Mater. 2023, 1, 582–594. [Google Scholar] [CrossRef]
- Mu, Y.; Yang, Z.; Chen, J.; Yang, Z.; Li, W.; Tan, X.; Mao, Z.; Yu, T.; Zhao, J.; Zheng, S.; et al. Mechano-induced persistent room-temperature phosphorescence from purely organic molecules. Chem. Sci. 2018, 9, 3782–3787. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Ma, X.; Tian, H. Recent Advances of Pure Organic Room Temperature Phosphorescence Based on Functional Polymers. Acc. Mater. Res. 2023, 4, 827–838. [Google Scholar] [CrossRef]
- Gu, L.; Shi, H.; Bian, L.; Gu, M.; Ling, K.; Wang, X.; Ma, H.; Cai, S.; Ning, W.; Fu, L.; et al. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat. Photonics 2019, 13, 406–411. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, H.; Fu, L.; Jian, K.; Zhao, X. Carbon Dot-Based Room-Temperature Phosphorescent Materials for Information Encryption. ACS Appl. Nano Mater. 2023, 6, 15597–15605. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, J.; Sun, J.; Xu, B.; Gao, Z.; Wang, X.; Yan, L.; Zhu, C.; Meng, X. Ultralong-lived room temperature phosphorescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption. J. Mater. Chem. C. 2021, 9, 4847–4853. [Google Scholar] [CrossRef]
- Su, Y.; Phua, S.Z.F.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Lim, W.Q.; Ong, W.K.; Yang, C.; Zhao, Y. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 2018, 4, eaas9732. [Google Scholar] [CrossRef]
- Guo, J.; Wu, M.; Zhang, L.; Peng, J.; Li, X.; Chen, C.; Ma, H. Multicolor room temperature phosphorescence cellulose with source-boosting effect for information encryption. Mater. Today Chem. 2024, 40, 102211. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Yang, J.; Fang, M.; Ding, D.; Tang, B.Z.; Li, Z. High Performance of Simple Organic Phosphorescence Host–Guest Materials and their Application in Time-Resolved Bioimaging. Adv. Mater. 2021, 33, 2007811. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Yang, J.; Fang, M.; Ding, D.; Tang, B.Z.; Li, Z. Construction of room temperature phosphorescent materials with ultralong lifetime by in-situ derivation strategy. Nat. Commun. 2023, 14, 4164. [Google Scholar] [CrossRef]
- Abdukayum, A.; Chen, J.-T.; Zhao, Q.; Yan, X.-P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, K.Y.; Tong, X.; Liu, Y.; Hu, C.; Liu, S.; Yu, Q.; Zhao, Q.; Huang, W. Phosphorescent polymeric thermometers for in vitro and in vivo temperature sensing with minimized background interference. Adv. Funct. Mater. 2016, 26, 4386–4396. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z. Molecular packing: Another key point for the performance of organic and polymeric optoelectronic materials. Acc. Chem. Res. 2020, 53, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; He, Z.; Tang, B.Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 2020, 5, 869–885. [Google Scholar] [CrossRef]
- Ma, X.-K.; Liu, Y. Supramolecular purely organic room-temperature phosphorescence. Acc. Chem. Res. 2021, 54, 3403–3414. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, K.Y.; Tong, X.; Liu, Y.; Hu, C.; Liu, S.; Yu, Q.; Zhao, Q.; Huang, W. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nat. Commun. 2020, 11, 4655. [Google Scholar]
- Zhang, Z.Y.; Xu, W.W.; Xu, W.S.; Niu, J.; Sun, X.H.; Liu, Y. A synergistic enhancement strategy for realizing ultralong and efficient room-temperature phosphorescence. Angew. Chem. Int. Ed. 2020, 59, 18748–18754. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, C.; Zhao, Y. Long-lived organic room-temperature phosphorescence from amorphous polymer systems. Acc. Chem. Res. 2022, 55, 1160–1170. [Google Scholar] [CrossRef]
- Fang, M.-M.; Yang, J.; Li, Z. Recent advances in purely organic room temperature phosphorescence polymer. Chin. J. Polym. Sci. 2019, 37, 383–393. [Google Scholar] [CrossRef]
- Xiong, S.; Xiong, Y.; Wang, D.; Pan, Y.; Chen, K.; Zhao, Z.; Wang, D.; Tang, B.Z. Achieving Tunable Organic Afterglow and UV-Irradiation-Responsive Ultralong Room-Temperature Phosphorescence from Pyridine-Substituted Triphenylamine Derivatives. Adv. Mater. 2023, 35, 2301874. [Google Scholar] [CrossRef]
- Gao, H.; Ma, X. Recent progress on pure organic room temperature phosphorescent polymers. Aggregate 2021, 2, e38. [Google Scholar] [CrossRef]
- Alexander, E.; Chavez, J.; Ceresa, L.; Seung, M.; Pham, D.; Gryczynski, Z.; Gryczynski, I. Room temperature phosphorescence of coumarin 106 with direct triplet state excitation. Dye. Pigment. 2023, 217, 111389. [Google Scholar] [CrossRef]
- Kenry; Chen, C.; Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 2019, 10, 2111. [Google Scholar] [CrossRef]
- Kwon, M.S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Ed. Engl. 2014, 53, 11177–11181. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Nitsch, J.; Marder, T.B. Persistent Room-Temperature Phosphorescence from Purely Organic Molecules and Multi-Component Systems. Adv. Opt. Mater. 2021, 9, 2100411. [Google Scholar] [CrossRef]
- Nidhankar, A.D.; Goudappagouda Wakchaure, V.C.; Babu, S.S. Efficient metal-free organic room temperature phosphors. Chem. Sci. 2021, 12, 4216–4236. [Google Scholar] [CrossRef] [PubMed]
- Gryczynski, Z.; Kimball, J.; Fudala, R.; Chavez, J.; Ceresa, L.; Szabelski, M.; Borejdo, J.; Gryczynski, I. Photophysical properties of 2-Phenylindole in poly (vinyl alcohol) film at room temperature. Enhanced phosphorescence anisotropy with direct triplet state excitation. Methods Appl. Fluoresc. 2019, 8, 014008. [Google Scholar] [CrossRef]
- Zhou, B.; Qi, Z.; Yan, D. Highly Efficient and Direct Ultralong All-Phosphorescence from Metal–Organic Framework Photonic Glasses. Angew. Chem. Int. Ed. 2022, 61, e202208735. [Google Scholar] [CrossRef]
- Yang, X.; Yan, D. Strongly enhanced long-lived persistent room temperature phosphorescence based on the formation of metal–organic hybrids. Adv. Opt. Mater. 2016, 4, 897–905. [Google Scholar] [CrossRef]
- Gao, R.; Kodaimati, M.S.; Yan, D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem. Soc. Rev. 2021, 50, 5564–5589. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Su, Y.; Zheng, Y.; Tang, W.; Yang, C.; Tang, H.; Qu, L.; Li, Y.; Zhao, Y. Simple vanilla derivatives for long-lived room-temperature polymer phosphorescence as invisible security inks. Research 2021, 2021, 9837412. [Google Scholar] [CrossRef]
- Al-Attar, H.A.; Monkman, A.P. Room-temperature phosphorescence from films of isolated water-soluble conjugated polymers in hydrogen-bonded matrices. Adv. Funct. Mater. 2012, 22, 3824–3832. [Google Scholar] [CrossRef]
- Tian, Z.; Li, D.; Ushakova, E.V.; Maslov, V.G.; Zhou, D.; Jing, P.; Shen, D.; Qu, S.; Rogach, A.L. Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites. Adv. Sci. 2018, 5, 1800795. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, W.; Wu, P.; Ma, C.; Liu, Y.; Xu, M.; Liu, S. Long-lived room-temperature phosphorescent nitrogen doped CQDs/PVA composites: Fabrication, characterization and application. Eng. Sci. 2018, 4, 111–118. [Google Scholar] [CrossRef]
- Xu, M.; Wu, X.; Yang, Y.; Ma, C.; Li, W.; Yu, H.; Chen, Z.; Li, J.; Zhang, K.; Liu, S. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. Acs Nano 2020, 14, 11130–11139. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Ma, X.; Tian, H. Multicolor photoluminescence of a hybrid film via the dual-emitting strategy of an inorganic fluorescent Au nanocluster and an organic room-temperature phosphorescent copolymer. Ind. Eng. Chem. Res. 2018, 57, 2866–2872. [Google Scholar] [CrossRef]
- Chen, Y.; He, J.; Hu, C.; Zhang, H.; Lei, B.; Liu, Y. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates. 10.1039/C7TC01615H. J. Mater. Chem. C 2017, 5, 6243–6250. [Google Scholar] [CrossRef]
- Skhirtladze, L.; Leitonas, K.; Bucinskas, A.; Woon, K.L.; Volyniuk, D.; Keruckienė, R.; Mahmoudi, M.; Lapkowski, M.; Ariffin, A.; Grazulevicius, J.V. Turn on of room temperature phosphorescence of donor-acceptor-donor type compounds via transformation of excited states by rigid hosts for oxygen sensing. Sens. Actuators B Chem. 2023, 380, 133295. [Google Scholar] [CrossRef]
- Skuodis, E.; Leitonas, K.; Panchenko, A.; Volyniuk, L.; Simokaitienė, J.; Keruckienė, R.; Volyniuk, D.; Minaev, B.F.; Gražulevičius, J.V. Very sensitive probes for quantitative and organoleptic detection of oxygen based on conformer-induced room-temperature phosphorescence enhancement of the derivative of triazatruxene and phenothiazine. Sens. Actuators B Chem. 2022, 373, 132727. [Google Scholar] [CrossRef]
- Keruckiene, R.; Volyniuk, D.; Leitonas, K.; Grazulevicius, J.V. Dual emission fluorescence/room-temperature phosphorescence of phenothiazine and benzotrifluoride derivatives and its application for optical sensing of oxygen. Sens. Actuators B Chem. 2020, 321, 128533. [Google Scholar] [CrossRef]
- Keruckiene, R.; Lekavicius, D.; Guzauskas, M.; Simokaitiene, J.; Grazulevicius, J.V. Effects of the introduction of tertiary amino linkages on the properties of phenothiazine derivatives as delayed emission fluorophores. ChemPhotoChem 2024, 8, e202400002. [Google Scholar] [CrossRef]
- Alexander, E.; Lee, B.; Pham, D.; Garcia-Rodriguez, S.; Gryczynski, Z.; Gryczynski, I. Photophysical properties of DAPI in PVA films. Possibility of room temperature phosphorescence. Anal Biochem. 2024, 689, 115498. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Xu, X.; Zhu, X.; Shen, L.; Wan, W.; Hu, M. Based on FRET to construct color-tunable ultralong lifetime room temperature phosphorescent carbon dots in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123404. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X.; Jia, L. A simple method for the determination of benzoic acid based on room temperature phosphorescence of 1-bromopyrene/γ-cyclodextrin complex in water. Talanta 2017, 162, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Zou, W.S. 3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution. Talanta 2011, 85, 469–475. [Google Scholar] [CrossRef]
- Haugland, R.P. Molecular Probes. Handbook of Fluorescent Probes and Research Chemicals; Molecular Probes: Eugene, OR, USA, 1992–1994. [Google Scholar]
- Gryczynski, Z.; Gryczynski, I. Practical Fluorescence Spectroscopy; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, UK, 2019. [Google Scholar]
- Eaton, D.F. Reference materials for fluorescence measurement. Pure Appl. Chem. 1988, 60, 1107–1114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Jablonska, A.; Pham, D.; Sagoo, R.; Gryczynski, Z.; Pham, T.T.; Gryczynski, I. Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films. Int. J. Mol. Sci. 2025, 26, 514. https://doi.org/10.3390/ijms26020514
Lee B, Jablonska A, Pham D, Sagoo R, Gryczynski Z, Pham TT, Gryczynski I. Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films. International Journal of Molecular Sciences. 2025; 26(2):514. https://doi.org/10.3390/ijms26020514
Chicago/Turabian StyleLee, Bong, Agnieszka Jablonska, Danh Pham, Rajveer Sagoo, Zygmunt Gryczynski, Trang Thien Pham, and Ignacy Gryczynski. 2025. "Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films" International Journal of Molecular Sciences 26, no. 2: 514. https://doi.org/10.3390/ijms26020514
APA StyleLee, B., Jablonska, A., Pham, D., Sagoo, R., Gryczynski, Z., Pham, T. T., & Gryczynski, I. (2025). Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films. International Journal of Molecular Sciences, 26(2), 514. https://doi.org/10.3390/ijms26020514