Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (195)

Search Parameters:
Keywords = direct and indirect transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 632 KiB  
Article
When Do Innovation and Renewable Energy Transition Drive Environmental Sustainability?
by Anis Omri, Fadhila Hamza and Noura Alkahtani
Sustainability 2025, 17(15), 6910; https://doi.org/10.3390/su17156910 - 30 Jul 2025
Viewed by 279
Abstract
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) [...] Read more.
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) estimator and confirming robustness through the Dynamic Common Correlated Effects Mean Group (DCCE-MG) method, the study explores both direct and indirect effects of RET and EI on two key environmental indicators: the Environmental Performance Index and the Load Capacity Factor. The results reveal that both RET and EI have a significant impact on environmental performance. Moreover, green finance and environmental governance serve as crucial channels through which RET and EI exert their influence. These findings underscore the importance of developing effective financial instruments and robust regulatory frameworks to translate energy and innovation policies into tangible environmental benefits. By highlighting the interplay between technological advancement, financial capacity, and institutional quality, this study provides novel insights into the environmental policy landscape of advanced economies and offers guidance for designing integrated strategies to achieve long-term sustainability goals. Full article
Show Figures

Figure 1

13 pages, 1726 KiB  
Article
Assessment of Mammalian Scavenger and Wild White-Tailed Deer Activity at White-Tailed Deer Farms
by Alex R. Jack, Whitney C. Sansom, Tiffany M. Wolf, Lin Zhang, Michelle L. Schultze, Scott J. Wells and James D. Forester
Viruses 2025, 17(8), 1024; https://doi.org/10.3390/v17081024 - 22 Jul 2025
Viewed by 316
Abstract
White-tailed deer (Odocoileus virginianus) in the wild and on cervid farms have drawn the attention of state wildlife agencies and animal health agencies as Chronic Wasting Disease (CWD) has spread across North America. Deer farm regulations have been implemented to reduce [...] Read more.
White-tailed deer (Odocoileus virginianus) in the wild and on cervid farms have drawn the attention of state wildlife agencies and animal health agencies as Chronic Wasting Disease (CWD) has spread across North America. Deer farm regulations have been implemented to reduce direct contact between wild and farmed cervids; however, evidence suggests that indirect contact to infectious prions passed through the alimentary tracts of scavengers may be an important transmission pathway. The objective of this study was to characterize mammalian scavenger and wild deer activities associated with deer farms and link these activities with site-specific spatial covariates utilizing a network of camera traps, mounted to farm perimeter fences. We monitored each of 14 farms in Minnesota, Wisconsin, and Pennsylvania for two weeks during the summer, with a subset of farms also monitored in the winter and fall. Across all sites and seasons, we captured 749 observations of wildlife. In total, nine species were captured, with wild white-tailed deer accounting for over three quarters of observations. Despite the large number of wild deer observed, we found that interactions between wild and farmed deer at the fence line were infrequent (six direct contacts observed). In contrast, mammalian scavengers were frequently observed inside and outside of the fence. Supplementary cameras placed on deer feeders revealed higher observation rates of scavengers than those placed along fence lines, highlighting the potential for transmission of CWD through indirect contact via scavenger excreta. To evaluate associations between the number of observations of focal species with land-cover characteristics, two mixed-effects regression models were fitted, one model for scavengers and one for wild deer. Contrary to our hypothesis, landscape context did not have a strong impact on wildlife visitation. This suggests that farm location is less important than management practices, highlighting the need for future research into how farming practices impact rates of wildlife visitation onto cervid farms. Full article
(This article belongs to the Special Issue Chronic Wasting Disease: From Pathogenesis to Prevention)
Show Figures

Figure 1

16 pages, 2821 KiB  
Article
Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata
by Lilia Chérigo, Juan Fernández, Ramy Martínez and Sergio Martínez-Luis
Plants 2025, 14(14), 2219; https://doi.org/10.3390/plants14142219 - 17 Jul 2025
Viewed by 404
Abstract
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this [...] Read more.
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this aphid can affect a substantial share of tomato crops cultivated for industrial use. A traditional alternative to synthetic pesticides involves exploring plant extracts with insecticidal properties derived from wild plants found in our tropical forests, which can be easily prepared and applied by farmers. In this context, the present research aimed to evaluate the insecticidal activity of ethanolic extracts from the stems and leaves of Sphagneticola trilobata on both nymphs and adults of A. gossypii. Mortality was assessed at 24, 48, and 72 h after applying three doses of each extract (25, 50, and 100 µg/L). A standard phytochemical analysis to determine insecticidal activity revealed that both extracts exhibited significant efficacy at the highest concentration tested; however, the leaf extract demonstrated greater effectiveness at lower concentrations. A comprehensive metabolomic study indicated that the active compounds are diterpenes derived from the pimarenyl cation. These compounds have been extensively documented for their insecticidal potential against various insect species, suggesting that ethanolic extracts from this plant could serve as viable candidates for agricultural insecticides to combat aphid infestations. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

35 pages, 2010 KiB  
Article
Intelligent Transmission Control Scheme for 5G mmWave Networks Employing Hybrid Beamforming
by Hazem (Moh’d Said) Hatamleh, As’ad Mahmoud As’ad Alnaser, Roba Mahmoud Ali Aloglah, Tomader Jamil Bani Ata, Awad Mohamed Ramadan and Omar Radhi Aqeel Alzoubi
Future Internet 2025, 17(7), 277; https://doi.org/10.3390/fi17070277 - 24 Jun 2025
Viewed by 339
Abstract
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is [...] Read more.
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is required due to the growing demands for spectrum resources in upcoming enormous machine-type communication applications. Ultra-high data speed, reduced latency, and improved connection are all promised by the development of 5G mmWave networks. Yet, due to severe route loss and directional communication requirements, there are substantial obstacles to transmission reliability and energy efficiency. To address this limitation in this research we present an intelligent transmission control scheme tailored to 5G mmWave networks. Transport control protocol (TCP) performance over mmWave links can be enhanced for network protocols by utilizing the mmWave scalable (mmS)-TCP. To ensure that users have the stronger average power, we suggest a novel method called row compression two-stage learning-based accurate multi-path processing network with received signal strength indicator-based association strategy (RCTS-AMP-RSSI-AS) for an estimate of both the direct and indirect channels. To change user scenarios and maintain effective communication constantly, we utilize the innovative method known as multi-user scenario-based MATD3 (Mu-MATD3). To improve performance, we introduce the novel method of “digital and analog beam training with long-short term memory (DAH-BT-LSTM)”. Finally, as optimizing network performance requires bottleneck-aware congestion reduction, the low-latency congestion control schemes (LLCCS) are proposed. The overall proposed method improves the performance of 5G mmWave networks. Full article
(This article belongs to the Special Issue Advances in Wireless and Mobile Networking—2nd Edition)
Show Figures

Figure 1

11 pages, 1089 KiB  
Article
The Impact of Temperature, Humidity, and Precipitation on COVID-19 Cases: A Study Across National and Subnational Levels in Pakistan
by Ishtiaq Ahmad, Mustajab Ali, Hadiya Asghar, Miyoko Okamoto, Yoshihisa Shirayama, Zoofa Talha, Aida Uzakova, Hafiz Sultan Ahmad and Motoyuki Yuasa
J 2025, 8(3), 21; https://doi.org/10.3390/j8030021 - 23 Jun 2025
Viewed by 367
Abstract
Meteorological variables play a significant role in the transmission of viruses such as influenza and the coronavirus pandemic (COVID-19). Previous studies have identified the relationship between changes in meteorological variables, humidity, rainfall, and temperature, and the infection rate of COVID-19 at the national [...] Read more.
Meteorological variables play a significant role in the transmission of viruses such as influenza and the coronavirus pandemic (COVID-19). Previous studies have identified the relationship between changes in meteorological variables, humidity, rainfall, and temperature, and the infection rate of COVID-19 at the national level in Pakistan. However, the current study applied the logistic regression analysis technique to determine such a relationship on a more detailed scale, that is, subnational levels in addition to the national level in Pakistan, using a long-term analysis of two years of COVID-19 data. At the subnational level, the logistic regression analysis technique was applied, with infection rate as the predictive variable. The results showed an increase in the infection rate of COVID-19 with increasing humidity levels. In contrast, an increase in temperature has slowed the spread of COVID-19 cases at both the national and subnational levels. The minimum temperature was statistically significant (p < 0.001) for provinces, KPK and Sindh. Also, two federal territories, AJK and Islamabad, showed statistically significant p-values. At the national level, both maximum temperature and humidity showed such values that is, p < 0.001. We believe that this is the first study conducted in Pakistan to explore the direct and indirect relationship between variables such as temperature (min and max), humidity, and rainfall as predictive parameters for COVID-19 infection rates at a detailed level. The pattern observed in this study can help us predict the future spread of COVID-19, subject to climatic parameters in Pakistan at both the national and subnational levels. Full article
Show Figures

Figure 1

14 pages, 2579 KiB  
Article
Impact Sound Insulation Behavior of Ceramic Tile and Rubber Mat Lightweight Floating Floors Under Prolonged Loading in Residential Buildings
by Sérgio Klippel Filho, Fernanda Pacheco, Hinoel Zamis Ehrenbring, Roberto Christ, Bernardo Fonseca Tutikian and Jorge Patrício
Buildings 2025, 15(13), 2200; https://doi.org/10.3390/buildings15132200 - 23 Jun 2025
Viewed by 329
Abstract
Concerning building acoustics, the impact of sound propagation in the building structure can be considered one of the most relevant problems. Floating floors are an efficient solution, composed of a rigid walking surface above a resilient material. Functioning as a spring, the resilient [...] Read more.
Concerning building acoustics, the impact of sound propagation in the building structure can be considered one of the most relevant problems. Floating floors are an efficient solution, composed of a rigid walking surface above a resilient material. Functioning as a spring, the resilient layer must have adequate damping properties and compressive strength against permanent and imposed loads to guarantee its performance over time. In this context, this study aims to completely evaluate the impact sound reduction of composite lightweight floating floors formed by ceramic tiles and recycled rubber mats when subjected to prolonged loads, from material characterization to their application in a hypothetical scenario. This study was based on the dynamic stiffness (ISO 9052-1) and compressive creep (ISO 16534) of the resilient layer and the physical characterization of the ceramic tiles, predicting the present and future (15 years) impact sound reductions and their application in a hypothetical room, considering direct and indirect transmissions paths (ISO 12354-2). The results showed that the lightweight floating floor compositions lost their damping capability to a degree that can reduce their weighted reduction in the impact sound pressure level by up to 2 dB over prolonged periods (15 years). Howsoever, the compositions had considerable initial impact sound insulation capability and adequate performance maintenance over time. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 3858 KiB  
Article
An Assessment of Shipping Network Resilience Under the Epidemic Transmission Using a SEIR Model
by Bo Song, Lei Shi and Zhanxin Ma
J. Mar. Sci. Eng. 2025, 13(6), 1166; https://doi.org/10.3390/jmse13061166 - 13 Jun 2025
Viewed by 501
Abstract
Epidemics spread through shipping networks and have dual characteristics as both biological sources of infection and triggers of cascading failures. However, existing resilience models fail to capture this dual and coupled dynamics. To minimize the cascading impacts of epidemics on global shipping networks, [...] Read more.
Epidemics spread through shipping networks and have dual characteristics as both biological sources of infection and triggers of cascading failures. However, existing resilience models fail to capture this dual and coupled dynamics. To minimize the cascading impacts of epidemics on global shipping networks, this paper proposes an innovative resilience assessment framework that considers the interaction between epidemic transmission and the shipping network cascading failure. First, a weighted shipping network topology is constructed based on route flow characteristics to quantify route frequency, stopping time, and the number of infected people, and the epidemic transmission across ports is modeled with an improved SEIR model, which contains a heterogeneous infectivity function and a dynamic transmission matrix, revealing a dual transmission mechanism inside and outside the ports. Second, a two-stage cascading failure model is developed: a direct failure triggered by infected people exceeding the threshold and an indirect failure triggered by the dynamic redistribution of loads. The load redistribution strategy is optimized to reconcile the residual port capacity and the risk of infection. Finally, a multidimensional resilience assessment framework covering structural destruction resistance, network efficiency, path redundancy, and a cascading failure propagation rate is constructed. Example validation shows that the improved load redistribution strategy reduces the maximum connected subgraph decay rate by 68.2%, reduces the cascading failure rate by 88%, and improves the peak network efficiency by 128.2%. In case of multi-source epidemics, the state of the network collapse can be shortened by 12 days if the following recovery strategy is adopted: initially repair high connectivity hubs (e.g., Port of Shanghai), and then repair high centrality nodes (e.g., Antwerp Port) to achieve a balance between recovery efficiency and network functionality. The research results reduce the risk of systemic disruptions in maritime networks and provide decision-making tools for dynamic port scheduling during pandemics. Full article
Show Figures

Figure 1

9 pages, 514 KiB  
Communication
Diversity of Rabies Virus Variants in Insectivorous Bats (Chiroptera: Vespertilionidae and Molossidae): An Epidemiological Study in Central Argentine Patagonia
by Analía L. Giménez, Marcelo J. Zabalza, Laura P. Novaro, Gabriela A. Centurion, Melanie Y. Barrios-Benito, Ivana Moncá, Fabricio Chaar Letourneau, Román Casanovas and Susana E. Russo
Viruses 2025, 17(6), 788; https://doi.org/10.3390/v17060788 - 30 May 2025
Viewed by 769
Abstract
Rabies virus (RABV) causes a fatal infection in the central nervous system of mammals. RABV circulates through two different epidemiological cycles—terrestrial and aerial—with bats being the natural reservoir of the aerial cycle. In Patagonia, only variants (V) associated with insectivorous bats have been [...] Read more.
Rabies virus (RABV) causes a fatal infection in the central nervous system of mammals. RABV circulates through two different epidemiological cycles—terrestrial and aerial—with bats being the natural reservoir of the aerial cycle. In Patagonia, only variants (V) associated with insectivorous bats have been detected. The aim of this study was to assess the diversity of circulating RABV variants in bats from Central Patagonia, Argentina. Fifty-six samples of seven bat species from eleven localities in Chubut province were analyzed using a direct immunofluorescence and biological assay, while antigenic variants were determined using an indirect immunofluorescence test. Twelve samples tested positive for RABV (>21%). Variants V4 and V6 were identified in samples of T. brasiliensis and L. varius, respectively. The remaining positive samples did not exhibit any antigenic pattern previously identified in Argentina. These samples were associated with H. macrotus, H. magellanicus, H. montanus, and L. varius. Our results confirm RABV circulation in over 71% of the bat species analyzed and in over 63% of the localities assessed. We recommend maintaining active surveillance at both local and regional levels to ensure the early detection of cases and transmission risks, which is crucial for disease prevention and control. Full article
(This article belongs to the Special Issue Advances in Rabies Research 2024)
Show Figures

Figure 1

25 pages, 1270 KiB  
Review
Prevalence of ESBL-Resistant Genes in Birds in Italy—A Comprehensive Review
by Muhammad Tahir Sarfraz Khan, Nicoletta Formenti, Giovanni Tosi, Flavia Guarneri, Federico Scali, Muhammad Kashif Saleemi, Eugenio Monti and Giovanni Loris Alborali
Animals 2025, 15(11), 1598; https://doi.org/10.3390/ani15111598 - 29 May 2025
Viewed by 770
Abstract
Antimicrobial resistance (AMR) is a major global concern in both human and veterinary medicine. Among antimicrobial resistance (AMR) bacteria, Extended-Spectrum Beta-Lactamases (ESBLs) pose a serious health risk because infections can be difficult to treat. These Gram-negative bacteria can be frequently found in poultry [...] Read more.
Antimicrobial resistance (AMR) is a major global concern in both human and veterinary medicine. Among antimicrobial resistance (AMR) bacteria, Extended-Spectrum Beta-Lactamases (ESBLs) pose a serious health risk because infections can be difficult to treat. These Gram-negative bacteria can be frequently found in poultry and in Italy, where such protein production is established. ESBL-producing Escherichia coli, Salmonella and Klebsiella in chicken and turkey may pose a significant public health risk due to potential transmission between poultry and humans. This review aims to assess the prevalence of ESBL-producing E. coli, Salmonella and Klebsiella phenotypically and genotypically in Italian poultry, identifying the most common genes, detection methods and potential information gaps. An initial pool of 1462 studies found in scientific databases (Web of Sciences, PubMed, etc.) was screened and 29 were identified as eligible for our review. Of these studies, 79.3% investigated both phenotypic and genotypic ESBL expression while blaCTXM, blaTEM and blaSHV were considered as targeted gene families. Large differences in prevalence were reported (0–100%). The blaCTXM1 and blaTEM1 genes were the most prevalent in Italian territory. ESBL-producing E. coli, Salmonella and Klebsiella were frequently detected in farms and slaughterhouses, posing a potential threat to humans through contact (direct and indirect) with birds through handling, inhalation of infected dust, drinking contaminated water, ingestion of meat and meat products and the environment. Considering the frequent occurrence of ESBL-producing bacteria in Italian poultry, it is advisable to further improve biosecurity and to introduce more systematic surveillance. Additionally, the focus should be on the wild birds as they are ESBL carriers. Full article
Show Figures

Figure 1

20 pages, 2039 KiB  
Review
From Childhood Woes to Adult Blues: Unmasking the Role of Early Traumas, P2X7 Receptor, and Neuroinflammation in Anxiety and Depression
by Zsuliet Kristof, Dorottya Szabo, Beata Sperlagh, Dora Torok and Xenia Gonda
Int. J. Mol. Sci. 2025, 26(10), 4687; https://doi.org/10.3390/ijms26104687 - 14 May 2025
Viewed by 1389
Abstract
Early-life stress may increase the risk of neuropsychiatric disorders via immune activation. While the purinergic signaling pathway is implicated in psychiatric disorders, the specific role of the P2X7 receptor (P2X7R) in anxiety, depression, and childhood trauma still requires further clarification. Upon chronic stress, [...] Read more.
Early-life stress may increase the risk of neuropsychiatric disorders via immune activation. While the purinergic signaling pathway is implicated in psychiatric disorders, the specific role of the P2X7 receptor (P2X7R) in anxiety, depression, and childhood trauma still requires further clarification. Upon chronic stress, excessive ATP release activates purinergic P2X7R signalling in the brain contributing to long-lasting neuroinflammation, which potentially promotes the development of psychiatric disorders. There is also a putative link between the P2X7 receptor gene, located on chromosome 12q24, and the development of anxiety and depression. This review aims to systematically examine how P2X7R contributes to the pathophysiology of anxiety and depressive disorders, with a particular focus on early-life stress (ELS). It offers a comprehensive synthesis of the current findings, emphasizing the previously unexplored intersections between P2X7R signaling, early-life stress, and psychiatric disorders. These interactions may shape long-term neuroinflammation, contributing to the development of anxiety and depression, and offer new insights into potential therapeutic targets. The review integrates the role of P2X7R regarding both indirect mechanisms—such as the modulation and long-term transmission of neuroinflammation following environmental stressors and vulnerability—and direct genetic associations with psychiatric conditions, including the influence of single-nucleotide polymorphisms (SNPs), haplotypes, and other variants within the P2X7 gene. Special emphasis is placed on the impact of early-life stress, drawing primarily on preclinical findings to elucidate underlying mechanisms. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

13 pages, 616 KiB  
Review
Strategies to Mitigate the Adverse Impacts of Viral Infections on Honey Bee (Apis mellifera L.) Colonies
by Ivana Tlak Gajger, Hossam F. Abou-Shaara and Maja Ivana Smodiš Škerl
Insects 2025, 16(5), 509; https://doi.org/10.3390/insects16050509 - 10 May 2025
Viewed by 1460
Abstract
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics [...] Read more.
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics and survival. There are diverse viruses that infect honey bees at different life stages, with a year-round prevalence. There are multiple pathways through which viruses can be transmitted among colonies. Notably, there is also a lack of commercial treatments against viral infections in bees, but some promising strategies exist to mitigate their negative effects, including vector control, and the implementation of good beekeeping practices and biosecurity measures. While methods for treating infected colonies have garnered attention, they receive less focus compared to aspects like transmission methods and seasonal prevalence of viruses. This article aims to review the aforementioned strategies in light of the available literature. It presents succinct and practical approaches categorized based on their potential direct or indirect effects on viruses, providing beekeepers and researchers with an overview of both fully established and still-developing methods. Controlling the ectoparasitic Varroa destructor mite population, which significantly impacts viral prevalence and virulence in bees, is crucial for reducing infections. Practical approaches such as selectively breeding honey bee populations resistant to viruses and ensuring proper nutrition are important strategies. Moreover, genetic methods have also been proposed and tested. The article not only emphasizes these methods but also discusses knowledge gaps and suggests future solutions to improve the health and productivity of honey bee colonies. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

18 pages, 2944 KiB  
Article
Optimal Strategy for Grid Loss Reduction Under Electricity Transmission and Distribution Reform Considering Low-Carbon Benefits
by Weiwu Li, Qing Xu, Xinying Wang, Zhengying Liu, Tianshou Li and Dandan Zhang
Processes 2025, 13(5), 1406; https://doi.org/10.3390/pr13051406 - 5 May 2025
Viewed by 912
Abstract
Selecting grid loss reduction strategies is crucial for energy-saving transformations, particularly in the context of electricity transmission and distribution pricing reforms. The optimization of strategic selection is not easy due to the vast number of grid devices, which leads to a multitude of [...] Read more.
Selecting grid loss reduction strategies is crucial for energy-saving transformations, particularly in the context of electricity transmission and distribution pricing reforms. The optimization of strategic selection is not easy due to the vast number of grid devices, which leads to a multitude of possible strategy combinations. This paper presents an optimal model for selecting loss reduction strategies, aiming to minimize the sum of comprehensive investment costs and energy loss costs over the life cycle of the strategies. The energy loss costs include both direct expenses due to energy loss and indirect costs, namely, carbon emission penalties. The constraints include allowable voltage deviations, branch power transmission, the number of loss reduction measures, loss rates, and total investment limits. The model comprehensively considers both economic benefits and the social benefits of reduced carbon emissions. It can help companies better adapt to electricity transmission and distribution pricing reforms, reduce operational costs, and contribute to low-carbon development. Finally, the model is validated using the data provided by one provincial power grid company in China. The results show that the loss reduction reaches 13.9 MW and the reduced carbon emission per hour is 10.425 t. The proposed method is also compared with the enumeration method, which demonstrates its effectiveness and efficiency. Further research will be conducted on establishing functional relationships between electricity sales prices and line losses to incentivize companies to apply loss reduction measures under different pricing functions. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

31 pages, 1454 KiB  
Review
Biosecurity Implications, Transmission Routes and Modes of Economically Important Diseases in Domestic Fowl and Turkey
by László Kovács, Gerda Domaföldi, Pia-Charlotte Bertram, Máté Farkas and László Péter Könyves
Vet. Sci. 2025, 12(4), 391; https://doi.org/10.3390/vetsci12040391 - 21 Apr 2025
Viewed by 2256
Abstract
The poultry industry is a critical source of affordable protein worldwide; however, it faces continuous threats from various poultry diseases that significantly impact public health, economic stability, and food security. Knowledge of and examination of the transmission routes, risk factors, and environmental survival [...] Read more.
The poultry industry is a critical source of affordable protein worldwide; however, it faces continuous threats from various poultry diseases that significantly impact public health, economic stability, and food security. Knowledge of and examination of the transmission routes, risk factors, and environmental survival characteristics of the most important pathogens affecting poultry populations, as well as the importance of strict biosecurity, are pivotal. Transmission routes are split into direct and vector-borne pathways, and indirect ways, which include infections via contaminated surfaces and vector-borne pathways, including insects and rodents. Avian influenza virus and Newcastle disease virus spread through respiratory droplets, and their transmission risk increases with increasing stocking density. While other pathogens (e.g., infectious bursal disease virus and Salmonella spp.), to persist long-term in the environments, for example, feed and litter, increasing the probability to persist long-term in the environments, for example, feed and litter, increasing the probability of infection. The long-term resilience of pathogens in multiple pathogens in various environmental conditions highlights the role of biosecurity, sanitation, and hygiene controls in preventing disease outbreaks. High stocking density in production systems, suboptimal ventilation, and inadequate biosecurity controls further increase transmission risks. This paper summarizes important disease transmissions and reinforces the need for strict biosecurity protocols and routine health monitoring to prevent the spread of pathogens within and beyond poultry facilities. These strategies can support safe poultry production, address growing global demand, and ensure food safety and public health. Full article
Show Figures

Figure 1

29 pages, 6752 KiB  
Article
Global Climate Risk Perception and Its Dynamic Impact on the Clean Energy Market: New Evidence from Contemporaneous and Lagged R2 Decomposition Connectivity Approaches
by Dan Yi, Sheng Lin and Jianlan Yang
Sustainability 2025, 17(8), 3596; https://doi.org/10.3390/su17083596 - 16 Apr 2025
Cited by 1 | Viewed by 595
Abstract
The acceleration of global climate change presents unprecedented challenges to market stability and sustainable social development. Understanding how market dynamics are impacted by perceptions of climate risk is essential to creating risk management plans that work. Current research frequently concentrates on static evaluations [...] Read more.
The acceleration of global climate change presents unprecedented challenges to market stability and sustainable social development. Understanding how market dynamics are impacted by perceptions of climate risk is essential to creating risk management plans that work. Current research frequently concentrates on static evaluations of how climate risk is perceived, ignoring its dynamic influence on clean energy markets and the intricate channels via which these risks spread. To examine the dynamic influence of climate risk perceptions on clean energy markets, this study builds a spillover network model. We determine the main risk transmission pathways and their temporal variations by looking at changes in market connection over time. Our results demonstrate that climate risk perceptions have a substantial direct and indirect impact on the volatility of clean energy markets. Specifically, the ‘Risk Concern Index (GCTC and GCPC) → Clean Energy Market Index → Climate Policy Uncertainty Index (CPU) → Risk Indices (GCTRI and GCPRI)’ pathway highlights how public and policymaker concerns about climate risk significantly influence market behavior and overall dynamics. Furthermore, the dynamic analysis demonstrates that market spillovers are significantly amplified by economic and geopolitical events, highlighting the necessity of taking external shocks into account when designing policies. This study offers fresh perspectives on how climate risk perception affects clean energy markets, serves as a useful resource for investors and policymakers, and encourages the creation of robust risk management plans and market mechanisms. Full article
Show Figures

Figure 1

10 pages, 2185 KiB  
Article
Testing the Tenacity of Small Ruminant Lentiviruses In Vitro to Assess the Potential Risk of Indirect Fomites’ Transmission
by Maksym Samoilenko, Vitalii Nedosekov and Giuseppe Bertoni
Viruses 2025, 17(3), 419; https://doi.org/10.3390/v17030419 - 14 Mar 2025
Cited by 1 | Viewed by 727
Abstract
In 2011–2013, we isolated and characterized small ruminant lentiviruses (SRLVs) from two flocks, one of goats and the other of sheep, that had never been in direct contact. Phylogenetic analysis of these viruses indicated a common origin, which led us to hypothesize indirect [...] Read more.
In 2011–2013, we isolated and characterized small ruminant lentiviruses (SRLVs) from two flocks, one of goats and the other of sheep, that had never been in direct contact. Phylogenetic analysis of these viruses indicated a common origin, which led us to hypothesize indirect transmission of these viruses between the two flocks. Since, to our knowledge, there are no published data on the tenacity of these viruses, we started this work. In the first part, we monitored the loss of infectivity of two prototypic SRLV strains, MVV 1514 and CAEV-CO, over time, in liquid suspension. As expected, the suspensions stored at 4 °C better preserved the infectivity of the viruses. Additionally, viruses resuspended in milk, the medium mirroring the in vivo situation, proved more tenacious than those maintained in a cell culture medium. These viruses, subjected to harsh treatments such as drying and resuspending, partially maintained their replication capacity. After an immediate loss of nearly 1 log10 TCID50 immediately after desiccation, the viruses maintained their replication capacity for at least three weeks when desiccated in milk. These results suggest that fomites, clothing, or pastures contaminated with secretions or milk from infected animals might mediate the infection of animals independently of direct contact. Full article
(This article belongs to the Special Issue Viral Diseases of Livestock and Diagnostics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop