Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review
Abstract
:1. Introduction
2. Redox Balance: From Antioxidants to Oxidative Stress and Signaling
2.1. Signaling
2.2. Primary Reactions of Thiols in Biological Systems
- Thiol–disulfide exchange reactions [81];
- Oxidation by ROS and probable reduction processes [82];
- The extracellular enzymatic degradation of glutathione [83];
- Transport between the plasma department and cells, primarily through erythrocytes and endothelial cells [84];
- Liver release of thiol-containing molecules [85];
2.3. Laboratory Assessment of Redox Status
3. Methods and Procedures
3.1. Methods for Monitoring Thiol Redox Status
3.2. Sample Preparation of Biological Fluids for Thiol Redox-Status Assessment at Their Natural Levels
Object | Analyte(s) | Derivatizing Agent | Thiol Content, μM | Linear Range, μM | LOD, μM | LOQ, μM | Reference |
---|---|---|---|---|---|---|---|
HPLC-UV | |||||||
Blood plasma | Hcys (total content) | CMQT | 5.8 | 1.0–40 | 0.15 | 0.4 | [99] |
Cys (total content) | 230 | 1.0–40 | 0.08 | 0.2 | |||
GSH (total content) | 5.4 | 20–300 | 0.15 | 0.4 | |||
HSA (total content) | 0.70 | 3.1–37.5 | 0.15 | 0.5 | |||
Saliva | Hcys | CMLT | 0.20–2.10 | 0.1–20 | n/m 1 | 0.05 | [98] |
Cys | 0.60–10.40 | 0.1–20 | 0.05 | ||||
GSH | 1.70–17.40 | 5–300 | 0.08 | ||||
HPLC-FL | |||||||
Whole blood | GSH (total content) | 1,3,5,7-Tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene | 15 | 0.001–0.2 | 2 × 10−4 | [107] | |
Cys | 75 | 0.005–0.8 | 8 × 10−4 | ||||
N-acetylcysteine | 15 | 0.001–0.2 | 2 × 10−4 | ||||
Hcys | 30 | 0.002–0.2 | 3 × 10−4 | ||||
HPLC-MS/MS | |||||||
Whole blood | GSH | NEM | 900 ± 140 | 25–500 | 0.4 | 1.5 | [91] |
GSSG | 1.2 ± 0.4 | 0.1–16 | 0.1 | 0.1 | |||
Whole blood | GSH | NEM | 1110 ± 20 | [105] | |||
GSSG | 1.6 ± 0.5 | ||||||
Blood plasma | Hcys (total content) | IAM+IPCF (isopropyl chloroformate) | 10 ± 4 | 0.05–100 | 0.5 × 10−3 | 10 × 10−3 | [96] |
Cys (total content) | 200 ± 40 | 0.5 × 10−3 | 20 × 10−3 | ||||
GSH (total content) | 5 ± 2 | 0.5 × 10−3 | 10 × 10−3 | ||||
GC-MS | |||||||
Saliva | Cys | MSTFA-TMCS (Silylation Reagent) | n/m 1 | 1–20 | 0.1 | n/m 1 | [108] |
Homocysteine (Hcys) | 0.1 | ||||||
Homocysteine thiolactone (HTL) | 0.05 | ||||||
Spectrophotometry | |||||||
Blood plasma | Low-molecular-weight thiols in reduced form (RSH) | DTNB (5,5′-dithiobis-(2-nitrobenzoic acid) + CH2O | n/m 1 | up to 4000 | 2.8 | n/m 1 | [109] |
Low-molecular-weight thiols in oxidized form (RSSR’) | 16.0 ± 0.1 | up to 2000 | n/m1 |
3.3. UV/Vis Determination of Thiol Redox Status in Biological Fluids
- (1)
- Glutathione reductase (GR);
- (2)
- Nicotinamide adenine dinucleotide phosphate (NADPH).
3.4. Luminescent Sensors for Thiol Redox-Status Determination
Type of Luminescence | Optical Sensor | Object | Analyte(s) | LOD, μM | Linear Range, μM | Reference |
---|---|---|---|---|---|---|
Fluorescence | Au(FR 730) (nanoparticles) | Blood plasma | Cys | 0.01 | 2.5 × 10−2–4.0 | [136] |
DMAT-π-CAP | Urine | HSA | 0.01 | 0.01–10 | [137] | |
Hg2+2(murexide)2 | Blood serum | GSH | 0.01 | 0.1–40 | [138] | |
Cys | 0.02 | 0.5–30 | ||||
Hcys | 0.04 | 0.5–50 | ||||
Chemiluminescence | CdTe (quantum dots) | Blood serum | GSH | 2 × 10−3 | (2–650) × 10−3 | [139] |
System of TGA-CdTe (quantum dots), Au(NaBH4), Au(citrate), Ag(citrate) (nanoparticles) | Blood plasma | GSH | 5–800 | [140] | ||
GSSG | 5–800 | |||||
Cys | 25–100 |
3.5. Chemiluminescent Methods for Studying Thiol Oxidative Stress
3.6. Other Spectroscopic Procedures (FTIR and Raman) for Thiol Redox-Status Assessment
3.7. Chromatographic Determination of Thiol Redox Status in Biological Fluids
3.8. Electroanalytical Methods for the Assay of Low-Molecular-Weight Thiols and Albumin
- The direct registration of the analytical oxidation or reduction signal of thiol compounds, with or without pre-separation;
- Registration with modifiers based on one of the following processes:
- (a)
- A catalytic mechanism (enzymes and nanohybrids of nanoparticles);
- (b)
- Specific interactions, e.g., MIPs;
- (c)
- Mediator-based variants (that is, the signal is not recorded directly but by a redox indicator).
- (1)
- Glutathione peroxidase (GSH-Px) in a range from 40 to 2000 µM [186];
- (2)
- Glutathione oxidase (GSH-OX) in a range from 5 to 1000 µM [203];
- (3)
- Nanohybrids with GSH-Px deposited on graphene oxide (GO) and Nafion™, which reduced the LOQ to 0.002 µM, in a range from 0.003 to 370 µM using a differential pulse voltammetric (DPV) method [204].
- (4)
- The inhibition of bilirubin oxidase (or laccase) by GSH in a range from 40 to 2000 µM [205];
- (5)
- Possibilities of glutathione transferases for the construction of biosensors not only for glutathione [206];
- (6)
- A different mechanism of action, demonstrated by an impedimetric immunosensor for low-level human serum albumin detection in biological fluids [200].
3.9. Machine Learning Tools for Data Processing in Biothiol Analysis
3.10. Alternative Indirect Approaches to Determining Thiol Redox Status
3.11. Summary of Applications and Merits of Each Method
4. Conclusions
4.1. Concluding Remarks
4.2. Forthcoming Advances, Future Perspectives, and Trends
- The continuous advancement of chemiluminometry systems and techniques and enhanced data processing could be the optimal solution for accurately determining the thiol/disulfide ratio in clinical and laboratory diagnostics. In this context, chemiluminometry emerges as a promising method. Notably, individual results obtained with this approach highlight its powerful potential for screening the health status of patients.
- Another notable trend is the increasing number of studies focused on modifying carbon electrodes with various materials, with promise seen in screen-printed electrodes. These ongoing developments hold great potential for enhancing the capabilities and sensitivity of analytical methods for thiol/disulfide ratio assessment.
- Machine learning and chemometric methods will significantly contribute to developing rapid, precise, robust, and easily implementable techniques for determining the thiol/disulfide ratio and classifying big array data for medicine.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABD-F | 4-(Aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole |
ABEI | N-(4-aminobutyl)-N-ethylisoluminol |
AP-1 | Activator protein-1 |
BDD | Boron-doped diamond |
ca. | Circa (about) |
CD | Carbon dots |
CL | Chemiluminescence |
CE | Capillary electrophoresis |
LOD | Detection limit (also LOD) |
clim | Determination limit (also LOQ) |
CMLT | 2-Chloro-1-methylpidinium tetrafluoroborate |
CMQT | 2-Chloro-1-methylquinoline tetrafluoroborate |
Cys | Cysteine |
Cys-Gly | Cysteinyl–glycine |
DTNB | 5,5′-Dithiobis-(2-nitrobenzoic acid), Ellman’s reagent |
Eh | Redox potential value of the biological environment, e.g., plasma-reducing potential |
FT–Raman | Fourier-transform Raman spectroscopy |
GC-MS | Gas chromatography–mass spectrometry |
Glu-Cys | Glutamyl–cysteine |
GR | Glutathione reductase |
GSH | Glutathione |
GS-TNB | Glutathione adduct of TNB |
Hcys | Homocysteine |
HPLC–FL | High-performance liquid chromatography with fluorimetric detection |
HPLC-MS | High-performance liquid chromatography–mass spectrometry |
HPLC-UV | High-performance liquid chromatography with ultraviolet detection |
HSA | Human serum albumin |
IAM | Iodoacetamide |
IPCF | Isopropyl chloroformate |
FIA-CL | Chemiluminometric Flow Injection Analysis |
MAPK | Mitogen-activated protein kinase |
mBrB | Monobromobiman |
MIPs | Molecularly imprinted polymers |
MOF | Metal–organic frameworks |
MIPBO | 5-Methyl-(2-(m-iodoacetylaminophenyl)benzoxazole |
MMTS | Methylmethantiosulfonate |
MSTFA-TMCS | 2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide + 1% Chlorotrimethylsilane |
MSTP | 4-(5-Methanesulfonyl-[1,2,3,4]tetrazol-1-yl)phenol |
MWNT | Multiwalled carbon nanotubes |
NEM | N-ethylmaleimide |
NF-kB | Nuclear Factor Kappa B |
nLC–HR-MS/MS | Nanoflow liquid chromatography and high-resolution tandem mass spectrometry |
NO | Nitric oxide |
NPM | N-phenylmaleimide |
ONOO− | Peroxynitrite |
POOH | Hydroperoxide |
PTP | Protein tyrosine phosphatase |
qBBr | Monobromo(trimethylammonio)bimane |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
RS• | Reactive thiol radical |
R-SH | Reduced form(s) of thiol(s) |
R-SO2H | Sulfinic acid |
R-SO3H | Sulfonic acid |
RSOH | Sulfenic acid |
RSOO• | Peroxyl radical |
R-SS | Intramolecular disulfide |
R-S-S-R | Intermolecular disulfide |
R-S-S-R′ | Oxidized (disulfide) form(s) of thiol(s) |
SBD-F | 7-Fluorobenzo-2-oxa-1,3-diazole-4-sulfonate |
SDS-PAGE | Sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
SERS | Surface-enhanced Raman scattering |
TCEP | Tris(2-carboxyethyl)phosphine |
THz–TDS | Terahertz time-domain spectroscopy |
TNB | 5-Thio-2-nitrobenzoic acid |
UHPLC | Ultra-high-performance liquid chromatography |
•O2− | Superoxide anion radical |
2-VP | 2-Vinylpyridine |
References
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of glutathione: Implication in redox and detoxification. Clin. Chim. Acta 2003, 333, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Lewerenz, J.; Maher, P. Control of redox state and redox signaling by neural antioxidant systems. Antioxid. Redox Signal. 2011, 14, 1449–1465. [Google Scholar] [CrossRef]
- Zhang, H.; Forman, H.J. Glutathione synthesis and its role in redox signaling. Semin. Cell Dev. Biol. 2012, 23, 722–728. [Google Scholar] [CrossRef]
- Hatem, E.; El Banna, N.; Huang, M.E. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxid. Redox Signal. 2017, 27, 1217–1234. [Google Scholar] [CrossRef]
- Park, M.H.; Jo, M.; Kim, Y.R.; Lee, C.K.; Hong, J.T. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol. Ther. 2016, 163, 1–23. [Google Scholar] [CrossRef]
- Rimessi, A.; Previati, M.; Nigro, F.; Wieckowski, M.R.; Pinton, P. Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int. J. Biochem. Cell Biol. 2016, 81, 281–293. [Google Scholar] [CrossRef]
- Steven, S.; Daiber, A.; Dopheide, J.F.; Munzel, T.; Espinola-Klein, C. Peripheral artery disease, redox signaling, oxidative stress—Basic and clinical aspects. Redox Biol. 2017, 12, 787–797. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Zhou, H.J.; Ji, W.; Min, W. Mitochondrial Redox Signaling and Tumor Progression. Cancers 2016, 8, 40. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-kappaB signaling in inflammation and cancer. MedComm 2021, 2, 618–653. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, H.; Huang, R.; Wu, Q.; Li, Y.; He, Y. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-kappaB signals in OVA-induced asthmatic mice. Pulm. Pharmacol. Ther. 2021, 69, 102049. [Google Scholar] [CrossRef] [PubMed]
- Zinatizadeh, M.R.; Schock, B.; Chalbatani, G.M.; Zarandi, P.K.; Jalali, S.A.; Miri, S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021, 8, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cui, C.; Ma, X.; Luo, W.; Zheng, S.G.; Qiu, W. Nuclear Factor kappaB (NF-kappaB)-Mediated Inflammation in Multiple Sclerosis. Front. Immunol. 2020, 11, 391. [Google Scholar] [CrossRef]
- Maksimova, M.Y.; Ivanov, A.V.; Virus, E.D.; Alexandrin, V.V.; Nikiforova, K.A.; Bulgakova, P.O.; Ochtova, F.R.; Suanova, E.T.; Piradov, M.A.; Kubatiev, A.A. Disturbance of thiol/disulfide aminothiols homeostasis in patients with acute ischemic stroke stroke: Preliminary findings. Clin. Neurol. Neurosurg. 2019, 183, 105393. [Google Scholar] [CrossRef]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Hammad, M.; Raftari, M.; Cesário, R.; Salma, R.; Godoy, P.; Emami, S.N.; Haghdoost, S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants 2023, 12, 1371. [Google Scholar] [CrossRef]
- Ammal Kaidery, N.; Ahuja, M.; Thomas, B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol. Cell. Neurosci. 2019, 101, 103413. [Google Scholar] [CrossRef]
- Ghareghomi, S.; Habibi-Rezaei, M.; Arese, M.; Saso, L.; Moosavi-Movahedi, A.A. Nrf2 Modulation in Breast Cancer. Biomedicines 2022, 10, 2668. [Google Scholar] [CrossRef]
- Abdelsalam, S.S.; Korashy, H.M.; Zeidan, A.; Agouni, A. The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance. Biomolecules 2019, 9, 286. [Google Scholar] [CrossRef]
- Vieira, M.N.; Lyra, E.S.N.M.; Ferreira, S.T.; De Felice, F.G. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer’s Therapy? Front. Aging Neurosci. 2017, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; McLellan, L.I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999, 31, 273–300. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.P.; Bhatnagar, A. Role of Thiols in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Jenkins, R.O.; Goncharov, N.V. Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int. J. Mol. Sci. 2021, 22, 10318. [Google Scholar] [CrossRef] [PubMed]
- Turell, L.; Radi, R.; Alvarez, B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 2013, 65, 244–253. [Google Scholar] [CrossRef]
- Camera, E.; Picardo, M. Analytical methods to investigate glutathione and related compounds in biological and pathological processes. J. Chromatogr. B 2002, 781, 181–206. [Google Scholar] [CrossRef]
- Rudyk, O.; Eaton, P. Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol. 2014, 2, 803–813. [Google Scholar] [CrossRef]
- Isokawa, M.; Kanamori, T.; Funatsu, T.; Tsunoda, M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 103–115. [Google Scholar] [CrossRef]
- Khan, Z.G.; Patil, P.O. A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchem. J. 2020, 157, 105011. [Google Scholar] [CrossRef]
- Hamad, A.; Elshahawy, M.; Negm, A.; Mansour, F.R. Analytical methods for determination of glutathione and glutathione disulfide in pharmaceuticals and biological fluids. Rev. Anal. Chem. 2020, 38, 20190019. [Google Scholar] [CrossRef]
- Berthou, M.; Clarot, I.; Gouyon, J.; Steyer, D.; Monat, M.A.; Boudier, A.; Pallotta, A. Thiol sensing: From current methods to nanoscale contribution. Microchem. J. 2022, 183, 107994. [Google Scholar] [CrossRef]
- Yang, X.; Chen, M.; Liu, Y.; Li, X.; Luo, Y.; Wang, L.; Yang, S.; Zheng, H.; Chen, D. Quantitative analysis of sulfhydryl compounds in biological Samples: Advancements in chromatographic and mass spectrometric techniques. Microchem. J. 2024, 201, 110502. [Google Scholar] [CrossRef]
- Giustarini, D.; Tsikas, D.; Colombo, G.; Milzani, A.; Dalle-Donne, I.; Fanti, P.; Rossi, R. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1019, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Capanoglu, E.; Shahidi, F. Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Nabavi, S.M.; Silva, A.S. Antioxidants Effects in Health: The Bright and the Dark Side; Elsevier Science: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Shapiro, H.M. Redox balance in the body: An approach to quantitation. J. Surg. Res. 1972, 13, 138–152. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 1995, 18, 125–126. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef]
- Schmidt, C.A.; Fisher-Wellman, K.H.; Neufer, P.D. From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies. J. Biol. Chem. 2021, 297, 101140. [Google Scholar] [CrossRef]
- Gibbs Energy (Function). The IUPAC Compendium of Chemical Terminology, 3.0.1 ed.; International Union of Pure and Applied Chemistry (IUPAC): Zürich, Switzerland, 2008. [Google Scholar]
- Ochs, R. An Idea to Explore: Understanding Redox Reactions in Biochemistry. Biochem. Mol. Biol. Educ. 2019, 47, 25–28. [Google Scholar] [CrossRef]
- Rebrin, I.; Sohal, R.S. Pro-oxidant shift in glutathione redox state during aging. Adv. Drug Deliv. Rev. 2008, 60, 1545–1552. [Google Scholar] [CrossRef]
- Garcin, E.B.; Bornet, O.; Elantak, L.; Vita, N.; Pieulle, L.; Guerlesquin, F.; Sebban-Kreuzer, C. Structural and mechanistic insights into unusual thiol disulfide oxidoreductase. J. Biol. Chem. 2012, 287, 1688–1697. [Google Scholar] [CrossRef]
- Aslund, F.; Berndt, K.D.; Holmgren, A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J. Biol. Chem. 1997, 272, 30780–30786. [Google Scholar] [CrossRef] [PubMed]
- Ukuwela, A.A.; Bush, A.I.; Wedd, A.G.; Xiao, Z. Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides. Chem. Sci. 2018, 9, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- van der Vliet, A.; Janssen-Heininger, Y.M. Hydrogen peroxide as a damage signal in tissue injury and inflammation: Murderer, mediator, or messenger? J. Cell. Biochem. 2014, 115, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef]
- Halazonetis, T.D.; Georgopoulos, K.; Greenberg, M.E.; Leder, P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 1988, 55, 917–924. [Google Scholar] [CrossRef]
- Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014, 2, 535–562. [Google Scholar] [CrossRef]
- Truong, T.H.; Carroll, K.S. Redox regulation of protein kinases. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 332–356. [Google Scholar] [CrossRef]
- Oliveira, P.V.S.; Laurindo, F.R.M. Implications of plasma thiol redox in disease. Clin. Sci. 2018, 132, 1257–1280. [Google Scholar] [CrossRef]
- Ashfaq, S.; Abramson, J.L.; Jones, D.P.; Rhodes, S.D.; Weintraub, W.S.; Hooper, W.C.; Vaccarino, V.; Harrison, D.G.; Quyyumi, A.A. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J. Am. Coll. Cardiol. 2006, 47, 1005–1011. [Google Scholar] [CrossRef]
- Ashfaq, S.; Abramson, J.L.; Jones, D.P.; Rhodes, S.D.; Weintraub, W.S.; Hooper, W.C.; Vaccarino, V.; Alexander, R.W.; Harrison, D.G.; Quyyumi, A.A. Endothelial function and aminothiol biomarkers of oxidative stress in healthy adults. Hypertension 2008, 52, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.S.; Ghasemzadeh, N.; Eapen, D.J.; Sher, S.; Arshad, S.; Ko, Y.-a.; Veledar, E.; Samady, H.; Zafari, A.M.; Sperling, L. Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 2016, 133, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Beresford, S.A.; Neuhouser, M.L.; Cheng, T.Y.; Song, X.; Brown, E.C.; Zheng, Y.; Rodriguez, B.; Green, R.; Ulrich, C.M. Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort. Am. J. Clin. Nutr. 2013, 97, 827–834. [Google Scholar] [CrossRef]
- Murphy, G.; Fan, J.H.; Mark, S.D.; Dawsey, S.M.; Selhub, J.; Wang, J.; Taylor, P.R.; Qiao, Y.L.; Abnet, C.C. Prospective study of serum cysteine levels and oesophageal and gastric cancers in China. Gut 2011, 60, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Willett, W.C.; Selhub, J.; Manson, J.E.; Colditz, G.A.; Hankinson, S.E. A prospective study of plasma total cysteine and risk of breast cancer. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1188–1193. [Google Scholar]
- Luchsinger, J.A.; Tang, M.X.; Shea, S.; Miller, J.; Green, R.; Mayeux, R. Plasma homocysteine levels and risk of Alzheimer disease. Neurology 2004, 62, 1972–1976. [Google Scholar] [CrossRef]
- Lichtenberg, D.; Pinchuk, I.; Yonassi, E.; Weber, D.; Grune, T. Oxidative Stress Is a Concept, Not an Indication for Selective Antioxidant Treatment. Antioxidants 2023, 12, 1188. [Google Scholar] [CrossRef]
- Costantini, D. Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J. Exp. Biol. 2019, 222, jeb194688. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Sies, H. Oxidative eustress: On constant alert for redox homeostasis. Redox Biol. 2021, 41, 101867. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Daub, S.; Bachschmid, M.; Schildknecht, S.; Oelze, M.; Steven, S.; Schmidt, P.; Megner, A.; Wada, M.; Tanabe, T.; et al. Protein Tyrosine Nitration and Thiol Oxidation by Peroxynitrite—Strategies to Prevent These Oxidative Modifications. Int. J. Mol. Sci. 2013, 14, 7542–7570. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A. Determinants of blood pH in health and disease. Crit. Care 2000, 4, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Ragsdale, S.W. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erbbeta. J. Biol. Chem. 2011, 286, 4392–4403. [Google Scholar] [CrossRef]
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80, 148–157. [Google Scholar] [CrossRef]
- Pajares, M.; Jimenez-Moreno, N.; Dias, I.H.K.; Debelec, B.; Vucetic, M.; Fladmark, K.E.; Basaga, H.; Ribaric, S.; Milisav, I.; Cuadrado, A. Redox control of protein degradation. Redox Biol. 2015, 6, 409–420. [Google Scholar] [CrossRef]
- Hutapea, T.P.H.; Madurani, K.A.; Syahputra, M.Y.; Hudha, M.N.; Asriana, A.N.; Suprapto; Kurniawan, F. Albumin: Source, preparation, determination, applications, and prospects. J. Sci. Adv. Mater. Devices 2023, 8, 100549. [Google Scholar] [CrossRef]
- Jensen, K.S.; Hansen, R.E.; Winther, J.R. Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Antioxid. Redox Signal. 2009, 11, 1047–1058. [Google Scholar] [CrossRef]
- Trujillo, M.; Alvarez, B.; Radi, R. One- and two-electron oxidation of thiols: Mechanisms, kinetics and biological fates. Free Radic. Res. 2016, 50, 150–171. [Google Scholar] [CrossRef]
- Cardey, B.; Foley, S.; Enescu, M. Mechanism of thiol oxidation by the superoxide radical. J. Phys. Chem. A 2007, 111, 13046–13052. [Google Scholar] [CrossRef]
- Cardey, B.; Enescu, M. Cysteine oxidation by the superoxide radical: A theoretical study. Chemphyschem 2009, 10, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Biteau, B.; Labarre, J.; Toledano, M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Winkler, B.S.; Orselli, S.M.; Rex, T.S. The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective. Free Radic. Biol. Med. 1994, 17, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, P.V.; Dean, O.; Andreazza, A.C.; Berk, M.; Kapczinski, F. Antioxidant treatments for schizophrenia. Cochrane Database Syst. Rev. 2016, 2, CD008919. [Google Scholar] [CrossRef]
- Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 2014, 6, 221ra215. [Google Scholar] [CrossRef]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef]
- Kang, D.H.; Ha, S.K. Uric Acid Puzzle: Dual Role as Anti-oxidantand Pro-oxidant. Electrolyte Blood Press. 2014, 12, 1–6. [Google Scholar] [CrossRef]
- Yi, M.C.; Khosla, C. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 197–222. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Suzuki, H.; Nishida, K.; Nakamura, T. Extracellular Production of Glutathione by Recombinant Escherichia coli K-12. Microbiol. Res. 2023, 14, 1199–1209. [Google Scholar] [CrossRef]
- Jennings, M.L. Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1. Am. J. Physiol. Cell Physiol. 2021, 321, C1028–C1059. [Google Scholar] [CrossRef] [PubMed]
- Dirican, N.; Dirican, A.; Sen, O.; Aynali, A.; Atalay, S.; Bircan, H.A.; Ozturk, O.; Erdogan, S.; Cakir, M.; Akkaya, A. Thiol/disulfide homeostasis: A prognostic biomarker for patients with advanced non-small cell lung cancer? Redox Rep. 2016, 21, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.A.; Ziegler, T.R.; Carlson, B.A.; Cheng, P.Y.; Park, Y.; Cotsonis, G.A.; Accardi, C.J.; Jones, D.P. Diurnal variation in glutathione and cysteine redox states in human plasma. Am. J. Clin. Nutr. 2007, 86, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, D.; Dalle-Donne, I.; Lorenzini, S.; Milzani, A.; Rossi, R. Age-related influence on thiol, disulfide, and protein-mixed disulfide levels in human plasma. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1030–1038. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Podgórski, T.; Czarczyńska-Goślińska, B. Determination of Antioxidant Biomarkers in Biological Fluids. In Analytical Methods in the Determination of Bioactive Compounds and Elements in Food; Jeszka-Skowron, M., Zgoła-Grześkowiak, A., Grześkowiak, T., Ramakrishna, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 263–308. [Google Scholar]
- Oldham, T.; Yatom, S.; Thimsen, E. Plasma parameters and the reduction potential at a plasma-liquid interface. Phys. Chem. Chem. Phys. 2022, 24, 14257–14268. [Google Scholar] [CrossRef]
- McGill, M.R.; Jaeschke, H. A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol. Mech. Methods 2015, 25, 589–595. [Google Scholar] [CrossRef]
- Moore, T.; Le, A.; Niemi, A.K.; Kwan, T.; Cusmano-Ozog, K.; Enns, G.M.; Cowan, T.M. A new LC-MS/MS method for the clinical determination of reduced and oxidized glutathione from whole blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 929, 51–55. [Google Scholar] [CrossRef]
- Chang, L.; Lin, F.; Cheng, K.; Li, J.; Sun, X.; Figeys, D.; Jiang, J.; Ye, Y.; Liu, J. A simultaneous identification and quantification strategy for determination of sulfhydryl-containing metabolites in normal- and high-fat diet hamsters using stable isotope labeling combined with LC-MS. Anal. Chim. Acta 2021, 1184, 339016. [Google Scholar] [CrossRef]
- Reisz, J.A.; Bechtold, E.; King, S.B.; Poole, L.B.; Furdui, C.M. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J. 2013, 280, 6150–6161. [Google Scholar] [CrossRef]
- Forgacsova, A.; Galba, J.; Mojzisova, J.; Mikus, P.; Piestansky, J.; Kovac, A. Ultra-high performance hydrophilic interaction liquid chromatography—Triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. J. Pharm. Biomed. Anal. 2019, 164, 442–451. [Google Scholar] [CrossRef]
- Olesova, D.; Kovac, A.; Galba, J. UHPLC-MS/MS Method for Determination of Biologically Important Thiols in Plasma Using New Derivatizing Maleimide Reagent. In Metabolomics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 235–243. [Google Scholar]
- Suh, J.H.; Kim, R.; Yavuz, B.; Lee, D.; Lal, A.; Ames, B.N.; Shigenaga, M.K. Clinical assay of four thiol amino acid redox couples by LC-MS/MS: Utility in thalassemia. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3418–3427. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.P.; Liang, Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med. 2009, 47, 1329–1338. [Google Scholar] [CrossRef]
- Stachniuk, J.; Kubalczyk, P.; Furmaniak, P.; Glowacki, R. A versatile method for analysis of saliva, plasma and urine for total thiols using HPLC with UV detection. Talanta 2016, 155, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Borowczyk, K.; Wyszczelska-Rokiel, M.; Kubalczyk, P.; Glowacki, R. Simultaneous determination of albumin and low-molecular-mass thiols in plasma by HPLC with UV detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 981, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, H.; Park, C.M.; Poole, T.H.; Keceli, G.; Devarie-Baez, N.O.; Tsang, A.W.; Lowther, W.T.; Poole, L.B.; King, S.B.; et al. Discovery of Heteroaromatic Sulfones As a New Class of Biologically Compatible Thiol-Selective Reagents. ACS Chem. Biol. 2017, 12, 2201–2208. [Google Scholar] [CrossRef] [PubMed]
- Steghens, J.-P.; Flourié, F.; Arab, K.; Collombel, C. Fast liquid chromatography–mass spectrometry glutathione measurement in whole blood: Micromolar GSSG is a sample preparation artifact. J. Chromatogr. B 2003, 798, 343–349. [Google Scholar] [CrossRef]
- Kuster, A.; Tea, I.; Sweeten, S.; Roze, J.C.; Robins, R.J.; Darmaun, D. Simultaneous determination of glutathione and cysteine concentrations and 2H enrichments in microvolumes of neonatal blood using gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2008, 390, 1403–1412. [Google Scholar] [CrossRef]
- Hacimusalar, Y.; Karaaslan, O.; Bal, C.; Kocer, D.; Gok, G.; Yildiz, B. Methamphetamine’s effects on oxidative stress markers may continue after detoxification: A case–control study. Psychiatry Clin. Psychopharmacol. 2019, 29, 361–367. [Google Scholar] [CrossRef]
- Giustarini, D.; Santucci, A.; Bartolini, D.; Galli, F.; Rossi, R. The age-dependent decline of the extracellular thiol-disulfide balance and its role in SARS-CoV-2 infection. Redox Biol. 2021, 41, 101902. [Google Scholar] [CrossRef]
- Fahrenholz, T.; Wolle, M.M.; Kingston, H.M.; Faber, S.; Kern, J.C., 2nd; Pamuku, M.; Miller, L.; Chatragadda, H.; Kogelnik, A. Molecular speciated isotope dilution mass spectrometric methods for accurate, reproducible and direct quantification of reduced, oxidized and total glutathione in biological samples. Anal. Chem. 2015, 87, 1232–1240. [Google Scholar] [CrossRef]
- Grigoryan, H.; Imani, P.; Dudoit, S.; Rappaport, S.M. Extending the HSA-Cys34-Adductomics Pipeline to Modifications at Lys525. Chem. Res. Toxicol. 2021, 34, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-F.; Zhu, H.; Wang, H.; Zhang, H.-S. Determination of thiol compounds by HPLC and fluorescence detection with 1,3,5,7-tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene. J. Sep. Sci. 2013, 36, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Piechocka, J.; Wieczorek, M.; Głowacki, R. Gas Chromatography–Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva. Int. J. Mol. Sci. 2020, 21, 9252. [Google Scholar] [CrossRef] [PubMed]
- Erel, O.; Neselioglu, S. A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem. 2014, 47, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Eissa, M.S.; Imam, M.S.; AbdElrahman, M.; Ghoneim, M.M.; Abdullah, M.; Bayram, R.; Ali, H.M.; Abdelwahab, N.S.; Gamal, M. Magnetic molecularly imprinted polymers and carbon dots molecularly imprinted polymers for green micro-extraction and analysis of pharmaceuticals in a variety of matrices. Microchem. J. 2024, 205, 111235. [Google Scholar] [CrossRef]
- Lima, L.M.P.; Iranzo, O. Chapter Fifteen—Engineering Short Preorganized Peptide Sequences for Metal Ion Coordination: Copper(II) a Case Study. In Methods in Enzymology; Pecoraro, V.L., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 580, pp. 333–364. [Google Scholar]
- Winther, J.R.; Thorpe, C. Quantification of thiols and disulfides. Biochim. Biophys. Acta 2014, 1840, 838–846. [Google Scholar] [CrossRef]
- Kukoc-Modun, L.; Kraljevic, T.; Tsikas, D.; Radic, N.; Modun, D. Determination of N-Acetyl-l-cysteine Ethyl Ester (NACET) by Flow Injection Analysis and Spectrophotometric Detection Using Different Thiol-Sensitive Ligands. Molecules 2021, 26, 6826. [Google Scholar] [CrossRef]
- Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969, 27, 502–522. [Google Scholar] [CrossRef]
- Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212. [Google Scholar] [CrossRef]
- Shatalin, Y.V.; Shubina, V.S.; Solovieva, M.E.; Akatov, V.S. Differences in the Formation of Reactive Oxygen Species and Their Cytotoxicity between Thiols Combined with Aqua- and Cyanocobalamins. Int. J. Mol. Sci. 2022, 23, 11032. [Google Scholar] [CrossRef]
- Qian, J.; Lu, X.; Wang, C.; Cui, H.; An, K.; Long, L.; Hao, N.; Wang, K. Controlling over the terminal functionalities of thiol-capped CdZnTe QDs to develop fluorescence nanosensor for selective discrimination and determination of Fe(II) ions. Sens. Actuators B Chem. 2020, 322, 128636. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Xiao, J.; Li, C.; Wang, J.; Xiao, X.; Huang, H.; Shrestha, B.; Tang, L.; Deng, K.; et al. Visual Quantitative Detection of Glutathione and Cholesterol in Human Blood Based on the Thiol-Ene Click Reaction-Triggered Wettability Change of the Interface. Anal. Chem. 2021, 93, 7292–7299. [Google Scholar] [CrossRef] [PubMed]
- Akrivi, E.; Kappi, F.; Gouma, V.; Vlessidis, A.G.; Giokas, D.L.; Kourkoumelis, N. Biothiol modulated growth and aggregation of gold nanoparticles and their determination in biological fluids using digital photometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119337. [Google Scholar] [CrossRef] [PubMed]
- Akrivi, E.A.; Vlessidis, A.G.; Giokas, D.L.; Kourkoumelis, N. Gold-Modified Micellar Composites as Colorimetric Probes for the Determination of Low Molecular Weight Thiols in Biological Fluids Using Consumer Electronic Devices. Appl. Sci. 2021, 11, 2705. [Google Scholar] [CrossRef]
- Wu, Z.; Li, W.; Chen, J.; Yu, C. A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 2014, 119, 538–543. [Google Scholar] [CrossRef]
- Kalaiyarasan, G.; Hemlata, C.; Joseph, J. Fluorescence Turn-On, Specific Detection of Cystine in Human Blood Plasma and Urine Samples by Nitrogen-Doped Carbon Quantum Dots. ACS Omega 2019, 4, 1007–1014. [Google Scholar] [CrossRef]
- Gogoi, S.; Khan, R. NIR upconversion characteristics of carbon dots for selective detection of glutathione. New J. Chem. 2018, 42, 6399–6407. [Google Scholar] [CrossRef]
- Amjadi, M.; Abolghasemi-Fakhri, Z.; Hallaj, T. Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J. Photochem. Photobiol. A Chem. 2015, 309, 8–14. [Google Scholar] [CrossRef]
- Achadu, O.J.; Uddin, I.; Nyokong, T. The interaction between graphene quantum dots grafted with polyethyleneimine and Au@ Ag nanoparticles: Application as a fluorescence “turn-on” nanoprobe. J. Photochem. Photobiol. A Chem. 2016, 324, 96–105. [Google Scholar] [CrossRef]
- Öztürk, İ.; Beğiç, N.; Bener, M.; Apak, R. Antioxidant capacity measurement based on κ-carrageenan stabilized and capped silver nanoparticles using green nanotechnology. J. Mol. Struct. 2021, 1242, 130846. [Google Scholar] [CrossRef]
- Han, G.C.; Peng, Y.; Hao, Y.Q.; Liu, Y.N.; Zhou, F. Spectrofluorimetric determination of total free thiols based on formation of complexes of Ce(III) with disulfide bonds. Anal. Chim. Acta 2010, 659, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Han, G.C.; Liu, Y.N. Synthesis, characterization and fluorescent properties of cerium(III) glutathione complex. Luminescence 2010, 25, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Rollin-Genetet, F.; Seidel, C.; Artells, E.; Auffan, M.; Thiery, A.; Vidaud, C. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules. Chem. Res. Toxicol. 2015, 28, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Liu, J.; Kang, T.S.; Wang, W.; Han, Q.B.; Wang, C.M.; Leung, C.H.; Ma, D.L. An Ir(III) complex chemosensor for the detection of thiols. Sci. Technol. Adv. Mater. 2016, 17, 109–114. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J.; Xu, Z. Fluorescent probes for biothiols based on metal complex. Coord. Chem. Rev. 2021, 429, 213638. [Google Scholar] [CrossRef]
- Jia, H.; Yang, M.; Meng, Q.; He, G.; Wang, Y.; Hu, Z.; Zhang, R.; Zhang, Z. Synthesis and Application of an Aldazine-Based Fluorescence Chemosensor for the Sequential Detection of Cu2+ and Biological Thiols in Aqueous Solution and Living Cells. Sensors 2016, 16, 79. [Google Scholar] [CrossRef]
- Gholami, M.D.; Manzhos, S.; Sonar, P.; Ayoko, G.A.; Izake, E.L. Dual chemosensor for the rapid detection of mercury(ii) pollution and biothiols. Analyst 2019, 144, 4908–4916. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Z.; Xu, Z.; Chen, L.; Wang, Y. 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic. Res. 2010, 44, 587–604. [Google Scholar] [CrossRef]
- Ruijter, N.; van der Zee, M.; Katsumiti, A.; Boyles, M.; Cassee, F.R.; Braakhuis, H. Improving the dichloro-dihydro-fluorescein (DCFH) assay for the assessment of intracellular reactive oxygen species formation by nanomaterials. NanoImpact 2024, 35, 100521. [Google Scholar] [CrossRef]
- Shang, L.; Yin, J.; Li, J.; Jin, L.; Dong, S. Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Biosens. Bioelectron. 2009, 25, 269–274. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, E.; Jung, W.; Kim, M.K.; Chong, Y. A Near-infrared Turn-on Fluorescent Sensor for Sensitive and Specific Detection of Albumin from Urine Samples. Sensors 2020, 20, 1232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Sun, M.; Lei, T.; Liu, X.; Zhang, Q.; Zong, C. An indicator-displacement assay based on the Murexide-Hg2+ system for fluorescence turn-on detection of biothiols in biological fluids. Sens. Actuators B Chem. 2017, 249, 90–95. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Q.; Li, Y.; Liu, Z.; Su, X. Detection of biothiols in human serum by QDs based flow injection “turn off–on” chemiluminescence analysis system. Talanta 2013, 114, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.; Hormozi-Nezhad, M.R. Design a New Strategy Based on Nanoparticle-Enhanced Chemiluminescence Sensor Array for Biothiols Discrimination. Sci. Rep. 2016, 6, 32160. [Google Scholar] [CrossRef]
- Janasek, D.; Spohn, U. Chemiluminometric Flow Injection Analysis procedures for the enzymatic determination of l-alanine, α-ketoglutarate and l-glutamate. Biosens. Bioelectron. 1999, 14, 123–129. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, W.; Wu, R.; Guan, W.; Ye, N. Recent Advances in Nanomaterial-Based Chemiluminescence Probes for Biosensing and Imaging of Reactive Oxygen Species. Nanomaterials 2023, 13, 1726. [Google Scholar] [CrossRef]
- Shelef, O.; Sedgwick, A.C.; Pozzi, S.; Green, O.; Satchi-Fainaro, R.; Shabat, D.; Sessler, J.L. Turn on chemiluminescence-based probes for monitoring tyrosinase activity in conjunction with biological thiols. Chem. Commun. 2021, 57, 11386–11389. [Google Scholar] [CrossRef]
- Akrivi, E.A.; Vlessidis, A.G.; Kourkoumelis, N.; Giokas, D.L.; Tsogas, G.Z. Gold-activated luminol chemiluminescence for the selective determination of cysteine over homocysteine and glutathione. Talanta 2022, 245, 123464. [Google Scholar] [CrossRef]
- Tsunoda, M. Chemiluminescence detection with separation techniques for bioanalytical applications. Bioanal. Rev. 2009, 1, 25–34. [Google Scholar] [CrossRef]
- Tsunoda, M.; Imai, K. Analytical applications of peroxyoxalate chemiluminescence. Anal. Chim. Acta 2005, 541, 13–23. [Google Scholar] [CrossRef]
- Elgawish, M.S.; Kishikawa, N.; Kuroda, N. Quinones as novel chemiluminescent probes for the sensitive and selective determination of biothiols in biological fluids. Analyst 2015, 140, 8148–8156. [Google Scholar] [CrossRef] [PubMed]
- McDermott, G.P.; Terry, J.M.; Conlan, X.A.; Barnett, N.W.; Francis, P.S. Direct detection of biologically significant thiols and disulfides with manganese(IV) chemiluminescence. Anal. Chem. 2011, 83, 6034–6039. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Chen, Q.; Lu, C.; Lin, J.M. Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim. Acta 2013, 768, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shang, F.; Lu, C.; Zheng, Z.; Lin, J.-M. Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids. J. Chromatogr. A 2011, 1218, 9064–9070. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Liu, M.; Wang, Z.-Y.; Zhang, C.-Y. Recent Advance in Chemiluminescence Assay and Its Biochemical Applications. Chin. J. Anal. Chem. 2016, 44, 1934–1941. [Google Scholar] [CrossRef]
- Li, W.; Liang, Z.; Wang, P.; Ma, Q. The luminescent principle and sensing mechanism of metal-organic framework for bioanalysis and bioimaging. Biosens. Bioelectron. 2024, 249, 116008. [Google Scholar] [CrossRef]
- Mu, X.; Zhao, S.; Huang, Y.; Ye, F. Use of capillary electrophoresis with chemiluminescence detection for sensitive determination of homocysteine. J. Sep. Sci. 2012, 35, 280–285. [Google Scholar] [CrossRef]
- Scrimin, P.; Prins, L.J. Sensing through signal amplification. Chem. Soc. Rev. 2011, 40, 4488–4505. [Google Scholar] [CrossRef]
- International Union of Pure and Applied Chemistry. Polymerase chain reaction. In The IUPAC Compendium of Chemical Terminology; International Union of Pure and Applied Chemistry: Zürich, Switzerland, 2014. [Google Scholar]
- Hanefeld, U.; Lefferts, L. Catalysis: An Integrated Textbook for Students; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Badjic, J.D.; Nelson, A.; Cantrill, S.J.; Turnbull, W.B.; Stoddart, J.F. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res. 2005, 38, 723–732. [Google Scholar] [CrossRef]
- Burns, D.T.; Townshend, A. Review: Amplification reactions; origins and definitions-progress and present status. Talanta 1992, 39, 715–735. [Google Scholar] [CrossRef]
- Cialla, D.; Pollok, S.; Steinbrücker, C.; Weber, K.; Popp, J. SERS-based detection of biomolecules. Nanophotonics 2014, 3, 383–411. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, B.; Zhou, W.; Zhu, Z.; Bian, Y.; Zeng, R. Dynamic Detection of Thiol Oxidation/Reduction Status During the Conversion of Cysteine/Cystine. J. Mol. Struct. 2022, 1250, 131675. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z.; Bian, Y.; Zeng, R.; Zhou, W.; Yang, B. Combinatorial method to investigate cystine enantiomers using vibrational spectroscopies. Infrared Phys. Technol. 2022, 127, 104406. [Google Scholar] [CrossRef]
- Shahrajabian, M.; Ghasemi, F.; Hormozi-Nezhad, M.R. Nanoparticle-based Chemiluminescence for Chiral Discrimination of Thiol-Containing Amino Acids. Sci. Rep. 2018, 8, 14011. [Google Scholar] [CrossRef] [PubMed]
- Kuligowski, J.; El-Zahry, M.R.; Sanchez-Illana, A.; Quintas, G.; Vento, M.; Lendl, B. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood. Analyst 2016, 141, 2165–2174. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Sarf, E.A.; Solomatin, D.V. Application of FTIR Spectroscopy for Quantitative Analysis of Blood Serum: A Preliminary Study. Diagnostics 2021, 11, 2391. [Google Scholar] [CrossRef]
- Monostori, P.; Wittmann, G.; Karg, E.; Túri, S. Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J. Chromatogr. B 2009, 877, 3331–3346. [Google Scholar] [CrossRef]
- Isokawa, M.; Shimosawa, T.; Funatsu, T.; Tsunoda, M. Determination and characterization of total thiols in mouse serum samples using hydrophilic interaction liquid chromatography with fluorescence detection and mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1019, 59–65. [Google Scholar] [CrossRef]
- Guo, X.F.; Wang, H.; Guo, Y.H.; Zhang, Z.X.; Zhang, H.S. Simultaneous analysis of plasma thiols by high-performance liquid chromatography with fluorescence detection using a new probe, 1,3,5,7-tetramethyl-8-phenyl-(4-iodoacetamido)difluoroboradiaza-s-indacene. J. Chromatogr. A 2009, 1216, 3874–3880. [Google Scholar] [CrossRef]
- Capitan, P.; Malmezat, T.; Breuille, D.; Obled, C. Gas chromatographic-mass spectrometric analysis of stable isotopes of cysteine and glutathione in biological samples. J. Chromatogr. B Biomed. Sci. Appl. 1999, 732, 127–135. [Google Scholar] [CrossRef]
- Tsai, C.J.; Liao, F.Y.; Weng, J.R.; Feng, C.H. Tandem derivatization combined with salting-out assisted liquid-liquid microextraction for determination of biothiols in urine by gas chromatography-mass spectrometry. J. Chromatogr. A 2017, 1524, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hammermeister, D.E.; Serrano, J.; Schmieder, P.; Kuehl, D.W. Characterization of dansylated glutathione, glutathione disulfide, cysteine and cystine by narrow bore liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 503–508. [Google Scholar] [CrossRef]
- Han, H.; Wang, F.; Chen, J.; Li, X.; Fu, G.; Zhou, J.; Zhou, D.; Wu, W.; Chen, H. Changes in Biothiol Levels Are Closely Associated with Alzheimer’s Disease. J. Alzheimers Dis. 2021, 82, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yao, T.; Guo, X.; Peng, Y.; Zheng, J. Simultaneous assessment of endogenous thiol compounds by LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1029, 213–221. [Google Scholar] [CrossRef]
- Wu, J.; Sigler, A.; Pfaff, A.; Cen, N.; Ercal, N.; Shi, H. Development of a HPLC-MS/MS method for assessment of thiol redox status in human tear fluids. Anal. Biochem. 2021, 629, 114295. [Google Scholar] [CrossRef]
- Sutton, T.R.; Minnion, M.; Barbarino, F.; Koster, G.; Fernandez, B.O.; Cumpstey, A.F.; Wischmann, P.; Madhani, M.; Frenneaux, M.P.; Postle, A.D.; et al. A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome. Redox Biol. 2018, 16, 359–380. [Google Scholar] [CrossRef]
- Kubát, M.; Roušarová, E.; Roušar, T.; Česla, P. Recent advances in separation methods for characterization of glutathione metabolism and dietary supplementation. TrAC Trends Anal. Chem. 2024, 176, 117751. [Google Scholar] [CrossRef]
- Ballin, N.Z.; Laursen, K.H. To target or not to target? Definitions and nomenclature for targeted versus non-targeted analytical food authentication. Trends Food Sci. Technol. 2019, 86, 537–543. [Google Scholar] [CrossRef]
- Wu, J.; Chernatynskaya, A.; Pfaff, A.; Kou, H.; Cen, N.; Ercal, N.; Shi, H. Extensive Thiol Profiling for Assessment of Intracellular Redox Status in Cultured Cells by HPLC-MS/MS. Antioxidants 2022, 11, 24. [Google Scholar] [CrossRef]
- Menon, S.; Mathew, M.R.; Sam, S.; Keerthi, K.; Kumar, K.G. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J. Electroanal. Chem. 2020, 878, 114596. [Google Scholar] [CrossRef]
- Ghosh, S.; Baltussen, M.G.; Ivanov, N.M.; Haije, R.; Jakstaite, M.; Zhou, T.; Huck, W.T.S. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chem. Rev. 2024, 124, 2553–2582. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Nanda, R.; Sahoo, S.; Mohapatra, E. Biosensors in Health Care: The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis. Biochem. Res. Int. 2016, 2016, 3130469. [Google Scholar] [CrossRef] [PubMed]
- Tomin, T.; Schittmayer, M.; Birner-Gruenberger, R. Addressing Glutathione Redox Status in Clinical Samples by Two-Step Alkylation with N-ethylmaleimide Isotopologues. Metabolites 2020, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Baron, M.; Sochor, J. Estimation of Thiol Compounds Cysteine and Homocysteine in Sources of Protein by Means of Electrochemical Techniques. Int. J. Electrochem. Sci. 2013, 8, 11072–11086. [Google Scholar] [CrossRef]
- Sandford, C.; Edwards, M.A.; Klunder, K.J.; Hickey, D.P.; Li, M.; Barman, K.; Sigman, M.S.; White, H.S.; Minteer, S.D. A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chem. Sci. 2019, 10, 6404–6422. [Google Scholar] [CrossRef]
- Hanko, M.; Svorc, L.; Plankova, A.; Mikus, P. Overview and recent advances in electrochemical sensing of glutathione—A review. Anal. Chim. Acta 2019, 1062, 1–27. [Google Scholar] [CrossRef]
- Harfield, J.C.; Batchelor-McAuley, C.; Compton, R.G. Electrochemical determination of glutathione: A review. Analyst 2012, 137, 2285–2296. [Google Scholar] [CrossRef]
- Liang, L.P.; Patel, M. Plasma cysteine/cystine redox couple disruption in animal models of temporal lobe epilepsy. Redox Biol. 2016, 9, 45–49. [Google Scholar] [CrossRef]
- Childs, S.; Haroune, N.; Williams, L.; Gronow, M. Determination of cellular glutathione:glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection. J. Chromatogr. A 2016, 1437, 67–73. [Google Scholar] [CrossRef]
- Socher, G.; Nussbaum, R.; Rissler, K.; Lankmayr, E. Analysis of sulfonated compounds by reversed-phase ion-pair chromatography—Mass spectrometry with on-line removal of non-volatile tetrabutyl ammonium ion-pairing agents. Chromatographia 2001, 54, 65–70. [Google Scholar] [CrossRef]
- Melnyk, S.; Pogribna, M.; Pogribny, I.; Hine, R.J.; James, S.J. A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection. J. Nutr. Biochem. 1999, 10, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Chand, R.; Jha, S.K.; Islam, K.; Han, D.; Shin, I.S.; Kim, Y.S. Analytical detection of biological thiols in a microchip capillary channel. Biosens. Bioelectron. 2013, 40, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Hurley, M.M.; Murlanova, K.; Macias, L.K.; Sabir, A.I.; O’Brien, S.C.; Bhasin, H.; Tamashiro, K.L.; Pletnikov, M.V.; Moran, T.H. Activity-based anorexia disrupts systemic oxidative state and induces cortical mitochondrial fission in adolescent female rats. Int. J. Eat. Disord. 2021, 54, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Kalinovic, S.; Stamm, P.; Oelze, M.; Daub, S.; Kroller-Schon, S.; Kvandova, M.; Steven, S.; Munzel, T.; Daiber, A. Comparison of three methods for in vivo quantification of glutathione in tissues of hypertensive rats. Free Radic. Res. 2021, 55, 1048–1061. [Google Scholar] [CrossRef]
- Lawrence, N.S.; Davis, J.; Compton, R.G. Electrochemical detection of thiols in biological media. Talanta 2001, 53, 1089–1094. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, J.; Jiang, X.; Guo, X.; Gao, F. Electrochemical Detection of Low-Molecular-Mass Biothiols in Biological Fluids at Carbon Spheres-Modified Glassy Carbon Electrodes. Electrocatalysis 2012, 4, 17–23. [Google Scholar] [CrossRef]
- Yuan, B.; Zeng, X.; Deng, D.; Xu, C.; Liu, L.; Zhang, J.; Gao, Y.; Pang, H. Electrochemical determination of glutathione based on an electrodeposited nickel oxide nanoparticles-modified glassy carbon electrode. Anal. Methods 2013, 5, 1779–1783. [Google Scholar] [CrossRef]
- Hun, X.; Sun, W.; Zhu, H.; Du, F.; Liu, F.; Xu, Y.; He, Y. Design of electrochemical detection of thiols based on the cleavage of the disulfide bond coupled with thionine modified gold nanoparticle-assisted amplification. Chem. Commun. 2013, 49, 9603–9605. [Google Scholar] [CrossRef]
- Olmos Moya, P.M.; Martinez Alfaro, M.; Kazemi, R.; Alpuche-Aviles, M.A.; Griveau, S.; Bedioui, F.; Gutierrez Granados, S. Simultaneous Electrochemical Speciation of Oxidized and Reduced Glutathione. Redox Profiling of Oxidative Stress in Biological Fluids with a Modified Carbon Electrode. Anal. Chem. 2017, 89, 10726–10733. [Google Scholar] [CrossRef]
- Lee, P.T.; Ward, K.R.; Tschulik, K.; Chapman, G.; Compton, R.G. Electrochemical Detection of Glutathione Using a Poly(caffeic acid) Nanocarbon Composite Modified Electrode. Electroanalysis 2013, 26, 366–373. [Google Scholar] [CrossRef]
- Arkan, E.; Saber, R.; Karimi, Z.; Mostafaie, A.; Shamsipur, M. Multiwall carbon nanotube-ionic liquid electrode modified with gold nanoparticles as a base for preparation of a novel impedimetric immunosensor for low level detection of human serum albumin in biological fluids. J. Pharm. Biomed. Anal. 2014, 92, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Han, X.; Li, Z.; Tian, Q.; Miao, X.; Du, L.; Liu, Y. Gold nanoparticles-based catalysis for detection of S-nitrosothiols in blood serum. Talanta 2011, 85, 1871–1875. [Google Scholar] [CrossRef] [PubMed]
- Madasamy, T.; Santschi, C.; Martin, O.J. A miniaturized electrochemical assay for homocysteine using screen-printed electrodes with cytochrome c anchored gold nanoparticles. Analyst 2015, 140, 6071–6078. [Google Scholar] [CrossRef] [PubMed]
- Compagnone, D.; Federici, G.; Scarciglia, L.; Palleschi, G. Amperometric glutathione electrodes. Biosens. Bioelectron. 1993, 8, 257–263. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Karimi, F.; Shabani-Nooshabadi, M.; Alizadeh, M.; Al-Othman, A.; Erk, N.; Yegya Raman, P.K.; Karaman, C. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 2022, 287, 132187. [Google Scholar] [CrossRef]
- Roy, B.G.; Rutherford, J.L.; Weaver, A.E.; Beaver, K.; Rasmussen, M. A Self-Powered Biosensor for the Detection of Glutathione. Biosensors 2020, 10, 114. [Google Scholar] [CrossRef]
- Federici, L.; Masulli, M.; Allocati, N. An Overview of Biosensors Based on Glutathione Transferases and for the Detection of Glutathione. Electroanalysis 2021, 33, 1852–1865. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, R.; Jiao, X.; Li, J.; Shi, H.; Zhang, D. Amperometric determination of reduced glutathione with a new Co-based metal-organic coordination polymer modified electrode. Electrochem. Commun. 2014, 40, 92–95. [Google Scholar] [CrossRef]
- Thota, R.; Ganesh, V. Simple and facile preparation of silver–polydopamine (Ag–PDA) core–shell nanoparticles for selective electrochemical detection of cysteine. RSC Adv. 2016, 6, 49578–49587. [Google Scholar] [CrossRef]
- Lee, P.T.; Compton, R.G. Selective electrochemical detection of thiol biomarkers in saliva using multiwalled carbon nanotube screen-printed electrodes. Sens. Actuators B Chem. 2015, 209, 983–988. [Google Scholar] [CrossRef]
- Lee, P.T.; Compton, R.G. Selective Thiol Detection in Authentic Biological Samples with the Use of Screen-printed Electrodes. Anal. Sci. 2015, 31, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chem. Mater. 2013, 26, 724–744. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Crapnell, R.D.; Hudson, A.; Foster, C.W.; Eersels, K.; Grinsven, B.v.; Cleij, T.J.; Banks, C.E.; Peeters, M. Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. Sensors 2019, 19, 1204. [Google Scholar] [CrossRef] [PubMed]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Gandarilla, A.M.D.; Matos, R.S.; Barcelay, Y.R.; da Fonseca Filho, H.D.; Brito, W.R. Molecularly imprinted polymer on indium tin oxide substrate for bovine serum albumin determination. J. Polym. Res. 2022, 29, 166. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Kılıç, S.; Esen, C.; Denizli, A. Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Polymers 2023, 15, 629. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.I.; Subramanian, A.; Mueller, S.; Levon, K.; Nam, C.Y.; Rafailovich, M.H. Potentiometric Biosensors Based on Molecular-Imprinted Self-Assembled Monolayer Films for Rapid Detection of Influenza A Virus and SARS-CoV-2 Spike Protein. ACS Appl. Nano Mater. 2022, 5, 5045–5055. [Google Scholar] [CrossRef]
- Cieplak, M.; Szwabinska, K.; Sosnowska, M.; Chandra, B.K.; Borowicz, P.; Noworyta, K.; D’Souza, F.; Kutner, W. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens. Bioelectron. 2015, 74, 960–966. [Google Scholar] [CrossRef]
- Ma, X.-T.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Epitope molecularly imprinted polymer coated quartz crystal microbalance sensor for the determination of human serum albumin. Sens. Actuators B Chem. 2017, 246, 879–886. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, Y.; Guo, M.; Lin, B.; Zhang, L. A sensitive determination of albumin in urine by molecularly imprinted electrochemical biosensor based on dual-signal strategy. Sens. Actuators B Chem. 2019, 288, 564–570. [Google Scholar] [CrossRef]
- Zeida, A.; Guardia, C.M.; Lichtig, P.; Perissinotti, L.L.; Defelipe, L.A.; Turjanski, A.; Radi, R.; Trujillo, M.; Estrin, D.A. Thiol redox biochemistry: Insights from computer simulations. Biophys. Rev. 2014, 6, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Pantic, I.; Paunovic, J.; Pejic, S.; Drakulic, D.; Todorovic, A.; Stankovic, S.; Vucevic, D.; Cumic, J.; Radosavljevic, T. Artificial intelligence approaches to the biochemistry of oxidative stress: Current state of the art. Chem. Biol. Interact. 2022, 358, 109888. [Google Scholar] [CrossRef] [PubMed]
- Kanavos, A.; Papadimitriou, O.; Al-Hussaeni, K.; Maragoudakis, M.; Karamitsos, I. Advanced Convolutional Neural Networks for Precise White Blood Cell Subtype Classification in Medical Diagnostics. Electronics 2024, 13, 2818. [Google Scholar] [CrossRef]
- Pantic, I.; Paunovic, J.; Cumic, J.; Valjarevic, S.; Petroianu, G.A.; Corridon, P.R. Artificial neural networks in contemporary toxicology research. Chem. Biol. Interact. 2023, 369, 110269. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Y.; Liu, C.; Jiang, Q.Y.; Chen, F.; Cao, Y. SERS-Based Biosensors Combined with Machine Learning for Medical Application. ChemistryOpen 2023, 12, e202200192. [Google Scholar] [CrossRef]
- Lo Conte, M.; Carroll, K.S. The redox biochemistry of protein sulfenylation and sulfinylation. J. Biol. Chem. 2013, 288, 26480–26488. [Google Scholar] [CrossRef]
- Furdui, C.M.; Poole, L.B. Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom. Rev. 2014, 33, 126–146. [Google Scholar] [CrossRef]
- Klatt, P.; Molina, E.P.; De Lacoba, M.G.; Padilla, C.A.; Martinez-Galesteo, E.; Barcena, J.A.; Lamas, S. Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J. 1999, 13, 1481–1490. [Google Scholar] [CrossRef]
- Gao, X.-H.; Bedhomme, M.; Veyel, D.; Zaffagnini, M.; Lemaire, S.D. Methods for analysis of protein glutathionylation and their application to photosynthetic organisms. Mol. Plant 2009, 2, 218–235. [Google Scholar] [CrossRef]
- Aesif, S.W.; Anathy, V.; Havermans, M.; Guala, A.S.; Ckless, K.; Taatjes, D.J.; Janssen-Heininger, Y.M. In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization. Am. J. Pathol. 2009, 175, 36–45. [Google Scholar] [CrossRef]
- Woo, H.A.; Chae, H.Z.; Hwang, S.C.; Yang, K.S.; Kang, S.W.; Kim, K.; Rhee, S.G. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003, 300, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, P.; Bohdan, K.; Hommrich, M.; Julia, F.; Vogelsang, L.; Eirich, J.; Zangl, R.; Fares, C.; Jacobs, J.B.; Mukhopadhyay, D.; et al. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation. Nat. Chem. 2024, 16, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, H.; Zhang, P.; James, T.D.; Sun, X. A Rationally Designed Prodrug for the Fluorogenic Labeling of Albumin and Theranostic Effects on Drug-Induced Liver Injury. Anal. Chem. 2024, 96, 3498–3507. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, C.B.; Rojas, F.S. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis. Sensors 2006, 6, 1245–1307. [Google Scholar] [CrossRef]
- Apak, R.; Cekic, S.D.; Uzer, A.; Capanoglu, E.; Celik, S.E.; Bener, M.; Can, Z.; Durmazel, S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. Anal. Methods 2020, 12, 5266–5321. [Google Scholar] [CrossRef]
Substance | c, μM | |||
---|---|---|---|---|
Total Concentration * | Reduced Form | Low-Molecular-Weight Disulfide | Protein Disulfide | |
Human serum albumin (HSA) | 527–783 | 422 ± 52 | ||
Cys | 202–281 | 8.3–10.7 | 41–63 | 145–176 |
Cysteinylglycine (dipeptide) | 18.6–35.8 | 2.0–2.9 | 4.4–6.8 | 11–20 |
Hcys | 6.5–11.9 | 0.17–0.32 | 1.0–1.2 | 7.3–10.4 |
GSH | 4.9–7.3 | 2.0–5.1 | 0.7–1.6 | 0.7–1.9 |
γ–Glutamylcysteine | 3.1–5.4 | 0.06 | ||
Hydrogen sulfide | 1 × 10−4 | |||
Glutathione peroxidase 3 | 0.5–0.8 | |||
Thioredoxin | (0.07–1) × 10−3 | |||
Thioredoxin reductase | 3 × 10−4 | |||
Glutaredoxin | 1.1 × 10−3 |
Type of Electrode | Working Electrode Material | Technique | Object | Analyte(s) | LOD, μM | Linear Range, μM | Reference |
---|---|---|---|---|---|---|---|
Unmodified electrodes (hybrid methods) | Au | HPLC coupled with amperometric detection (multiple electrochemical cells 0.4 ÷ 0.85 V vs. Pd) | Rat blood plasma | GSH/GSSG, Cys/Cyss, methionine | 0.01–0.09 | 0.1–1 10–20 | [187] |
BDD | HPLC coupled with amperometric detection (E = 1.40 V vs. Pd) | Lysed cancer cells | GSH, GSSG | 0.001 | 0.002–1 | [188] | |
Porous graphite electrodes | HPLC coupled with coulometric detection (dual analytical cell, at 0.35 ÷ 0.88 V) | Blood plasma | Aminothiols and reduced dithiols | (5–50) × 10−6 | 0.1–0.5 50–300 | [190] | |
Multiple Au microelectrodes | CE with amperometric detection (E = 0.42 and 0.48 V vs. Ag/AgCl) | Heparinized blood samples | Cys, Hcys | 0.05 | 0.5–3 | [191] | |
Au and graphite electrodes | HPLC coupled with electrochemical detection (E = 0.600 and 0.750 V vs. Ag/AgCl) | Whole blood | GSH, Cys, N-acetylcysteine | – | (0.2–0.5)–8.0 | [192] | |
NO-selective carbon fiber electrode | Amperometry with ion-selective electrode | Blood serum | S-nitrosothiols | 5 × 10−5 | 5 × 10−3–1 | [201] | |
Electrodes modified with nanomaterials | Carbon-sphere-modified glassy carbon electrode | Amperometry (0.00 V vs. Ag/AgCl) | Human plasma and urine | Total biothiols | 0.4 | 0.2–100 | [195] |
Glassy carbon electrode modified with NiO nanoparticles | Amperometry (0.35 V vs. Ag/AgCl) | GSH eye drops | GSH | 2 | 12.5–2300 | [196] | |
Carbon screen-printed electrode with cytochrome-c-anchored Au nanoparticles | Voltammetry | Blood plasma | Hcys | 0.3 | 0.4–700 | [202] | |
Glassy carbon electrode modified with cobalt phthalocyanine and MWNT | Differential pulse voltammetry | Rat urine and plasma | GSSG, GSH | 8 GSSG, 100 GSH | 150–7000 (GSSG), 500–3000 (GSH) | [198] | |
Glassy carbon electrode modified with poly(caffeic acid) nanocarbon composite | Cyclic voltammetry (ratio of forward and backward peak currents was used) | PBS, pH 7.0 | GSH | 0.5 | 0.5–5000 | [199] | |
Indium tin oxide ITO electrode modified with silver–polydopamine core–shell nanoparticles | Cyclic voltammetry and linear sweep voltammetry | GSH eye drops | Cys | 0.02 | 0.05–300 | [208] | |
Screen-printed multiwalled carbon nanotube-modified electrode | Square-wave and cyclic voltammetry with catechol as redox mediator | Synthetic saliva, blood plasma, tissue culture media | HCys, GSH | 0.9 HCys, 2 GSH | 5–20 | [209,210] | |
Immunosensors | AuNPs, graphene, and ionic liquid-modified carbon paste electrode | Differential pulse voltammetry with DNA sensor using thionine-labeled AuNP as an electrochemical probe | Lymphocytic leukemia cell extract | Protein, non-protein thiols | 4 × 10−7 | 1 × 10−6–0.01 | [197] |
AuNPs on the multiwall-based carbon ionic liquid electrode coated with colloidal AuNPs through thiol groups of 1,6-hexanedithiol monolayer as a crosslinker | Impedance spectroscopy with immunosensor (antigen–antibody) using [Fe(CN)6]3−/4− as redox probe | Human urine and serum | HSA | 15.4 ng mL−1 | 0.1–100 µg mL−1 | [197,200] | |
Enzymatic biosensors | Glassy carbon electrodes modified with osmium redox polymer and bilirubin oxidase on the cathode and glucose oxidase on the anode | Amperometry in self-powered regime (biofuel cell) | Blood serum | GSH | 40 | 40–2000 | [205] |
Glassy carbon electrode modified with graphene oxide and Nafion with covalently immobilized GSH-Px | Differential pulse voltammetry | Hemolyzed erythrocyte | GSH | 9 × 10−4 | 0.003–370 | [203] | |
Pt electrode covered with membranes and immobilized | Amperometric detection of H2O2 (E = 0.65 V vs. Ag/AgCl) or O2 (Clark electrode) | Hemolyzed erythrocytes | GSH | - | 5–1000 | [204] | |
MOFs and MIPs | Co-metal–organic coordination polymer-modified carbon paste electrode | Constant potential amperometry (E = 0.400 V vs. Ag/AgCl) | GSH eye drops | GSH | 2.5 | 25–950 | [207] |
Molecularly imprinted polyaniline on indium tin oxide substrate | Differential pulse voltammetry with [Fe(CN)6]3−/4− as redox probe | PBS, pH 7.0 | BSA | 0.6 ng mL−1 | 1 × 10−3–100 µg mL−1 | [215] | |
Molecularly imprinted polymer film on Au electrode | Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) | Artificial blood serum | HSA | 0.8 µg mL−1 (EIS) 20 ng mL−1 (DPV) | 0.8–20 µg mL−1 (EIS), 4–80 µg mL−1 (DPV) | [218] | |
Epitope molecularly imprinted polymer-modified Au-coated quartz crystal | Quartz crystal microbalance (QCM) | Human serum | HSA | 0.03 µg mL−1 | 0.05–0.5 µg mL−1 | [219] |
Methods | Molecular Spectroscopy | Chromatography | Mass Spectrometry | Electrochemistry | |
---|---|---|---|---|---|
Indicator | |||||
Applications (most important) | Used for measuring thiol concentrations in biological fluids. As for (chemi-)luminescent techniques, it is promising method for high-sensitivity thiol detection. | Employed for the separation and quantification of thiols and disulfides. | Applied for detailed characterization and quantification of thiol compounds. Metabolite analysis. | Employed for real-time monitoring of thiol levels and redox status in blood, etc. | |
Sample Preparation | Minimal; Requires care in handling to protect thiols from oxidation. | Required; Requires care in handling to protect thiols from oxidation; Often requires derivatization. | Required; Involves complex procedures to stabilize thiols; requires derivatization. | Commonly used for direct or mediated analysis; Requires care in handling to protect thiols from oxidation. | |
Selectivity and its regulation | Moderate; High in chemiluminescent techniques (CL); Speciation analysis is not supported. CL: detect thiols in complex matrices. | High; Excellent separation capability of thiol species. | Very high; Can adequately distinguish thiol species and their derivatives. | Variable; Can be improved with modified electrodes. | |
Merits | Simple and cost-effective but may lack selectivity. It is promising for real-time applications. | LOD, though analysis times are longer. | High sensitivity. | Rapid analysis, including in real time. | |
LOD | As low as 1 μM; As low as 20 nM (for CL). | As low as 1 μM. | In the low-picomolar (pM) range. | ca. 10 nM. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poimenova, I.A.; Sozarukova, M.M.; Ratova, D.-M.V.; Nikitina, V.N.; Khabibullin, V.R.; Mikheev, I.V.; Proskurnina, E.V.; Proskurnin, M.A. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024, 29, 4433. https://doi.org/10.3390/molecules29184433
Poimenova IA, Sozarukova MM, Ratova D-MV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules. 2024; 29(18):4433. https://doi.org/10.3390/molecules29184433
Chicago/Turabian StylePoimenova, Iuliia A., Madina M. Sozarukova, Daria-Maria V. Ratova, Vita N. Nikitina, Vladislav R. Khabibullin, Ivan V. Mikheev, Elena V. Proskurnina, and Mikhail A. Proskurnin. 2024. "Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review" Molecules 29, no. 18: 4433. https://doi.org/10.3390/molecules29184433
APA StylePoimenova, I. A., Sozarukova, M. M., Ratova, D. -M. V., Nikitina, V. N., Khabibullin, V. R., Mikheev, I. V., Proskurnina, E. V., & Proskurnin, M. A. (2024). Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules, 29(18), 4433. https://doi.org/10.3390/molecules29184433