Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = direct electrochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2734 KiB  
Article
Fabrication and Performance Study of 3D-Printed Ceramic-in-Gel Polymer Electrolytes
by Xiubing Yao, Wendong Qin, Qiankun Hun, Naiyao Mao, Junming Li, Xinghua Liang, Ying Long and Yifeng Guo
Gels 2025, 11(7), 534; https://doi.org/10.3390/gels11070534 - 10 Jul 2025
Viewed by 268
Abstract
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at [...] Read more.
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at room temperature. The innovative application of 3D printing in the field of electrochemistry, particularly in solid-state electrolytes, endows energy storage devices with attractive characteristics. In this study, ceramic-in-gel polymer electrolytes (GPEs) based on PVDF-HFP/PAN@LLZTO were fabricated using a direct ink writing (DIW) 3D printing technique. Under the optimal printing conditions (printing speed of 40 mm/s and fill density of 70%), the printed electrolyte exhibited a uniform and dense sponge-like porous structure, achieving a high ionic conductivity of 5.77 × 10−4 S·cm−1, which effectively facilitated lithium-ion transport. A structural analysis indicated that the LLZTO fillers were uniformly dispersed within the polymer matrix, significantly enhancing the electrochemical stability of the electrolyte. When applied in a LiFePO4|GPEs|Li cell configuration, the electrolyte delivered excellent electrochemical performance, with high initial discharge capacities of 168 mAh·g−1 at 0.1 C and 166 mAh·g−1 at 0.2 C, and retained 92.8% of its capacity after 100 cycles at 0.2 C. This work demonstrates the great potential of 3D printing technology in fabricating high-performance GPEs. It provides a novel strategy for the structural design and industrial scalability of lithium-ion batteries. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

26 pages, 7085 KiB  
Review
Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization
by Weijian Yu, Xiaoya Li, Wenting Xu, Qingjun Guan, Fujia Zhou, Jiani Zhang, Li Wang, Yanxiu Wang and Honghu Tang
Separations 2025, 12(7), 180; https://doi.org/10.3390/separations12070180 - 7 Jul 2025
Viewed by 355
Abstract
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews [...] Read more.
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews the harmless process and resource technology of EMR, efficiency bottlenecks, and the current status of industrial applications. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed. Among these, electrochemical purification stands out for its efficiency and environmental benefits, positioning it as a promising option for broad industrial use. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed, revealing the complementarity between building materials and chemical materials (microcrystalline glass) in scale and high-value-added production. But the lack of impurity separation accuracy and market standards restricts its promotion. Finally, it proposes future directions for EMR resource utilization based on practical and economic considerations. Full article
(This article belongs to the Special Issue Solid Waste Recycling and Strategic Metal Extraction)
Show Figures

Figure 1

35 pages, 3044 KiB  
Review
Tools for Enhancing Extracellular Electron Transfer in Bioelectrochemical Systems: A Review
by Kaline Araújo Soares, Jhoni Anderson Schembek Silva, Xin Wang, André Valente Bueno and Fernanda Leite Lobo
Fermentation 2025, 11(7), 381; https://doi.org/10.3390/fermentation11070381 - 30 Jun 2025
Viewed by 909
Abstract
Microbial Electrochemistry Technology (MET) leverages the unique process of extracellular electron transfer (EET) between electroactive bacteria (EAB) and electrodes to enable various applications, such as electricity generation, bioremediation, and wastewater treatment. This review highlights significant advancements in EET mechanisms, emphasizing both outward and [...] Read more.
Microbial Electrochemistry Technology (MET) leverages the unique process of extracellular electron transfer (EET) between electroactive bacteria (EAB) and electrodes to enable various applications, such as electricity generation, bioremediation, and wastewater treatment. This review highlights significant advancements in EET mechanisms, emphasizing both outward and inward electron transfer pathways mediated by diverse electroactive microorganisms. Notably, the role of electron shuttles, genetic modifications, and innovative electrode materials are discussed as strategies to enhance EET efficiency. Recent studies illustrate the importance of redox-active molecules, such as flavins and metal nanoparticles, in facilitating electron transfer, while genetic engineering has proven effective in optimizing microbial physiology to boost EET rates. The review also examines the impact of electrode materials on microbial attachment and performance, showcasing new composites and nanostructures that enhance power output in microbial fuel cells. By synthesizing the recent findings and proposing emerging research directions, this work provides an overview of EET enhancement strategies, aiming to inform future technological innovations in bioelectrochemical systems (BESs). Full article
(This article belongs to the Special Issue Microbial Fuel Cell Advances)
Show Figures

Figure 1

19 pages, 2298 KiB  
Review
Degradation and Corrosion of Metal Components in High-Temperature Fuel Cells and Electrolyzers: Review of Protective Approaches
by Pavel Shuhayeu, Olaf Dybiński, Karolina Majewska, Aliaksandr Martsinchyk, Monika Łazor, Katsiaryna Martsinchyk, Arkadiusz Szczęśniak and Jarosław Milewski
Energies 2025, 18(13), 3317; https://doi.org/10.3390/en18133317 - 24 Jun 2025
Viewed by 720
Abstract
High-temperature fuel cells and electrolyzers, particularly molten carbonate fuel cells (MCFCs) and Molten Carbonate Electrolyzers (MCEs), are expected to play a critical role in clean power generation, hydrogen production, and integrated CO2 separation. Unfortunately, despite their potential, these technologies have not yet [...] Read more.
High-temperature fuel cells and electrolyzers, particularly molten carbonate fuel cells (MCFCs) and Molten Carbonate Electrolyzers (MCEs), are expected to play a critical role in clean power generation, hydrogen production, and integrated CO2 separation. Unfortunately, despite their potential, these technologies have not yet reached full commercialization. The main reason for this is material degradation. In particular, the corrosion of metallic components continues to be a leading cause of performance loss and system failure. This review provides a comprehensive assessment of degradation mechanisms in MCFC and MCE systems. It examines key metallic components, such as current collectors and bipolar plates, focusing on the performance of commonly used materials, including stainless steels and advanced alloys, under prolonged exposure to corrosive environments. To address degradation issues, this review evaluates current mitigation strategies and discusses material selection, protective coatings application, and the optimization of operational parameters. Advances in alloy development, coatings, surface treatments, and process controls have been compared in terms of effectiveness, scalability, and long-term stability. The review concludes with a synthesis of current best practices and future directions, emphasizing the need for integrated, multi-functional solutions to achieve the lifetimes required for full commercialization. By linking materials science, electrochemistry, and systems engineering, this review offers directions for the development of corrosion-resistant MCFC and MCE technologies in support of a hydrogen-based, carbon-neutral energy future. Full article
(This article belongs to the Special Issue Advances in Electrochemical Power Sources: Systems and Applications)
Show Figures

Figure 1

37 pages, 11435 KiB  
Article
Hybrid Energy-Powered Electrochemical Direct Ocean Capture Model
by James Salvador Niffenegger, Kaitlin Brunik, Todd Deutsch, Michael Lawson and Robert Thresher
Clean Technol. 2025, 7(3), 52; https://doi.org/10.3390/cleantechnol7030052 - 23 Jun 2025
Viewed by 400
Abstract
Offshore synthetic fuel production and marine carbon dioxide removal can be enabled by direct ocean capture, which extracts carbon dioxide from the ocean that then can be used as a feedstock for fuel production or sequestered underground. To maximize carbon capture, plants require [...] Read more.
Offshore synthetic fuel production and marine carbon dioxide removal can be enabled by direct ocean capture, which extracts carbon dioxide from the ocean that then can be used as a feedstock for fuel production or sequestered underground. To maximize carbon capture, plants require a variety of low-carbon energy sources to operate, such as variable renewable energy. However, the impacts of variable power on direct ocean capture have not yet been thoroughly investigated. To facilitate future deployments, a generalizable model for electrodialysis-based direct ocean capture plants is created to evaluate plant performance and electricity costs under intermittent power availability. This open-source Python-based model captures key aspects of the electrochemistry, ocean chemistry, post-processing, and operation scenarios under various conditions. To incorporate realistic energy supply dynamics and cost estimates, the model is coupled with the National Renewable Energy Laboratory’s H2Integrate tool, which simulates hybrid energy system performance profiles and costs. This integrated framework is designed to provide system-level insights while maintaining computational efficiency and flexibility for scenario exploration. Initial evaluations show similar results to those predicted by the industry, and demonstrate how a given plant could function with variable power in different deployment locations, such as with wind energy off the coast of Texas and with wind and wave energy off the coast of Oregon. The results suggest that electrochemical systems with greater tolerances for power variability and low minimum power requirements may offer operational advantages in variable-energy contexts. However, further research is needed to quantify these benefits and evaluate their implications across different deployment scenarios. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy, 2nd Edition)
Show Figures

Figure 1

27 pages, 6942 KiB  
Review
Advances in Multifunctional Nanoagents and SERS-Based Multimodal Sensing for Biotoxin in Foods
by Huan Jiang, Sihang Zhang, Bei Li and Long Wu
Foods 2025, 14(8), 1393; https://doi.org/10.3390/foods14081393 - 17 Apr 2025
Viewed by 644
Abstract
Biotoxins, toxic substances produced by living organisms, are widely present in food and pose a major threat to human health. Traditional detection methods, such as gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), often suffer from limitations including complex sample preparation, high [...] Read more.
Biotoxins, toxic substances produced by living organisms, are widely present in food and pose a major threat to human health. Traditional detection methods, such as gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), often suffer from limitations including complex sample preparation, high costs, and lengthy analysis times. In response, surface-enhanced Raman spectroscopy (SERS) has emerged as a highly sensitive and specific analytical tool for the detection of biotoxins. This review highlights the recent progress in multimodal detection technologies based on SERS, focusing on the design and classification of multimodal materials to optimize the construction of SERS substrates. The integration of SERS with other detection modalities, such as fluorescence, colorimetry, and electrochemistry, is discussed to enhance the accuracy and diversity of biotoxin detection. Finally, the review critically assesses the current challenges and future prospects of SERS multimodal detection technology, particularly in real-time food safety monitoring and on-site diagnostics, offering critical insights to guide future research directions. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

23 pages, 7697 KiB  
Review
Recent Advances in Aptamer-Based Microfluidic Biosensors for the Isolation, Signal Amplification and Detection of Exosomes
by Jessica Hu and Dan Gao
Sensors 2025, 25(3), 848; https://doi.org/10.3390/s25030848 - 30 Jan 2025
Cited by 5 | Viewed by 2886
Abstract
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical [...] Read more.
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical settings. Microfluidic technology offers a versatile platform for exosome analysis, with advantages such as seamless integration, portability and reduced sample volumes. Aptamers, which are single-stranded oligonucleotides with high affinity and specificity for target molecules, have been frequently employed in the development of aptamer-based microfluidics for the isolation, signal amplification, and quantitative detection of exosomes. This review summarizes recent advances in aptamer-based microfluidic strategies for exosome analysis, including (1) strategies for on-chip exosome capture mediated by aptamers combined with nanomaterials or nanointerfaces; (2) aptamer-based on-chip signal amplification techniques, such as enzyme-free hybridization chain reaction (HCR), rolling circle amplification (RCA), and DNA machine-assisted amplification; and (3) various aptamer-assisted detection methods, such as fluorescence, electrochemistry, surface-enhanced Raman scattering (SERS), and magnetism. The limitations and advantages of these methods are also summarized. Finally, future challenges and directions for the clinical analysis of exosomes based on aptamer-based microfluidics are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Figure 1

28 pages, 2919 KiB  
Systematic Review
Efficiency of Bacteriophage-Based Detection Methods for Non-Typhoidal Salmonella in Foods: A Systematic Review
by Preeda Phothaworn, Chatruthai Meethai, Wanchat Sirisarn and Janet Yakubu Nale
Viruses 2024, 16(12), 1840; https://doi.org/10.3390/v16121840 - 27 Nov 2024
Viewed by 2102
Abstract
Food contamination with non-typhoidal Salmonella (NTS) presents a significant public health risk, underscoring the critical need for rigorous food safety measures throughout the production, distribution, preparation, and consumption stages. Conventional diagnostic strategies are time-consuming and labor-intensive and are thus sub-optimal for throughput NTS [...] Read more.
Food contamination with non-typhoidal Salmonella (NTS) presents a significant public health risk, underscoring the critical need for rigorous food safety measures throughout the production, distribution, preparation, and consumption stages. Conventional diagnostic strategies are time-consuming and labor-intensive and are thus sub-optimal for throughput NTS detection. Bacteriophages (phages) are highly specialized bacterial viruses and exhibit extreme specificity for their hosts. This organic phage/bacterial interaction provides an invaluable tool that can potentially replace or complement existing S. enterica detection methods. Here, we explored work in this area and reviewed data from PubMed/MEDLINE, Embase, and ScienceDirect up to 4 November 2024. Thirty-five studies were selected from 607 retrieved articles using the JBI Critical Appraisal Checklist to ensure quality. Salmonella enrichment, rapid detection, and effective recovery in diverse food sources for various NTS serovars were targeted. Utilizing phages as bio-probes alongside lateral flow immunoassays, surface-enhanced Raman spectroscopy, fluorescence, and electrochemistry assays enabled rapid and highly sensitive detection of NTS, achieving limits as low as 7 to 8 CFU/mL within 30 min. Balancing detection sensitivity with rapid analysis time is essential. Further research and development will be pivotal to overcoming challenges and maximizing the efficiency of NTS phage-based detection to ensure optimal food safety. Full article
Show Figures

Figure 1

22 pages, 5005 KiB  
Article
Interdisciplinarity in the Built Environment: Measurement and Interdisciplinary Topic Identification
by Mengmeng Wang, Yanan Xie, Xiaotong Guo and Hanliang Fu
Buildings 2024, 14(12), 3718; https://doi.org/10.3390/buildings14123718 - 21 Nov 2024
Viewed by 1421
Abstract
Interdisciplinary research plays a crucial role in addressing the intricate scientific and social challenges confronting society. The field of built environment, as an interdisciplinary discipline, has benefitted from cross-pollination with various fields such as architecture, environment, medicine, and psychology, leading to a range [...] Read more.
Interdisciplinary research plays a crucial role in addressing the intricate scientific and social challenges confronting society. The field of built environment, as an interdisciplinary discipline, has benefitted from cross-pollination with various fields such as architecture, environment, medicine, and psychology, leading to a range of interdisciplinary advancements. Nevertheless, there remains a gap in the systematic documentation of interdisciplinary outcomes within this field. This paper utilized the cosine index and the Rao–Stirling index to assess the level of interdisciplinarity within the built environment field. This was followed by the screening of literature achievements with a high interdisciplinary nature, the identification of interdisciplinary topics based on the latent Dirichlet allocation (LDA) model, and the analysis of the evolution path of interdisciplinary topics based on time series. The results demonstrate that the field of built environment exhibits a high degree of interdisciplinary integration, with the most prevalent crossovers observed with medicine, psychology, and public health science, and fewer crossovers with electrochemistry, crystallography, and nanotechnology, which represent potential emerging directions. Over the past three decades, 17 core interdisciplinary topics have emerged in the field, and the overall evolutionary trend over time has been one of divergence, followed by contraction and then divergence. This study provides scholars with up-to-date knowledge from an interdisciplinary perspective, and facilitates the development of interdisciplinary research and cooperation in this field. Full article
(This article belongs to the Collection Buildings, Infrastructure and SDGs 2030)
Show Figures

Figure 1

18 pages, 4153 KiB  
Review
Recent Advances in Rechargeable Zn-Air Batteries
by Hui Zhao
Molecules 2024, 29(22), 5313; https://doi.org/10.3390/molecules29225313 - 11 Nov 2024
Cited by 4 | Viewed by 4032
Abstract
Rechargeable Zn-air batteries are considered to be an effective energy storage device due to their high energy density, environmental friendliness, and long operating life. Further progress on rechargeable Zn-air batteries with high energy density/power density is greatly needed to satisfy the increasing energy [...] Read more.
Rechargeable Zn-air batteries are considered to be an effective energy storage device due to their high energy density, environmental friendliness, and long operating life. Further progress on rechargeable Zn-air batteries with high energy density/power density is greatly needed to satisfy the increasing energy conversion and storage demands. This review summarizes the strategies proposed so far to pursue high-efficiency Zn-air batteries, including the aspects of the electrocatalysts (from noble metals to non-noble metals), the electrode chemistry (from the oxygen evolution reaction to the organic oxidation reaction), electrode engineering (from powdery to free-standing), aqueous electrolytes (from alkaline to non-alkaline) and the battery configuration (from liquid to flexible). An essential evaluation of electrochemistry is highlighted to solve the challenges in boosting the efficiency of rechargeable metal-air batteries. In the end, the perspective on current challenges and future research directions to promote the industrial application of rechargeable Zn-air batteries is provided. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

18 pages, 6764 KiB  
Article
Evolution of Holes and Cracks in Pre-Carbonized Glassy Carbon
by Yi Yang, Wei Wang and Haihui Ruan
Materials 2024, 17(21), 5274; https://doi.org/10.3390/ma17215274 - 30 Oct 2024
Viewed by 1009
Abstract
Being a type of carbonaceous material, glassy carbon possesses thermomechanical properties akin to ceramics, offering both mechanical and chemical stability at high temperatures; therefore, it can be applied in electrochemistry and high-temperature manufacturing. However, the direct pyrolysis of a bulk precursor leads to [...] Read more.
Being a type of carbonaceous material, glassy carbon possesses thermomechanical properties akin to ceramics, offering both mechanical and chemical stability at high temperatures; therefore, it can be applied in electrochemistry and high-temperature manufacturing. However, the direct pyrolysis of a bulk precursor leads to internal pores and cracks, usually resulting in fracture. Our characterization results show that at temperatures below 400 °C, large pores do not form, and pre-carbonized glassy carbon (PGC) formed at 350 °C has a dense microstructure without cracks. It exhibits a high compressive strength of ~370 MPa and flexural strength of ~190 MPa, making it suitable for load-bearing applications. Additionally, the PGC-350 material shows small mass loss (~5%) and reasonably low thermal expansion (2.5 × 10−6/°C) when heated to 350 °C again. These properties suggest the potential of PGC for high-temperature applications. As a demonstration, PGC formed at 350 °C was employed to fabricate molds to press chalcogenide glass blanks, which exhibited favorable molding results for various surface morphologies. Full article
Show Figures

Figure 1

38 pages, 2031 KiB  
Review
Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review
by Iuliia A. Poimenova, Madina M. Sozarukova, Daria-Maria V. Ratova, Vita N. Nikitina, Vladislav R. Khabibullin, Ivan V. Mikheev, Elena V. Proskurnina and Mikhail A. Proskurnin
Molecules 2024, 29(18), 4433; https://doi.org/10.3390/molecules29184433 - 18 Sep 2024
Cited by 8 | Viewed by 3714
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing [...] Read more.
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords. Full article
(This article belongs to the Special Issue Review Papers in Analytical Chemistry)
Show Figures

Graphical abstract

13 pages, 2534 KiB  
Article
Electrochemical Probing of Human Liver Subcellular S9 Fractions for Drug Metabolite Synthesis
by Daphne Medina, Bhavana Omanakuttan, Ricky Nguyen, Eman Alwarsh and Charuksha Walgama
Metabolites 2024, 14(8), 429; https://doi.org/10.3390/metabo14080429 - 3 Aug 2024
Cited by 1 | Viewed by 2496
Abstract
Human liver subcellular fractions, including liver microsomes (HLM), liver cytosol fractions, and S9 fractions, are extensively utilized in in vitro assays to predict liver metabolism. The S9 fractions are supernatants of human liver homogenates that contain both microsomes and cytosol, which include most [...] Read more.
Human liver subcellular fractions, including liver microsomes (HLM), liver cytosol fractions, and S9 fractions, are extensively utilized in in vitro assays to predict liver metabolism. The S9 fractions are supernatants of human liver homogenates that contain both microsomes and cytosol, which include most cytochrome P450 (CYP) enzymes and soluble phase II enzymes such as glucuronosyltransferases and sulfotransferases. This study reports on the direct electrochemistry and biocatalytic features of redox-active enzymes in S9 fractions for the first time. We investigated the electrochemical properties of S9 films by immobilizing them onto a high-purity graphite (HPG) electrode and performing cyclic voltammetry under anaerobic (Ar-saturated) and aerobic (O2-saturated) conditions. The heterogeneous electron transfer rate between the S9 film and the HPG electrode was found to be 14 ± 3 s−1, with a formal potential of −0.451 V vs. Ag/AgCl reference electrode, which confirmed the electrochemical activation of the FAD/FMN cofactor containing CYP450-reductase (CPR) as the electron receiver from the electrode. The S9 films have also demonstrated catalytic oxygen reduction under aerobic conditions, identical to HLM films attached to similar electrodes. Additionally, we investigated CYP activity in the S9 biofilm for phase I metabolism using diclofenac hydroxylation as a probe reaction and identified metabolic products using liquid chromatography–mass spectrometry (LC-MS). Investigating the feasibility of utilizing liver S9 fractions in such electrochemical assays offers significant advantages for pharmacological and toxicological evaluations of new drugs in development while providing valuable insights for the development of efficient biosensor and bioreactor platforms. Full article
Show Figures

Graphical abstract

17 pages, 5458 KiB  
Article
Investigation of Direct Electron Transfer of Glucose Oxidase on a Graphene-CNT Composite Surface: A Molecular Dynamics Study Based on Electrochemical Experiments
by Taeyoung Yoon, Wooboum Park, Juneseok You and Sungsoo Na
Nanomaterials 2024, 14(13), 1073; https://doi.org/10.3390/nano14131073 - 24 Jun 2024
Cited by 3 | Viewed by 2115
Abstract
Graphene and its variants exhibit excellent electrical properties for the construction of enzymatic interfaces. In particular, the direct electron transfer of glucose oxidase on the electrode surface is a very important issue in the development of enzyme-based bioelectrodes. However, the number of studies [...] Read more.
Graphene and its variants exhibit excellent electrical properties for the construction of enzymatic interfaces. In particular, the direct electron transfer of glucose oxidase on the electrode surface is a very important issue in the development of enzyme-based bioelectrodes. However, the number of studies conducted to assess how pristine graphene forms different interfaces with other carbon materials is insufficient. Enzyme-based electrodes (formed using carbon materials) have been extensively applied because of their low manufacturing costs and easy production techniques. In this study, the characteristics of a single-walled carbon nanotube/graphene-combined enzyme interface are analyzed at the atomic level using molecular dynamics simulations. The morphology of the enzyme was visualized using an elastic network model by performing normal-mode analysis based on electrochemical and microscopic experiments. Single-carbon electrodes exhibited poorer electrical characteristics than those prepared as composites with enzymes. Furthermore, the composite interface exhibited 4.61- and 2.45-fold higher direct electron efficiencies than GOx synthesized with single-carbon nanotubes and graphene, respectively. Based on this study, we propose that pristine graphene has the potential to develop glucose oxidase interfaces and carbon-nanotube–graphene composites for easy fabrication, low cost, and efficient electrode structures for enzyme-based biofuel cells. Full article
(This article belongs to the Topic Application of Graphene-Based Materials, 2nd Edition)
Show Figures

Graphical abstract

51 pages, 13880 KiB  
Review
Towards Reliable Prediction of Performance for Polymer Electrolyte Membrane Fuel Cells via Machine Learning-Integrated Hybrid Numerical Simulations
by Rashed Kaiser, Chi-Yeong Ahn, Yun-Ho Kim and Jong-Chun Park
Processes 2024, 12(6), 1140; https://doi.org/10.3390/pr12061140 - 31 May 2024
Cited by 2 | Viewed by 2558
Abstract
For mitigating global warming, polymer electrolyte membrane fuel cells have become promising, clean, and sustainable alternatives to existing energy sources. To increase the energy density and efficiency of polymer electrolyte membrane fuel cells (PEMFC), a comprehensive numerical modeling approach that can adequately predict [...] Read more.
For mitigating global warming, polymer electrolyte membrane fuel cells have become promising, clean, and sustainable alternatives to existing energy sources. To increase the energy density and efficiency of polymer electrolyte membrane fuel cells (PEMFC), a comprehensive numerical modeling approach that can adequately predict the multiphysics and performance relative to the actual test such as an acceptable depiction of the electrochemistry, mass/species transfer, thermal management, and water generation/transportation is required. However, existing models suffer from reliability issues due to their dependency on several assumptions made for the sake of modeling simplification, as well as poor choices and approximations in material characterization and electrochemical parameters. In this regard, data-driven machine learning models could provide the missing and more appropriate parameters in conventional computational fluid dynamics models. The purpose of the present overview is to explore the state of the art in computational fluid dynamics of individual components of the modeling of PEMFC, their issues and limitations, and how they can be significantly improved by hybrid modeling techniques integrating with machine learning approaches. Furthermore, a detailed future direction of the proposed solution related to PEMFC and its impact on the transportation sector is discussed. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Graphical abstract

Back to TopTop