Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (861)

Search Parameters:
Keywords = digital transformation enablers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 694 KiB  
Article
Artificial Intelligence-Enabled Digital Transformation in Circular Logistics: A Structural Equation Model of Organizational, Technological, and Environmental Drivers
by Ionica Oncioiu, Diana Andreea Mândricel and Mihaela Hortensia Hojda
Logistics 2025, 9(3), 102; https://doi.org/10.3390/logistics9030102 (registering DOI) - 1 Aug 2025
Viewed by 42
Abstract
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a [...] Read more.
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a strategic vision, a flexible organizational culture, and the ability to support decisions through artificial intelligence (AI)-based systems. Methods: This study proposes an extended conceptual model using structural equation modelling (SEM) to explore the relationships between five constructs: technological change, strategic and organizational readiness, transformation environment, AI-enabled decision configuration, and operational redesign. The model was validated based on a sample of 217 active logistics specialists, coming from sectors such as road transport, retail, 3PL logistics services, and manufacturing. The participants are involved in the digitization of processes, especially in activities related to operational decisions and sustainability. Results: The findings reveal that the analysis confirms statistically significant relationships between organizational readiness, transformation environment, AI-based decision processes, and operational redesign. Conclusions: The study highlights the importance of an integrated approach in which technology, organizational culture, and advanced decision support collectively contribute to the transition to digital and circular logistics chains. Full article
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 (registering DOI) - 1 Aug 2025
Viewed by 38
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

35 pages, 1049 KiB  
Article
Strategic Human Resource Development for Industry 4.0 Readiness: A Sustainable Transformation Framework for Emerging Economies
by Kwanchanok Chumnumporn Vong, Kalaya Udomvitid, Yasushi Ueki, Nuchjarin Intalar, Akkaranan Pongsathornwiwat, Warut Pannakkong, Somrote Komolavanij and Chawalit Jeenanunta
Sustainability 2025, 17(15), 6988; https://doi.org/10.3390/su17156988 (registering DOI) - 1 Aug 2025
Viewed by 98
Abstract
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) [...] Read more.
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) contributes to sustainable transformation, defined as the enduring alignment between workforce capabilities and technological advancement. The qualitative phase involved case studies of five Thai manufacturing firms at varying levels of Industry 4.0 adoption, utilizing semi-structured interviews with executives and HR leaders. Thematic findings informed the development of a structured survey, distributed to 144 firms. Partial Least Squares Structural Equation Modeling (PLS SEM) was used to test the hypothesized relationships among business pressures, leadership support, HRD preparedness, and technological readiness. The analysis reveals that business pressures significantly influence leadership and HRD, which in turn facilitate technological readiness. However, business pressures alone do not directly enhance readiness without the support of intermediaries. These results underscore the critical role of integrated HRD and leadership frameworks in enabling sustainable digital transformation. This study contributes to theoretical perspectives by integrating HRD, leadership, and technological readiness, offering practical guidance for firms aiming to navigate the complexities of Industry 4.0. Full article
Show Figures

Figure 1

26 pages, 1263 KiB  
Article
Identifying Key Digital Enablers for Urban Carbon Reduction: A Strategy-Focused Study of AI, Big Data, and Blockchain Technologies
by Rongyu Pei, Meiqi Chen and Ziyang Liu
Systems 2025, 13(8), 646; https://doi.org/10.3390/systems13080646 (registering DOI) - 1 Aug 2025
Viewed by 150
Abstract
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this [...] Read more.
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this gap by proposing two research questions (RQs): (1) What are the key success factors for artificial intelligence, big data, and blockchain in urban carbon emission reduction? (2) How do these technologies interact and support the transition to low-carbon cities? To answer these questions, the study employs a hybrid methodological framework combining the decision-making trial and evaluation laboratory (DEMATEL) and interpretive structural modeling (ISM) techniques. The data were collected through structured expert questionnaires, enabling the identification and hierarchical analysis of twelve critical success factors (CSFs). Grounded in sustainability transitions theory and institutional theory, the CSFs are categorized into three dimensions: (1) digital infrastructure and technological applications; (2) digital transformation of industry and economy; (3) sustainable urban governance. The results reveal that e-commerce and sustainable logistics, the adoption of the circular economy, and cross-sector collaboration are the most influential drivers of digital-enabled decarbonization, while foundational elements such as smart energy systems and digital infrastructure act as key enablers. The DEMATEL-ISM approach facilitates a system-level understanding of the causal relationships and strategic priorities among the CSFs, offering actionable insights for urban planners, policymakers, and stakeholders committed to sustainable digital transformation and carbon neutrality. Full article
Show Figures

Figure 1

38 pages, 1463 KiB  
Article
Industry 4.0 and Collaborative Networks: A Goals- and Rules-Oriented Approach Using the 4EM Method
by Thales Botelho de Sousa, Fábio Müller Guerrini, Meire Ramalho de Oliveira and José Roberto Herrera Cantorani
Platforms 2025, 3(3), 14; https://doi.org/10.3390/platforms3030014 - 1 Aug 2025
Viewed by 101
Abstract
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business [...] Read more.
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business Rules and Goals Models to operationalize Industry 4.0 solutions through enterprise collaboration. Using the For Enterprise Modeling (4EM) method, the research integrates qualitative insights from expert opinions, including interviews with 12 professionals (academics, industry professionals, and consultants) from Brazilian manufacturing sectors. The Goals Model identifies five main objectives—competitiveness, efficiency, flexibility, interoperability, and real-time collaboration—while the Business Rules Model outlines 18 actionable recommendations, such as investing in digital infrastructure, upskilling employees, and standardizing information technology systems. The results reveal that cultural resistance, limited resources, and knowledge gaps are critical barriers, while interoperability and stakeholder integration emerge as enablers of digital transformation. The study concludes that successfully adopting Industry 4.0 requires technological investments, organizational alignment, structured governance, and collaborative ecosystems. These models provide a practical roadmap for companies navigating the complexities of Industry 4.0, emphasizing adaptability and cross-functional synergy. The research contributes to the literature on collaborative networks by connecting theoretical frameworks with actionable enterprise-level strategies. Full article
Show Figures

Figure 1

27 pages, 968 KiB  
Article
Factors Influencing Generative AI Usage Intention in China: Extending the Acceptance–Avoidance Framework with Perceived AI Literacy
by Chenhui Liu, Libo Yang, Xinyu Dong and Xiaocui Li
Systems 2025, 13(8), 639; https://doi.org/10.3390/systems13080639 (registering DOI) - 1 Aug 2025
Viewed by 181
Abstract
In the digital era, understanding the intention to use generative AI is critical, as it enhances productivity, transforms workflows, and enables humans to focus on higher-value tasks. Drawing upon the unified theory of acceptance and use of technology (UTAUT) and the technology threat [...] Read more.
In the digital era, understanding the intention to use generative AI is critical, as it enhances productivity, transforms workflows, and enables humans to focus on higher-value tasks. Drawing upon the unified theory of acceptance and use of technology (UTAUT) and the technology threat avoidance theory (TTAT), this research integrates perceived AI literacy into the AI acceptance–avoidance framework as a central variable. This study gathered 583 valid survey responses from China and validated its model using a dual-phase, combined method that integrates structural equation modeling and artificial neural networks. Research findings indicate that the model explains 51.6% of the variance in generative AI usage intention. Except for social influence, all variables within the extended framework significantly impact the usage intention, with perceived AI literacy being the strongest predictor (β = 0.33, p < 0.001). Additionally, perceived AI literacy mitigates the adverse effect of perceived threats on the intention to use AI. Practical implications suggest that enterprises adopt a tiered strategy, as follows: maximize perceived benefits by integrating AI skills into reward systems and providing task-automation training; minimize perceived costs through dedicated technical support and transparent risk mitigation plans; and cultivate AI literacy via progressive learning paths, advancing from data analysis to innovation. Full article
(This article belongs to the Topic Theories and Applications of Human-Computer Interaction)
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 (registering DOI) - 31 Jul 2025
Viewed by 94
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

31 pages, 2007 KiB  
Review
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines
by Ripesh Bhujel, Viktoria Enkmann, Hannes Burgstaller and Ravi Maharjan
Pharmaceutics 2025, 17(8), 992; https://doi.org/10.3390/pharmaceutics17080992 - 30 Jul 2025
Viewed by 473
Abstract
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the [...] Read more.
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the AI’s impact on LNP engineering through machine learning-driven predictive models, generative adversarial networks (GANs) for novel lipid design, and neural network-enhanced biodistribution prediction. AI reduces the therapeutic development timeline through accelerated virtual screening of millions of lipid combinations, compared to conventional high-throughput screening. Furthermore, AI-optimized LNPs demonstrate improved tumor targeting. GAN-generated lipids show structural novelty while maintaining higher encapsulation efficiency; graph neural networks predict RNA-LNP binding affinity with high accuracy vs. experimental data; digital twins reduce lyophilization optimization from years to months; and federated learning models enable multi-institutional data sharing. We propose a framework to address key technical challenges: training data quality (min. 15,000 lipid structures), model interpretability (SHAP > 0.65), and regulatory compliance (21CFR Part 11). AI integration reduces manufacturing costs and makes personalized cancer vaccine affordable. Future directions need to prioritize quantum machine learning for stability prediction and edge computing for real-time formulation modifications. Full article
Show Figures

Figure 1

21 pages, 4014 KiB  
Article
Optimized Mortar Formulations for 3D Printing: A Rheological Study of Cementitious Pastes Incorporating Potassium-Rich Biomass Fly Ash Wastes
by Raúl Vico Lujano, Luis Pérez Villarejo, Rui Miguel Novais, Pilar Hidalgo Torrano, João Batista Rodrigues Neto and João A. Labrincha
Materials 2025, 18(15), 3564; https://doi.org/10.3390/ma18153564 - 30 Jul 2025
Viewed by 244
Abstract
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining [...] Read more.
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining plasticizer (APA) to optimize the rheological behavior, hydration kinetics, and structural performance of mortars tailored for extrusion-based 3D printing. The results demonstrate that BFAK enhances the yield stress and thixotropy increases, contributing to improved structural stability after extrusion. In parallel, the APA adjusts the viscosity and facilitates material flow through the nozzle. Isothermal calorimetry reveals that BFAK modifies the hydration kinetics, increasing the intensity and delaying the occurrence of the main hydration peak due to the formation of secondary sulfate phases such as Aphthitalite [(K3Na(SO4)2)]. This behavior leads to an extended setting time, which can be modulated by APA to ensure a controlled processing window. Flowability tests show that BFAK reduces the spread diameter, improving cohesion without causing excessive dispersion. Calibration cylinder tests confirm that the formulation with 1.5% APA and 2% BFAK achieves the maximum printable height (35 cm), reflecting superior buildability and load-bearing capacity. These findings underscore the novelty of combining BFAK and APA as a strategy to overcome current rheological limitations in digital construction. The synergistic effect between both additives provides tailored fresh-state properties and structural reliability, advancing the development of a sustainable SMC and printable cementitious materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

50 pages, 8673 KiB  
Article
Challenges of Integrating Assistive Technologies and Robots with Embodied Intelligence in the Homes of Older People Living with Frailty
by Abdel-Karim Al-Tamimi, Lantana Hewitt, David Cameron, Maher Salem and Armaghan Moemeni
Appl. Sci. 2025, 15(15), 8415; https://doi.org/10.3390/app15158415 - 29 Jul 2025
Viewed by 180
Abstract
The rapid increase in the global population of older adults presents a significant challenge, but also a unique opportunity to leverage technological advancements for promoting independent living and well-being. This study introduces the CIREI framework, which is a comprehensive model designed to enhance [...] Read more.
The rapid increase in the global population of older adults presents a significant challenge, but also a unique opportunity to leverage technological advancements for promoting independent living and well-being. This study introduces the CIREI framework, which is a comprehensive model designed to enhance the integration of smart home and assistive technologies specifically for pre-frail older adults. Developed through a systematic literature review and innovative and comprehensive co-design activities, the CIREI framework captures the nuanced needs, preferences, and challenges faced by older adults, caregivers, and experts. Key findings from the co-design workshop highlight critical factors such as usability, privacy, and personalised learning preferences, which directly influence technology adoption. These insights informed the creation of an intelligent middleware prototype named WISE-WARE, which seamlessly integrates commercial off-the-shelf (COTS) devices to support health management and improve the quality of life for older adults. The CIREI framework’s adaptability ensures it can be extended and refined to meet the ever-changing needs of the ageing population, providing a robust foundation for future research and development in user-centred technology design. All workshop materials, including tools and methodologies, are made available to encourage the further exploration and adaptation of the CIREI framework, ensuring its relevance and effectiveness in the dynamic landscape of ageing and technology. This research contributes significantly to the discourse on ageing in place, digital inclusion, and the role of technology in empowering older adults to maintain independence. Full article
Show Figures

Figure 1

20 pages, 1421 KiB  
Article
A Learning Design Framework for International Blended and Virtual Activities in Higher Education
by Ania Maria Hildebrandt, Alice Barana, Vasiliki Eirini Chatzea, Kelly Henao, Marina Marchisio Conte, Daniel Samoilovich, Nikolas Vidakis and Georgios Triantafyllidis
Trends High. Educ. 2025, 4(3), 40; https://doi.org/10.3390/higheredu4030040 - 29 Jul 2025
Viewed by 222
Abstract
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such [...] Read more.
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such as Collaborative Online International Learning (COIL) and Blended Intensive Programs (BIPs), reshaping the landscape of global academic mobility. This paper introduces the INVITE Learning Design Framework (LDF), developed to support higher education instructors in designing high-quality, internationalized blended and virtual learning experiences. The framework addresses the growing need for structured, theory-informed approaches to course design that foster student engagement, intercultural competence, and motivation in non-face-to-face settings. The INVITE LDF was developed through a rigorous scoping review of existing models and frameworks, complemented by needs-identification analysis and desk research. It integrates Self-Determination Theory, Active Learning principles, and the ADDIE instructional design model to provide a comprehensive, adaptable structure for course development. The framework was successfully implemented in a large-scale online training module for over 1000 educators across Europe. Results indicate that the INVITE LDF enhances educators’ ability to create engaging, inclusive, and pedagogically sound international learning environments. Its application supports institutional goals of internationalization by making global learning experiences more accessible and scalable. The findings suggest that the INVITE LDF can serve as a valuable tool for higher education institutions worldwide, offering a replicable model for fostering intercultural collaboration and innovation in digital education. This contributes to the broader transformation of international higher education, promoting equity, sustainability, and global citizenship through digital pedagogies. Full article
Show Figures

Figure 1

28 pages, 3144 KiB  
Review
Artificial Intelligence-Driven and Bio-Inspired Control Strategies for Industrial Robotics: A Systematic Review of Trends, Challenges, and Sustainable Innovations Toward Industry 5.0
by Claudio Urrea
Machines 2025, 13(8), 666; https://doi.org/10.3390/machines13080666 - 29 Jul 2025
Viewed by 512
Abstract
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics [...] Read more.
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics control studies (2023–2025), including an expanded bio-inspired/human-centric subset, to evaluate: (1) the dominant and emerging control methodologies; (2) the transformative role of digital twins and 5G-enabled connectivity; and (3) the persistent technical, ethical, and environmental challenges. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, the study employs a rigorous methodology, focusing on adaptive control, deep reinforcement learning (DRL), human–robot collaboration (HRC), and quantum-inspired algorithms. The key findings highlight up to 30% latency reductions in real-time optimization, up to 22% efficiency gains through digital twins, and up to 25% energy savings from bio-inspired designs (all percentage ranges are reported relative to the comparator baselines specified in the cited sources). However, critical barriers remain, including scalability limitations (with up to 40% higher computational demands) and cybersecurity vulnerabilities (with up to 20% exposure rates). The convergence of AI, bio-inspired systems, and quantum computing is poised to enable sustainable, autonomous, and human-centric robotics, yet requires standardized safety frameworks and hybrid architectures to fully support the transition from Industry 4.0 to Industry 5.0. This review offers a strategic roadmap for future research and industrial adoption, emphasizing human-centric design, ethical frameworks, and circular-economy principles to address global manufacturing challenges. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 298
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 956 KiB  
Article
Boosting Sustainable Urban Development: How Smart Cities Improve Emergency Management—Evidence from 275 Chinese Cities
by Ming Guo and Yang Zhou
Sustainability 2025, 17(15), 6851; https://doi.org/10.3390/su17156851 - 28 Jul 2025
Viewed by 397
Abstract
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their [...] Read more.
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their causal impact and underlying mechanisms remains limited, particularly in developing economies. Drawing on panel data from 275 Chinese prefecture-level cities over the period 2006–2021 and using China’s smart city pilot policy as a quasi-natural experiment, this study applies a multi-period difference-in-differences (DID) approach to rigorously assess the effects of smart city construction on emergency management capabilities. Results reveal that smart city construction produced a statistically significant improvement in emergency management capabilities, which remained robust after conducting multiple sensitivity checks and controlling for potential confounding policies. The benefits exhibit notable heterogeneity: emergency management capability improvements are most pronounced in central China and in cities at the extremes of population size—megacities (>10 million residents) and small cities (<1 million residents)—while effects remain marginal in medium-sized and eastern cities. Crucially, mechanism analysis reveals that digital technology application fully mediates 86.7% of the total effect, whereas factor allocation efficiency exerts only a direct, non-mediating influence. These findings suggest that smart cities primarily enhance emergency management capabilities through digital enablers, with effectiveness contingent upon regional infrastructure development and urban scale. Policy priorities should therefore emphasize investments in digital infrastructure, interagency data integration, and targeted capacity-building strategies tailored to central and western regions as well as smaller cities. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

15 pages, 4409 KiB  
Article
Performance of Dual-Layer Flat-Panel Detectors
by Dong Sik Kim and Dayeon Lee
Diagnostics 2025, 15(15), 1889; https://doi.org/10.3390/diagnostics15151889 - 28 Jul 2025
Viewed by 215
Abstract
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also [...] Read more.
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also enable more efficient use of incident photons, resulting in x-ray images with improved noise power spectrum (NPS) and detection quantum efficiency (DQE) performances as single-energy applications. Purpose: Although the development of DFD systems for material decomposition applications is actively underway, there is a lack of research on whether single-energy applications of DFD can achieve better performance than the single-layer case. In this paper, we experimentally observe the DFD performance in terms of the modulation transfer function (MTF), NPS, and DQE with discussions. Methods: Using prototypes of DFD, we experimentally measure the MTF, NPS, and DQE of the convex combination of the images acquired from the upper and lower detector layers of DFD. To optimize DFD performance, a two-step image registration is performed, where subpixel registration based on the maximum amplitude response to the transform based on the Fourier shift theorem and an affine transformation using cubic interpolation are adopted. The DFD performance is analyzed and discussed through extensive experiments for various scintillator thicknesses, x-ray beam conditions, and incident doses. Results: Under the RQA 9 beam conditions of 2.7 μGy dose, the DFD with the upper and lower scintillator thicknesses of 0.5 mm could achieve a zero-frequency DQE of 75%, compared to 56% when using a single-layer detector. This implies that the DFD using 75 % of the incident dose of a single-layer detector can provide the same signal-to-noise ratio as a single-layer detector. Conclusions: In single-energy radiography imaging, DFD can provide better NPS and DQE performances than the case of the single-layer detector, especially at relatively high x-ray energies, which enables low-dose imaging. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

Back to TopTop