Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines
Abstract
1. Introduction
2. Role of LNPs in Cancer Immunotherapy
3. Emergence of AI in Nanomedicine
4. AI-Driven Lipid Nanoparticle Design
4.1. Machine Learning for Virtual Screening
4.2. Generative Adversarial Networks
4.3. Neural Network-Guided Formulation
5. Targeted Delivery Systems
5.1. Active Tumor Targeting
5.1.1. Lipid Design and Specificity
5.1.2. Pharmacokinetic Optimization
5.2. Cellular Uptake and Clinical Translation
5.2.1. GAN-Based Innovation
5.2.2. Tumor Microenvironment Optimization
6. AI-Optimized Stability Enhancement
6.1. Lyophilization and Digital Twins
6.2. Thermostability and Predictive Models
7. Clinical Translation and Regulatory Aspects
7.1. AI in Clinical Trial Design
7.2. Regulatory Compliance
7.3. Blockchain-Enabled Quality Assurance
7.4. Regulatory–Technical Convergence
7.5. Digital Twins
8. Future Directions
8.1. Quantum Simulation and Autonomous Manufacturing
8.2. Federated Learning for Hyper-Personalization
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Terms | Definition |
---|---|
Artificial Intelligence (AI) | Ability of machines to perform tasks that typically require human intelligence. |
Blockchain-Enabled Framework/Model | System architecture that incorporates blockchain technology (decentralized ledger) to enhance security, transparency, and functionality. |
Computational Simulations | Use of computer-based mathematical models and algorithms to replicate behavior of real-world systems or processes. |
Convolutional Neural Networks (CNNs) | Deep learning algorithm specifically designed to recognize patterns in visual data, commonly used in image classification, detection, and segmentation. |
Critical Quality Attributes (CQAs) | Specific physical, chemical, biological, or microbiological characteristics that must remain within pre-defined limits to ensure a product’s safety, efficacy, and quality. |
Deep Learning | Advanced subset of machine learning that utilizes multiple layers of neural networks to extract and learn intricate patterns from large datasets. |
Density Functional Theory (DFT) | Quantum mechanical modeling method used to study the electronic structure of atoms, molecules, and condensed matter systems. |
Digital Twins | Digital replicas of physical objects or systems that are continuously updated with real-time data to accurately reflect their physical counterparts. |
Discrete Element Method (DEM) | Numerical simulation technique for analyzing the behavior of granular materials by modeling individual particles and their interactions. |
Generative Adversarial Networks (GANs) | Deep learning model consisting of two competing networks: generator and discriminator, to produce synthetic data that closely resembles a given dataset. |
Graph Neural Networks (GNNs) | Deep learning architecture designed to process data structured as graphs, where nodes and edges represent entities and their relationships. |
Hydrophilic Lipophilic Balance (HLB) | Measurement of the degree to which a surfactant is hydrophilic or lipophilic |
Internet of Things (IoT) | Network of interconnected physical devices embedded with sensors and software, enabling them to collect and exchange data over the internet. |
Long Short-Term Memory (LSTM) | Recurrent neural network specially designed to prevent the neural network output for a given input from either decaying or exploding issues during feedback loops in sequence modeling tasks. |
Machine learning (ML) | Branch of AI that enables systems to learn from data and make predictions or decisions without being explicitly programmed. |
Neural Network | Computational framework inspired by the human brain, designed to identify patterns and relationships within data. |
Process Analytical Technology (PAT) | Methodology is used in pharmaceutical manufacturing to monitor and control processes in real time, ensuring consistent product quality through the analysis of critical process parameters. |
Q-Learning | Reinforcement learning technique where an agent learns optimal actions through trial and error, based on the state of the environment and associated rewards. |
Quantum Computing | Computing paradigm that utilizes principles of quantum mechanics to perform complex calculations far beyond the capabilities of classical computers. |
Quantum Machine Learning | The field that combines quantum computing with machine learning to enhance data processing capabilities and improve learning efficiency. |
qubit Quantum Processors | Quantum computing components where qubits represent units of quantum information, functioning similarly to classical bits. |
Reinforcement Learning | A type of machine learning in which an agent learns to make optimal decisions by interacting with its environment and receiving feedback in the form of rewards or penalties. |
SHapley Additive exPlanation (SHAP) | Model-agnostic method used to interpret the output of machine learning models by assigning each feature an importance value for a particular prediction. |
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Wang, J.; Xia, J.; Wang, M.; Cheng, Z. Inequality in accessibility of proton therapy for cancers and its economic determinants: A cross-sectional study. Front Oncol. 2022, 12, 876368. [Google Scholar] [CrossRef]
- Henson, K.E.; McGale, P.; Darby, S.C.; Parkin, M.; Wang, Y.; Taylor, C.W. Cardiac mortality after radiotherapy, chemotherapy and endocrine therapy for breast cancer: Cohort study of 2 million women from 57 cancer registries in 22 countries. Int. J. Cancer 2020, 147, 1437–1449. [Google Scholar] [CrossRef]
- Kokka, F.; Bryant, A.; Olaitan, A.; Brockbank, E.; Powell, M.; Oram, D. Hysterectomy with radiotherapy or chemotherapy or both for women with locally advanced cervical cancer. Cochrane Database Syst. Rev. 2022, 8, CD010260. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-P.; Zheng, C.-C.; Huang, Y.-N.; He, M.-L.; Xu, W.W.; Li, B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021, 2, 315–340. [Google Scholar] [CrossRef]
- Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. [Google Scholar] [CrossRef]
- Bailly, C.; Thuru, X.; Quesnel, B. Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer 2020, 2, zcaa002. [Google Scholar] [CrossRef]
- Emens, L.A.; Romero, P.J.; Anderson, A.C.; Bruno, T.C.; Capitini, C.M.; Collyar, D.; Gulley, J.L.; Hwu, P.; Posey, A.D., Jr.; Silk, A.W.; et al. Challenges and opportunities in cancer immunotherapy: A Society for Immunotherapy of Cancer (SITC) strategic vision. J. Immunother. Cancer 2024, 12, e009063. [Google Scholar] [CrossRef]
- Zong, Y.; Lin, Y.; Wei, T.; Cheng, Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Adv. Mater. 2023, 35, 2303261. [Google Scholar] [CrossRef]
- Beck, J.D.; Reidenbach, D.; Salomon, N.; Sahin, U.; Türeci, Ö.; Vormehr, M.; Kranz, L.M. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 2021, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Taefehshokr, S.; Parhizkar, A.; Hayati, S.; Mousapour, M.; Mahmoudpour, A.; Eleid, L.; Rahmanpour, D.; Fattahi, S.; Shabani, H.; Taefehshokr, N. Cancer immunotherapy: Challenges and limitations. Pathol. Res. Pract. 2022, 229, 153723. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, W.; Tang, J.; Zhou, Z.; Liu, X.; Shen, Y. Improving safety of cancer immunotherapy via delivery technology. Biomaterials 2021, 265, 120407. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, Y.; Pan, Y.; Mao, Z.; Chen, X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem. Soc. Rev. 2024, 53, 3224–3252. [Google Scholar] [CrossRef]
- Guo, Y.; Lei, K.; Tang, L. Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy. Front. Immunol. 2018, 9, 1499. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-F.; Liu, Q.-S.; Yang, M.-F.; Xu, H.-M.; Zhu, M.-Z.; Zhang, Y.; Xu, J.; Tian, C.-M.; Yao, J.; Wang, L.-S.; et al. Nanomaterials for mRNA-based therapeutics: Challenges and opportunities. Bioeng. Transl. Med. 2023, 8, e10492. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.E.; Haque, S.T.; Al-Busaidi, H.; Bakhtiar, A.; Tha, K.K.; Holl, M.M.B.; Chowdhury, E.H. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch. Pharmacal Res. 2022, 45, 865–893. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Shi, M.; Wang, Y.; You, J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct. Target. Ther. 2024, 9, 322. [Google Scholar] [CrossRef]
- Wilson, B.; Geetha, K.M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 2022, 74, 103553. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Kon, E.; Ad-El, N.; Hazan-Halevy, I.; Stotsky-Oterin, L.; Peer, D. Targeting cancer with mRNA–lipid nanoparticles: Key considerations and future prospects. Nat. Rev. Clin. Oncol. 2023, 20, 739–754. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ye, Z.; Huang, C.; Qiu, M.; Song, D.; Li, Y.; Xu, Q. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl. Acad. Sci. USA 2022, 119, e2207841119. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Bhujel, R.; Maharjan, R.; Lee, J.C.; Jung, H.S.; Kim, H.J.; Kim, N.A.; Jeong, S.H. Biophysical characterization of siRNA-loaded lipid nanoparticles with different PEG content in an aqueous system. Eur. J. Pharm. Biopharm. 2023, 190, 150–160. [Google Scholar] [CrossRef]
- Gilbert, J.; Sebastiani, F.; Arteta, M.Y.; Terry, A.; Fornell, A.; Russell, R.; Mahmoudi, N.; Nylander, T. Evolution of the structure of lipid nanoparticles for nucleic acid delivery: From in situ studies of formulation to colloidal stability. J. Colloid Interface Sci. 2024, 660, 66–76. [Google Scholar] [CrossRef]
- Witten, J.; Raji, I.; Manan, R.S.; Beyer, E.; Bartlett, S.; Tang, Y.; Ebadi, M.; Lei, J.; Nguyen, D.; Oladimeji, F.; et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Singh, H.R.; Sampath, M.K. Enhanced amoxicillin delivery via artificial intelligence (AI)-based optimized lipid nanoparticles for Helicobacter pylori. Biologia 2025, 80, 133–148. [Google Scholar] [CrossRef]
- Maharjan, R.; Kim, K.H.; Lee, K.; Han, H.-K.; Jeong, S.H. Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches. J. Pharm. Anal. 2024, 14, 100996. [Google Scholar] [CrossRef]
- Alejo, T.; Toro-Córdova, A.; Fernández, L.; Rivero, A.; Stoian, A.M.; Pérez, L.; Navarro, V.; Martínez-Oliván, J.; de Miguel, D. Comprehensive Optimization of a Freeze-Drying Process Achieving Enhanced Long-Term Stability and In Vivo Performance of Lyophilized mRNA-LNPs. Int. J. Mol. Sci. 2024, 25, 10603. [Google Scholar] [CrossRef]
- Kommineni, N.; Butreddy, A.; Sainaga Jyothi, V.G.S.; Angsantikul, P. Freeze-drying for the preservation of immunoengineering products. iScience 2022, 25, 105127. [Google Scholar] [CrossRef]
- Kamiya, M.; Matsumoto, M.; Yamashita, K.; Izumi, T.; Kawaguchi, M.; Mizukami, S.; Tsurumaru, M.; Mukai, H.; Kawakami, S. Stability study of mRNA-lipid nanoparticles exposed to various conditions based on the evaluation between physicochemical properties and their relation with protein expression ability. Pharmaceutics 2022, 14, 2357. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, A.-G.; Osterwald, A.; Ringler, P.; Leiser, Y.; Lauer, M.E.; Martin, R.E.; Ullmer, C.; Schumacher, F.; Korn, C.; Keller, M. Investigations into mRNA lipid nanoparticles shelf-life stability under nonfrozen conditions. Mol. Pharm. 2023, 20, 6492–6503. [Google Scholar] [CrossRef]
- Viganò, M.; La Milia, M.; Grassini, M.V.; Pugliese, N.; De Giorgio, M.; Fagiuoli, S. Hepatotoxicity of small molecule protein kinase inhibitors for cancer. Cancers 2023, 15, 1766. [Google Scholar] [CrossRef]
- Ramadan, E.; Ahmed, A.; Naguib, Y.W. Advances in mRNA LNP-Based Cancer Vaccines: Mechanisms, Formulation Aspects, Challenges, and Future Directions. J. Pers. Med. 2024, 14, 1092. [Google Scholar] [CrossRef] [PubMed]
- Mohan, G.; T P, A.H.; A J, J.; K M, S.D.; Narayanasamy, A.; Vellingiri, B. Recent advances in radiotherapy and its associated side effects in cancer—A review. J. Basic Appl. Zool. 2019, 80, 14. [Google Scholar] [CrossRef]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef]
- Barazzuol, L.; Coppes, R.P.; van Luijk, P. Prevention and treatment of radiotherapy-induced side effects. Mol. Oncol. 2020, 14, 1538–1554. [Google Scholar] [CrossRef]
- Abu-Alhaija, D.; Bakas, T.; Shaughnessy, E.; Miller, E. The Factors That Influence Chemotherapy Exposure Among Nurses: An Integrative Review. Workplace Health Saf. 2023, 71, 212–227. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sanefuji, M.; Inoue, H.; Inoue, M.; Shimo, Y.; Toya, S.; Suzuki, M.; Abe, N.; Hamada, N.; Oba, U.; et al. Parental occupational exposure to anticancer drugs and radiation: Risk of fetal loss and physical abnormalities in The Japan Environment and Children’s Study. Early Hum. Dev. 2025, 201, 106195. [Google Scholar] [CrossRef]
- Leso, V.; Sottani, C.; Santocono, C.; Russo, F.; Grignani, E.; Iavicoli, I. Exposure to Antineoplastic Drugs in Occupational Settings: A Systematic Review of Biological Monitoring Data. Int. J. Environ. Res. Public Health 2022, 19, 3737. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, R.; Lee, J.C.; Lee, K.; Han, H.-K.; Kim, K.H.; Jeong, S.H. Recent trends and perspectives of artificial intelligence-based machine learning from discovery to manufacturing in biopharmaceutical industry. J. Pharm. Investig. 2023, 53, 803–826. [Google Scholar] [CrossRef]
- Maharjan, R.; Hada, S.; Lee, J.E.; Han, H.-K.; Kim, K.H.; Seo, H.J.; Foged, C.; Jeong, S.H. Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach. Int. J. Pharm. 2023, 640, 123012. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Cheng, J.; Yang, K.; Xia, Y.; Wu, H.; Pan, X. Applications of artificial intelligence to lipid nanoparticle delivery. Particuology 2024, 90, 88–97. [Google Scholar] [CrossRef]
- Ou, Y.; Zhao, J.; Tripp, A.; Rasoulianboroujeni, M.; Hernández-Lobato, J.M. A Deep Generative Model for the Design of Synthesizable Ionizable Lipids. arXiv 2024, arXiv:2412.00928. [Google Scholar] [CrossRef]
- Jain, A.; Praveena, K.; Anandhi, R.; Kumar, S.; Alabdely, H.; Srivastava, A.P. Blockchain and Machine Learning for Automated Compliance in Regulatory Technology. In Proceedings of the 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), Jabalpur, India, 6–7 April 2024; pp. 1–6. [Google Scholar]
- Manee, V.; Baratti, R.; Romagnoli, J.A. Learning to navigate a crystallization model with deep reinforcement learning. Chem. Eng. Res. Des. 2022, 178, 111–123. [Google Scholar] [CrossRef]
- Hunt, P.; Hosseini-Gerami, L.; Chrien, T.; Plante, J.; Ponting, D.J.; Segall, M. Predicting pKa using a combination of semi-empirical quantum mechanics and radial basis function methods. J. Chem. Inf. Model. 2020, 60, 2989–2997. [Google Scholar] [CrossRef]
- Luo, W.; Zhou, G.; Zhu, Z.; Ke, G.; Wei, Z.; Gao, Z.; Zheng, H. Uni-pKa: An Accurate and Physically Consistent pKa Prediction through Protonation Ensemble Modeling. ChemRxiv 2023, 1–27. [Google Scholar] [CrossRef]
- Moayedpour, S.; Broadbent, J.; Riahi, S.; Bailey, M.; Thu, H.V.; Dobchev, D.; Balsubramani, A.; Santos, R.N.D.; Kogler-Anele, L.; Corrochano-Navarro, A. Representations of lipid nanoparticles using large language models for transfection efficiency prediction. Bioinformatics 2024, 40, btae342. [Google Scholar] [CrossRef]
- Dong, S. Machine Learning Modelling in Predicting and Optimizing PLGA Nanoparticle Encapsulation Efficiency and Therapeutic Efficacy. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2023. [Google Scholar]
- McDonnell, A.; Van Exan, R.; Lloyd, S.; Subramanian, L.; Chalkidou, K.; La Porta, A.; Li, J.; Maiza, E.; Reader, D.; Rosenberg, J. COVID-19 Vaccine Predictions: Using Mathematical Modelling and Expert Opinions to Estimate Timelines and Probabilities of Success of COVID-19 Vaccines; Center for Global Development: Washington, DC, USA, 2020. [Google Scholar]
- Ye, Z.; Ouyang, D. Opportunities and Challenges of Artificial Intelligence (AI) in Drug Delivery. In Exploring Computational Pharmaceutics-AI and Modeling in Pharma 4.0; John Wiley and Sons: Hoboken, NJ, USA, 2024; pp. 10–58. [Google Scholar]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Biscans, A.; Ly, S.; McHugh, N.; Cooper, D.A.; Khvorova, A. Engineered ionizable lipid siRNA conjugates enhance endosomal escape but induce toxicity in vivo. J. Control. Release 2022, 349, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.D. Strategies to Design and Refine Lipid Nanoparticles for Functional mRNA Delivery; The Ohio State University: Columbus, OH, USA, 2025. [Google Scholar]
- Mrksich, K.; Padilla, M.S.; Mitchell, M.J. Breaking the final barrier: Evolution of cationic and ionizable lipid structure in lipid nanoparticles to escape the endosome. Adv. Drug Deliv. Rev. 2024, 214, 115446. [Google Scholar] [CrossRef]
- Xu, Y.; Golubovic, A.; Xu, S.; Pan, A.; Li, B. Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. J. Mater. Chem. B 2023, 11, 6527–6539. [Google Scholar] [CrossRef]
- Rietwyk, S.; Peer, D. Next-generation lipids in RNA interference therapeutics. ACS Nano 2017, 11, 7572–7586. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, V.; Dogra, A.; Kaushal, R.K.; Mehta, S.; Vats, S.; Goyal, B. Segmentation Synergy with a Dual U-Net and Federated Learning with CNN-RF Models for Enhanced Brain Tumor Analysis. Curr. Med. Imaging 2024, 20, e15734056312765. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.N.; Lam, P.D.; Tinh, V.P.; Le, D.-D.; Nam, N.H.; Khoa, T.A. Joint Federated Learning Using Deep Segmentation and the Gaussian Mixture Model for Breast Cancer Tumors. IEEE Access 2024, 12, 94231–94249. [Google Scholar] [CrossRef]
- Shiri, I.; Sadr, A.V.; Amini, M.; Salimi, Y.; Sanaat, A.; Akhavanallaf, A.; Razeghi, B.; Ferdowsi, S.; Saberi, A.; Arabi, H.; et al. Decentralized distributed multi-institutional PET image segmentation using a federated deep learning framework. Clin. Nucl. Med. 2022, 47, 606–617. [Google Scholar] [CrossRef]
- Ndemazie, N.B. Synthesis and Biological Evaluation of Novel 5-FU Analog (1, 3-Bistetrahydrofuran-2yl-5FU) Formulation in the Treatment of Pancreatic Cancer. Ph.D. Thesis, Florida Agricultural and Mechanical University, Tallahassee, FL, USA, 2023. [Google Scholar]
- Guo, Z.; He, B.; Jin, H.; Zhang, H.; Dai, W.; Zhang, L.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; et al. Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering. Biomaterials 2014, 35, 6106–6117. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.J.; Ciura, K.; Ma, Y.; Mikolajczyk, A.; Jagiello, K.; Wan, Y.; Gao, Y.; Zheng, J.; Zhong, S.; Puzyn, T.; et al. Toward the integration of machine learning and molecular modeling for designing drug delivery nanocarriers. Adv. Mater. 2024, 36, 2407793. [Google Scholar] [CrossRef]
- Foglietta, F.; Serpe, L.; Canaparo, R. The effective combination between 3D cancer models and stimuli-responsive nanoscale drug delivery systems. Cells 2021, 10, 3295. [Google Scholar] [CrossRef]
- Perche, F.; Biswas, S.; Torchilin, V. Stimuli-Sensitive Polymeric Nanomedicines for Cancer Imaging and Therapy. Handb. Polym. Pharm. Technol. Process. Appl. 2015, 2, 311–344. [Google Scholar]
- Wang, Y.; Ukwattage, V.; Xiong, Y.; Such, G.K. Advancing endosomal escape of polymeric nanoparticles: Towards improved intracellular delivery. Mater. Horiz. 2025, 12, 3622–3632. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Y.; Farokhzad, R.A.; Mendes, B.B.; Conde, J.; Shi, J. ‘Passive’ nanoparticles for organ-selective systemic delivery: Design, mechanism and perspective. Chem. Soc. Rev. 2023, 52, 7579–7601. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, X.; Tsang, C.Y.; Mei, Q.; Zhang, Y. Bioengineered nanomaterials for dynamic diagnostics in vivo. Chem. Soc. Rev. 2025, 54, 5470–5515. [Google Scholar] [CrossRef]
- Sun, Y.; Miao, D.; Zeng, Z.; Li, X.; Pu, Y.; Liu, L.; Ji, C.; Zhuang, Z.; Huang, C.; Xiong, R. Recent Advances in Micro/Nanoneedle Arrays Mediated Intracellular Delivery of Biomacromolecules In Vitro and In Vivo. Adv. Funct. Mater. 2025, 2422234. [Google Scholar] [CrossRef]
- Bottegoni, G.; Kufareva, I.; Totrov, M.; Abagyan, R. Four-dimensional docking: A fast and accurate account of discrete receptor flexibility in ligand docking. J. Med. Chem. 2009, 52, 397–406. [Google Scholar] [CrossRef]
- Ramalho, M.J.; Loureiro, J.A.; Coelho, M.A.; Pereira, M.C. Transferrin receptor-targeted nanocarriers: Overcoming barriers to treat glioblastoma. Pharmaceutics 2022, 14, 279. [Google Scholar] [CrossRef]
- Maccallum, R. Automated Ligand Design in Simulated Molecular Docking-Optimising Ligand Binding Affinity Through the Application of Deep Q-Learning to Docking Simulations. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2022. [Google Scholar]
- Cegarra, C.; Cameron, B.; Chaves, C.; Dabdoubi, T.; Do, T.-M.; Genêt, B.; Roudières, V.; Shi, Y.; Tchepikoff, P.; Lesuisse, D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS ONE 2022, 17, e0274667. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Mamaghani, M.; Hassanikia, S.; Pilehvar, Y.; Ertas, Y.N. Exosome-powered neuropharmaceutics: Unlocking the blood-brain barrier for next-gen therapies. J. Nanobiotechnol. 2025, 23, 329. [Google Scholar] [CrossRef]
- Li, Y.; Ladd, Z.; Xiong, Z.; Bui-Linh, C.; Paiboonrungruang, C.; Subramaniyan, B.; Li, H.; Wang, H.; Balch, C.; Shersher, D.D.; et al. Lymphatic Metastasis of Esophageal Squamous Cell Carcinoma: The Role of NRF2 and Therapeutic Strategies. Cancers 2025, 17, 1853. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xu, Q.; Cong, F.; Kang, J.; Han, C.; Liu, Z.; Madabhushi, A.; Lu, C. Vision transformers for computational histopathology. IEEE Rev. Biomed. Eng. 2023, 17, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Lodewijk, I.; Dueñas, M.; Paramio, J.M.; Rubio, C. CD44v6, STn & O-GD2: Promising tumor associated antigens paving the way for new targeted cancer therapies. Front. Immunol. 2023, 14, 1272681. [Google Scholar]
- Panda, S.; Eaton, E.J.; Muralikrishnan, P.; Stelljes, E.M.; Seelig, D.; Leyden, M.C.; Gilkey, A.K.; Barnes, J.T.; Morrissey, D.V.; Sarupria, S.; et al. Machine Learning Reveals Amine Type in Polymer Micelles Determines mRNA Binding, In Vitro, and In Vivo Performance for Lung-Selective Delivery. JACS Au 2025, 5, 1845–1861. [Google Scholar] [CrossRef]
- Gao, H. Integrated in Silico Formulation Design of Lipid-Based Drug Delivery Systems. Ph.D. Thesis, University of Macau, Macau, China, 2022. [Google Scholar]
- Wang, Z.; Kelley, S.O. Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies. Nat. Biomed. Eng. 2025, 9, 803–821. [Google Scholar] [CrossRef] [PubMed]
- Navaneeth, A.G.; Karthikeyan, S. A comprehensive investigation of the biophysical approach for aptamer functionalized nanoparticles in cancer therapy: A review. RSC Pharm. 2024, 1, 879–903. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Li, Z.; Sun, J.; Gao, T.; Wei, G.; Guo, Q. Nano-formulations in disease therapy: Designs, advances, challenges, and future directions. J. Nanobiotechnol. 2025, 23, 396. [Google Scholar] [CrossRef]
- Touramanidou, L.; Gurung, S.; Cozmescu, C.A.; Perocheau, D.; Moulding, D.; Finn, P.F.; Frassetto, A.; Waddington, S.N.; Gissen, P.; Baruteau, J. Macrophage Inhibitor Clodronate Enhances Liver Transduction of Lentiviral but Not Adeno-Associated Viral Vectors or mRNA Lipid Nanoparticles in Neonatal and Juvenile Mice. Cells 2024, 13, 1979. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, X.; Zhang, D.; Cui, H.; Tian, X.; Du, W.; Yang, Z.; Wan, D.; Qiu, Z.; Liu, C.; et al. Precision-Guided Stealth Missiles in Biomedicine: Biological Carrier-Mediated Nanomedicine Hitchhiking Strategy. Adv. Sci. 2025, 12, 2504672. [Google Scholar] [CrossRef] [PubMed]
- Bitounis, D.; Jacquinet, E.; Rogers, M.A.; Amiji, M.M. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 2024, 23, 281–300. [Google Scholar] [CrossRef]
- Gharatape, A.; Amanzadi, B.; Mohamadi, F.; Rafieian, M.; Faridi-Majidi, R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine 2024, 19, 2655–2678. [Google Scholar] [CrossRef]
- Dermawan, D.; Alotaiq, N. From Lab to Clinic: How Artificial Intelligence (AI) is Reshaping Drug Discovery Timelines and Industry Outcomes. Pharmaceuticals 2025, 18, 981. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Y.; Tang, C.; Zhu, H. Pancreatic Cancer: Pathogenesis and Clinical Studies. MedComm 2025, 6, e70162. [Google Scholar] [CrossRef]
- Xin, Q.; Chen, Y.; Sun, X.; Li, R.; Wu, Y.; Huang, X. CAR-T therapy for ovarian cancer: Recent advances and future directions. Biochem. Pharmacol. 2024, 226, 116349. [Google Scholar] [CrossRef]
- Abbasi Dezfouli, S.; Rajendran, A.P.; Claerhout, J.; Uludag, H. Designing Nanomedicines for Breast Cancer Therapy. Biomolecules 2023, 13, 1559. [Google Scholar] [CrossRef] [PubMed]
- Drewa, J.; Lazar-Juszczak, K.; Adamowicz, J.; Juszczak, K. Periprostatic Adipose Tissue as a Contributor to Prostate Cancer Pathogenesis: A Narrative Review. Cancers 2025, 17, 372. [Google Scholar] [CrossRef]
- Balestra, M. Novel Aspects of EGFR Non-Clathrin Endocytosis Regulation: Cell Context Dependency and Role of RNA and RNA-Binding Proteins. Ph.D. Thesis, Università degli Studi di Milano, Milan, Italy, 2025. [Google Scholar]
- Chen, Z.; Yang, Y.; Qiu, X.; Zhou, H.; Wang, R.; Xiong, H. Crown-like Biodegradable Lipids Enable Lung-Selective mRNA Delivery and Dual-Modal Tumor Imaging In Vivo. J. Am. Chem. Soc. 2024, 146, 34209–34220. [Google Scholar] [CrossRef] [PubMed]
- Kucińska, M.K. Receptor-Mediated Lysosomal Clearance of Endoplasmic Reticulum and Outer Nuclear Membrane; ETH Zurich: Zurich, Switzerland, 2024. [Google Scholar]
- Sikder, R.; Zhang, H.; Gao, P.; Ye, T. Machine learning framework for predicting cytotoxicity and identifying toxicity drivers of disinfection byproducts. J. Hazard. Mater. 2024, 469, 133989. [Google Scholar] [CrossRef]
- Marciniec, K.; Nowakowska, J.; Chrobak, E.; Bębenek, E.; Latocha, M. Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides–Triazole Hybrids with Anticancer Activity. Molecules 2024, 29, 3158. [Google Scholar] [CrossRef]
- Li, R.; Zhu, M.; Hu, X.; Chen, J.; Yu, F.; Barth, S.; Sun, L.; He, H. Overcoming endosomal/lysosomal barriers: Advanced strategies for cytosolic siRNA delivery. Chin. Chem. Lett. 2024, 36, 110736. [Google Scholar] [CrossRef]
- Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021, 28, 117–129. [Google Scholar] [CrossRef]
- Odunze, U.; Rustogi, N.; Devine, P.; Miller, L.; Pereira, S.; Vashist, S.; Snijder, H.J.; Corkill, D.; Sabirsh, A.; Douthwaite, J.; et al. RNA encoded peptide barcodes enable efficient in vivo screening of RNA delivery systems. Nucleic Acids Res. 2024, 52, 9384–9396. [Google Scholar] [CrossRef]
- Wang, W.; Chen, K.; Jiang, T.; Wu, Y.; Wu, Z.; Ying, H.; Yu, H.; Lu, J.; Lin, J.; Ouyang, D. Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery. Nat. Commun. 2024, 15, 10804. [Google Scholar] [CrossRef]
- Tani, H. Recent Advances and Prospects in RNA Drug Development. Int. J. Mol. Sci. 2024, 25, 12284. [Google Scholar] [CrossRef] [PubMed]
- Juckers, A.; Knerr, P.; Harms, F.; Strube, J. Digital Twin Enabled Process Development, Optimization and Control in Lyophilization for Enhanced Biopharmaceutical Production. Processes 2024, 12, 211. [Google Scholar] [CrossRef]
- van der Meel, R.; Grisoni, F.; Mulder, W.J.M. Lipid discovery for mRNA delivery guided by machine learning. Nat. Mater. 2024, 23, 880–881. [Google Scholar] [CrossRef]
- Schmidt, A.; Lütge, J.; Uhl, A.; Köster, D.; Strube, J. Business Cases for Digital Twins in Biopharmaceutical Manufacturing—Market Overview, Stakeholders, Technologies in 2025 and Beyond. Processes 2025, 13, 1498. [Google Scholar] [CrossRef]
- Walsh, A. Practical Application of Machine Learning for Analyses of Biological Matrices and Environmental Phenomena. Ph.D. Thesis, Gothenburg University, Gothenburg, Sweden, 2020. [Google Scholar]
- Mehanna, M.M.; Abla, K.K. Recent advances in freeze-drying: Variables, cycle optimization, and innovative techniques. Pharm. Dev. Technol. 2022, 27, 904–923. [Google Scholar] [CrossRef] [PubMed]
- Zadravec, M.; Metsi-Guckel, E.; Kamenik, B.; Remelgas, J.; Khinast, J.; Roscioli, N.; Flamm, M.; Renawala, H.; Najarian, J.; Karande, A.; et al. Towards a digital twin of primary drying in lyophilization using coupled 3-D equipment CFD and 1-D vial-scale simulations. Eur. J. Pharm. Biopharm. 2025, 208, 114662. [Google Scholar] [CrossRef] [PubMed]
- Pastor, F.; Berraondo, P.; Etxeberria, I.; Frederick, J.; Sahin, U.; Gilboa, E.; Melero, I. An RNA toolbox for cancer immunotherapy. Nat. Rev. Drug Discov. 2018, 17, 751–767. [Google Scholar] [CrossRef]
- Calvino, G.; Peconi, C.; Strafella, C.; Trastulli, G.; Megalizzi, D.; Andreucci, S.; Cascella, R.; Caltagirone, C.; Zampatti, S.; Giardina, E. Federated Learning: Breaking Down Barriers in Global Genomic Research. Genes 2024, 15, 1650. [Google Scholar] [CrossRef]
- Joshi, M.; Pal, A.; Sankarasubbu, M. Federated Learning for Healthcare Domain—Pipeline, Applications and Challenges. ACM Trans. Comput. Healthc. 2022, 3, 40. [Google Scholar] [CrossRef]
- Karkaria, V.; Ying-Kuan, T.; Yi-Ping, C.; Chen, W. An optimization-centric review on integrating artificial intelligence and digital twin technologies in manufacturing. Eng. Optim. 2025, 57, 161–207. [Google Scholar] [CrossRef]
- Tower, C.W.; Lay-Fortenbery, A.; Su, Y.; Munson, E.J. Predicting the stability of formulations containing lyophilized human serum albumin and sucrose/trehalose using solid-state NMR spectroscopy. Mol. Pharm. 2024, 21, 3163–3172. [Google Scholar] [CrossRef]
- Arsiccio, A. Freeze Drying of Therapeutic Proteins: A Simulation Approach to Optimize Formulation and Process Conditions. Ph.D. Thesis, Politecnico Di Torino, Torino, Italy, 2020. [Google Scholar]
- Tezsezen, E.; Yigci, D.; Ahmadpour, A.; Tasoglu, S. AI-based metamaterial design. ACS Appl. Mater. Interfaces 2024, 16, 29547–29569. [Google Scholar] [CrossRef]
- Vann, L.R. Near Infrared Spectroscopy (NIRS) as a Process Analytical Technology (PAT) Tool to Enable Golden Batch Performance Using a Novel MIDUS Control Automation Platform. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2018. [Google Scholar]
- Chow, A.H.; Tong, H.H.; Zheng, Y. Stability assessment and formulation characterization. Handb. Pharm. Biotechnol. 2007, 2, 371. [Google Scholar] [CrossRef]
- Euliano, E.M.; Sklavounos, A.A.; Wheeler, A.R.; McHugh, K.J. Translating diagnostics and drug delivery technologies to low-resource settings. Sci. Transl. Med. 2022, 14, eabm1732. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Ghosh Roy, S.; Dwivedi, R.; Tripathi, P.; Kumar, K.; Nambiar, S.M.; Pathak, R. Beyond the Pandemic Era: Recent Advances and Efficacy of SARS-CoV-2 Vaccines Against Emerging Variants of Concern. Vaccines 2025, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Bui, T.A.; Yang, X.; Aksoy, Y.; Goldys, E.M.; Deng, W. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au 2023, 3, 600–619. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, Y.; Bai, Y.; Liang, Z.; Mao, Q.; Liu, D.; Wu, X.; Xu, M. Research advances on the stability of mRNA vaccines. Viruses 2023, 15, 668. [Google Scholar] [CrossRef]
- Fathi, F.; Machado, T.O.; de AC Kodel, H.; Portugal, I.; Ferreira, I.O.; Zielinska, A.; Oliveira, M.B.P.; Souto, E.B. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: Part I–composition and production methods. Expert Opin. Drug Deliv. 2024, 21, 1479–1490. [Google Scholar] [CrossRef]
- Zhou, J.; Shan, Y.; Liu, J.; Xu, Y.; Zheng, Y. Degradation tendency prediction for pumped storage unit based on integrated degradation index construction and hybrid CNN-LSTM model. Sensors 2020, 20, 4277. [Google Scholar] [CrossRef]
- Guo, J.; Xiong, Q.; Chen, J.; Miao, E.; Wu, C.; Zhu, Q.; Yang, Z.; Chen, J. Study of static thermal deformation modeling based on a hybrid CNN-LSTM model with spatiotemporal correlation. Int. J. Adv. Manuf. Technol. 2022, 119, 2601–2613. [Google Scholar] [CrossRef]
- Lu, Y. Excipient Screening and Spray Drying Process Optimization of Cell-Based and Protein-Based Biologics with Feasibility Demonstration of Oral Delivery. Ph.D. Thesis, University of Maryland, Baltimore, MD, USA, 2021. [Google Scholar]
- Keil, T.W.M.; Baldassi, D.; Merkel, O.M. T cell targeted nanoparticles for pulmonary siRNA delivery as novel asthma. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1634. [Google Scholar] [CrossRef]
- Fathe, K.; Ferrati, S.; Moraga-Espinoza, D.; Yazdi, A.; Smyth, H.D.C. Inhaled biologics: From preclinical to product approval. Curr. Pharm. Des. 2016, 22, 2501–2521. [Google Scholar] [CrossRef]
- Kafle, U.; Truong, H.Q.; Nguyen, C.T.G.; Meng, F. Development of Thermally Stable mRNA-LNP Delivery Systems: Current Progress and Future Prospects. Mol. Pharm. 2024, 21, 5944–5959. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.; Hitti, C.; Fulber, J.P.C.; Khan, M.F.H.; Perumal, A.S.; Kamen, A.A. Preliminary Evaluation of Formulations for Stability of mRNA-LNPs Through Freeze-Thaw Stresses and Long-Term Storage. Preprints 2025. [Google Scholar] [CrossRef]
- Ma, Y.; VanKeulen-Miller, R.; Fenton, O.S. mRNA lipid nanoparticle formulation, characterization and evaluation. Nat. Protoc. 2025, 1–34. [Google Scholar] [CrossRef]
- Yadavalli, V.K. The convergence of nanomanufacturing and artificial intelligence: Trends and future directions. Nanotechnology 2025, 36, 222001. [Google Scholar] [CrossRef]
- Yang, K.; Cao, Y.; Zhang, Y.; Fan, S.; Tang, M.; Aberg, D.; Sadigh, B.; Zhou, F. Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks. Patterns 2021, 2, 100243. [Google Scholar] [CrossRef]
- Zhao, J. Generative Models for Synthesizable Lipids. Master’s Thesis, University of Cambridge, Cambridge, UK, 2024. [Google Scholar]
- Yuan, Y.; Li, Y.; Li, G.; Lei, L.; Huang, X.; Li, M.; Yao, Y. Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics. Mol. Pharm. 2025, 22, 1142–1159. [Google Scholar] [CrossRef]
- Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A comprehensive review of mRNA vaccines. Int. J. Mol. Sci. 2023, 24, 2700. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, J.; Xu, M.; Ho, S.; Wei, Y.; Ho, H.-P.; Yong, K.-T. Engineered multi-domain lipid nanoparticles for targeted delivery. Chem. Soc. Rev. 2025, 54, 5961–5994. [Google Scholar] [CrossRef]
- Vasileva, O.; Zaborova, O.; Shmykov, B.; Ivanov, R.; Reshetnikov, V. Composition of lipid nanoparticles for targeted delivery: Application to mRNA therapeutics. Front. Pharmacol. 2024, 15, 1466337. [Google Scholar] [CrossRef]
- Rios, C.A.; Ondei, R.; Breitkreitz, M.C. Development of a Versatile Lipid Core for Nanostructured Lipid Carriers (NLCs) Using Design of Experiments (DoE) and Raman Mapping. Pharmaceutics 2024, 16, 250. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Rojas-Gómez, R.A.; Mukherjee, P.; Snyder, C.E.; Aksamitiene, E.; Alex, A.; Spillman, D.R., Jr.; Marjanovic, M.; Shabana, A.; Johnson, R.; et al. Probing delivery of a lipid nanoparticle encapsulated self-amplifying mRNA vaccine using coherent Raman microscopy and multiphoton imaging. Sci. Rep. 2024, 14, 4348. [Google Scholar] [CrossRef] [PubMed]
- Silge, A.; Bocklitz, T.; Becker, B.; Matheis, W.; Popp, J.; Bekeredjian-Ding, I. Raman spectroscopy-based identification of toxoid vaccine products. npj Vaccines 2018, 3, 50. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Boschetto, F.; Ohgitani, E.; Fujita, Y.; Shin-Ya, M.; Adachi, T.; Yamamoto, T.; Kanamura, N.; Marin, E.; Zhu, W.; et al. Raman molecular fingerprints of SARS-CoV-2 British variant and the concept of Raman barcode. Adv. Sci. 2022, 9, 2103287. [Google Scholar] [CrossRef]
- Kodumuru, R.; Sarkar, S.; Parepally, V.; Chandarana, J. Artificial intelligence and internet of things integration in pharmaceutical manufacturing: A smart synergy. Pharmaceutics 2025, 17, 290. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J.-K.; Mo, H.; Zhou, X.; Han, Y. Fiber optic sensing technology and vision sensing technology for structural health monitoring. Sensors 2023, 23, 4334. [Google Scholar] [CrossRef]
- Moore, M. IEEE International Roadmap for Devices and Systems™. 2020, pp. 1–62. Available online: https://irds.ieee.org/images/files/pdf/2022/2022IRDS_WP-MtM.pdf (accessed on 21 April 2025).
- Dayan, I.; Roth, H.R.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.Z.; Liu, A.; Costa, A.B.; Wood, B.J.; Tsai, C.-S.; et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 2021, 27, 1735–1743. [Google Scholar] [CrossRef]
- Mo, X.; Zhang, X.; Bai, C.; Wang, Z.; Zhang, S.; Sun, Y. CNN-LSTM Based Automatic Classification Network for Multi-Type with Multi-Energy Charged Particle Identification. Appl. Sci. 2025, 15, 1837. [Google Scholar] [CrossRef]
- Saha, G.; Azad, A.A.M. A review of advancements in solar PV-powered refrigeration: Enhancing efficiency, sustainability, and operational optimization. Energy Rep. 2024, 12, 1693–1709. [Google Scholar] [CrossRef]
- Guerrisi, A.; Falcone, I.; Valenti, F.; Rao, M.; Gallo, E.; Ungania, S.; Maccallini, M.T.; Fanciulli, M.; Frascione, P.; Morrone, A.; et al. Artificial intelligence and advanced melanoma: Treatment management implications. Cells 2022, 11, 3965. [Google Scholar] [CrossRef]
- Ng, K.; Kartoun, U.; Stavropoulos, H.; Zambrano, J.A.; Tang, P.C. Personalized treatment options for chronic diseases using precision cohort analytics. Sci. Rep. 2021, 11, 1139. [Google Scholar] [CrossRef]
- Peng, J.; Zou, D.; Gong, W.; Kang, S.; Han, L. Deep neural network classification based on somatic mutations potentially predicts clinical benefit of immune checkpoint blockade in lung adenocarcinoma. Oncoimmunology 2020, 9, 1734156. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Ruan, R.; Zhang, Z.; Wang, Z.; Guan, T.; Lin, Q.; Tang, W.; Deng, J.; Wang, Z.; et al. Deep learning based digital pathology for predicting treatment response to first-line PD-1 blockade in advanced gastric cancer. J. Transl. Med. 2024, 22, 438. [Google Scholar] [CrossRef]
- Ho, D.; Quake, S.R.; McCabe, E.R.; Chng, W.J.; Chow, E.K.; Ding, X.; Gelb, B.D.; Ginsburg, G.S.; Hassenstab, J.; Ho, C.-M.; et al. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020, 38, 497–518. [Google Scholar] [CrossRef]
- Shariati, A.; Khani, P.; Nasri, F.; Afkhami, H.; Khezrpour, A.; Kamrani, S.; Shariati, F.; Alavimanesh, S.; Modarressi, M.H. mRNA cancer vaccines from bench to bedside: A new era in cancer immunotherapy. Biomark. Res. 2024, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021, 20, 41. [Google Scholar] [CrossRef]
- Liu, C.; Shi, Q.; Huang, X.; Koo, S.; Kong, N.; Tao, W. mRNA-based cancer therapeutics. Nat. Rev. Cancer 2023, 23, 526–543. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol. Cancer 2023, 22, 106. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Gwin III, W.R.; Mitchell, D.A. Vaccine therapies for cancer: Then and now. Target. Oncol. 2021, 16, 121–152. [Google Scholar] [CrossRef]
- Hosain, M.N.; Kwak, Y.-S.; Lee, J.; Choi, H.; Park, J.; Kim, J. IoT-enabled biosensors for real-time monitoring and early detection of chronic diseases. Phys. Act. Nutr. 2024, 28, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Teplytska, O.; Ernst, M.; Koltermann, L.M.; Valderrama, D.; Trunz, E.; Vaisband, M.; Hasenauer, J.; Fröhlich, H.; Jaehde, U. Machine Learning Methods for Precision Dosing in Anticancer Drug Therapy: A Scoping Review. Clin. Pharmacokinet. 2024, 63, 1221–1237. [Google Scholar] [CrossRef]
- Riveiro-Barciela, M.; Carballal, S.; Díaz-González, Á.; Mañosa, M.; Gallego-Plazas, J.; Cubiella, J.; Jiménez-Fonseca, P.; Varela, M.; Menchén, L.; Sangro, B.; et al. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH–AEG–SEPD–SEOM–GETECCU. Gastroenterol. Hepatol. 2024, 47, 401–432. [Google Scholar] [CrossRef]
- Rini, B.I.; Atkins, M.B.; Plimack, E.R.; Soulières, D.; McDermott, R.S.; Bedke, J.; Tartas, S.; Alekseev, B.; Melichar, B.; Shparyk, Y.; et al. Characterization and management of treatment-emergent hepatic toxicity in patients with advanced renal cell carcinoma receiving first-line pembrolizumab plus axitinib. Results from the KEYNOTE-426 trial. Eur. Urol. Oncol. 2022, 5, 225–234. [Google Scholar] [CrossRef]
- Maier, C.; de Wiljes, J.; Hartung, N.; Kloft, C.; Huisinga, W. A continued learning approach for model-informed precision dosing: Updating models in clinical practice. CPT Pharmacomet. Syst. Pharmacol. 2022, 11, 185–198. [Google Scholar] [CrossRef]
- Mirakhori, F.; Niazi, S.K. Harnessing the AI/ML in Drug and Biological Products Discovery and Development: The Regulatory Perspective. Pharmaceuticals 2025, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H.; Janicke, H.; Mohsin, A.; Gill, A.; Maglaras, L. Explainable AI for cybersecurity automation, intelligence and trustworthiness in digital twin: Methods, taxonomy, challenges and prospects. ICT Express 2024, 10, 935–958. [Google Scholar] [CrossRef]
- Tang, A. Safeguarding the Future: Security and Privacy by Design for AI, Metaverse, Blockchain, and Beyond; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
- Saini, J.P.S.; Thakur, A.; Yadav, D. AI driven Innovations in Pharmaceuticals: Optimizing Drug Discovery and Industry Operations. RSC Pharm. 2025, 2, 437–454. [Google Scholar] [CrossRef]
- Visan, A.I.; Negut, I. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef]
- Kissner, T.; Blaich, G.; Baumann, A.; Kronenberg, S.; Hey, A.; Kiessling, A.; Schmitt, P.M.; Driessen, W.; Carrez, C.; Kramer, D.; et al. Challenges of non-clinical safety testing for biologics: A Report of the 9th BioSafe European Annual General Membership Meeting. mAbs 2021, 13, 1938796. [Google Scholar] [CrossRef]
- Sartawi, Z.; Blackshields, C.; Ariamanesh, A.; Farag, F.F.; Griffin, B.; Crean, A.; Devine, K.; Elkhashab, M.; Aldejohann, A.M.; Kurzai, O.; et al. Glass Microneedles: A Case Study for Regulatory Approval Using a Quality by Design Approach. Adv. Mater. 2023, 35, 2305834. [Google Scholar] [CrossRef]
- Baptista, M.L.; Goebel, K.; Henriques, E.M. Relation between prognostics predictor evaluation metrics and local interpretability SHAP values. Artif. Intell. 2022, 306, 103667. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H. Artificial intelligence-driven circRNA vaccine development: Multimodal collaborative optimization and a new paradigm for biomedical applications. Brief. Bioinform. 2025, 26, bbaf263. [Google Scholar] [CrossRef] [PubMed]
- Akram, W.; Joshi, R.; Haider, T.; Sharma, P.; Jain, V.; Garud, N.; Singh, N. Blockchain technology: A potential tool for the management of pharma supply chain. Res. Soc. Adm. Pharm. 2024, 20, 156–164. [Google Scholar] [CrossRef]
- Paloncýová, M.T.; Valério, M.; Dos Santos, R.N.; Kührová, P.; Šrejber, M.; Čechová, P.; Dobchev, D.A.; Balsubramani, A.; Banáš, P.; Agarwal, V.; et al. Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery. Mol. Pharm. 2025, 22, 1110–1141. [Google Scholar] [CrossRef]
- Kumar, G.; Ardekani, A.M. Machine-Learning framework to predict the performance of lipid nanoparticles for nucleic acid delivery. ACS Appl. Bio Mater. 2025, 8, 3717–3727. [Google Scholar] [CrossRef]
- Li, M.; Schroder, R.; Ozuguzel, U.; Corts, T.M.; Liu, Y.; Zhao, Y.; Xu, W.; Ling, J.; Templeton, A.C.; Chaudhuri, B.; et al. Molecular Insight into Lipid Nanoparticle Assembly from NMR Spectroscopy and Molecular Dynamics Simulation. Mol. Pharm. 2025, 22, 2193–2212. [Google Scholar] [CrossRef]
- Erokhin, A.; Koshechkin, K.; Ryabkov, I. The distributed ledger technology as a measure to minimize risks of poor-quality pharmaceuticals circulation. PeerJ Comput. Sci. 2020, 6, e292. [Google Scholar] [CrossRef]
- Ali, A.M.; Alanazi, M.M.; Attwa, M.W.; Darwish, H.W. Selective stability indicating liquid chromatographic method based on quality by design framework and in silico toxicity assessment for infigratinib and its degradation products. Molecules 2023, 28, 7476. [Google Scholar] [CrossRef]
- Liang, C.; Murray, S.; Li, Y.; Lee, R.; Low, A.; Sasaki, S.; Chiang, A.W.; Lin, W.-J.; Mathews, J.; Barnes, W.; et al. LipidSIM: Inferring mechanistic lipid biosynthesis perturbations from lipidomics with a flexible, low-parameter, Markov modeling framework. Metab. Eng. 2024, 82, 110–122. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Dai, C. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging. Meat Sci. 2023, 201, 109196. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.Y.X.; Jimenez, M.; Mozneb, M.; Traverso, G.; Lugo, R.; Sharma, A.; Svendsen, C.N.; Wagner, W.R.; Langer, R.; Grattoni, A. Advanced material technologies for space and terrestrial medicine. Nat. Rev. Mater. 2024, 9, 808–821. [Google Scholar] [CrossRef]
- Monroe, M.K.; Wang, H.; Anderson, C.F.; Jia, H.; Flexner, C.; Cui, H. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. J. Control. Release 2022, 348, 1028–1049. [Google Scholar] [CrossRef]
- Ali, M.S.; Ahsan, M.M.; Tasnim, L.; Afrin, S.; Biswas, K.; Hossain, M.M.; Ahmed, M.M.; Hashan, R.; Islam, M.K.; Raman, S. Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions—A Systematic Review. arXiv 2024, arXiv:2405.13832. [Google Scholar] [CrossRef]
- Edik, M. GMP Audits in Pharmaceutical and Biotechnology Industries; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Chen, J. Regulating the Use of AI in Drug Approvals. Available online: https://uclajolt.com/wp-content/uploads/2024/09/JOLT29-2_Chen.pdf (accessed on 27 June 2025).
- Cleveland, M.H.; Anekella, B.; Brewer, M.; Chin, P.-J.; Couch, H.; Delwart, E.; Huggett, J.; Jackson, S.; Martin, J.; Monpoeho, S.; et al. Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals 2020, 64, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, R.; Sethi, P.; Singh, B.; Shiekmydeen, J.; Salave, S.; Patel, R.J.; Ali, N.; Rashid, S.; Elossaily, G.M.; Kumar, A. Recent review on biological barriers and host–material interfaces in precision drug delivery: Advancement in biomaterial engineering for better treatment therapies. Pharmaceutics 2024, 16, 1076. [Google Scholar] [CrossRef]
- Han, X.; Alu, A.; Liu, H.; Shi, Y.; Wei, X.; Cai, L.; Wei, Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact. Mater. 2022, 17, 29–48. [Google Scholar] [CrossRef]
- Incocciati, A. Redesigning Human Ferritin Nanocages for Therapeutic Applications: From Cancer Treatment to Hypercholesterolemia Management. Ph.D. Thesis, Sapienza Università di Roma, Roma, Italy, 2025. [Google Scholar]
- e Faria, G.N.F.; Bhavsar, D.; Munshi, A.; Ramesh, R. Lipid nanoparticles loaded with anticancer bioactives: State of the art. In Cancer Therapy: Potential Applications of Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 423–479. [Google Scholar]
- Skadborg, S.K. Immunophenotyping and Neoepitope Mapping in Relation to Immunotherapy of Cancer. Ph.D. Thesis, Denmark Technical University, Kongens Lyngby, Denmark, 2023. [Google Scholar]
- Sorrentino, C.; Ciummo, S.L.; Fieni, C.; Di Carlo, E. Nanomedicine for cancer patient-centered care. MedComm 2024, 5, e767. [Google Scholar] [CrossRef]
- Oh, M.S.; Dumitras, C.; Salehi-Rad, R.; Tran, L.M.; Krysan, K.; Lim, R.J.; Jing, Z.; Tappuni, S.; Lisberg, A.; Garon, E.B.; et al. Characteristics of a CCL21 Gene–Modified Dendritic Cell Vaccine Utilized for a Clinical Trial in Non–Small Cell Lung Cancer. Mol. Cancer Ther. 2025, 24, 286–298. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, W.; Liu, F.; Li, W.; Xu, Y.; Liang, Z.; Cao, M.; Hou, L.; Liu, P.; Wu, F.; et al. An mRNA Vaccine for Herpes Zoster and Its Efficacy Evaluation in Naïve/Primed Murine Models. Vaccines 2025, 13, 327. [Google Scholar] [CrossRef]
- Stiefel, J.; Zimmer, J.; Schloßhauer, J.L.; Vosen, A.; Kilz, S.; Balakin, S. Just Keep Rolling?—An Encompassing Review towards Accelerated Vaccine Product Life Cycles. Vaccines 2023, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, S.S.; Samaridou, E.; Simon, J.; Frank, S.; Beck-Broichsitter, M.; Mehta, A. Analytical techniques for the characterization of nanoparticles for mRNA delivery. Eur. J. Pharm. Biopharm. 2024, 198, 114235. [Google Scholar] [CrossRef]
- Buckland, B.; Sanyal, G.; Ranheim, T.; Pollard, D.; Searles, J.A.; Behrens, S.; Pluschkell, S.; Josefsberg, J.; Roberts, C.J. Vaccine process technology—A decade of progress. Biotechnol. Bioeng. 2024, 121, 2604–2635. [Google Scholar] [CrossRef] [PubMed]
- Fongaro, B.; Campara, B.; Moscatiello, G.Y.; De Luigi, A.; Panzeri, D.; Sironi, L.; Bigini, P.; Carretta, G.; Miolo, G.; Pasut, G.; et al. Assessing the physicochemical stability and intracellular trafficking of mRNA-based COVID-19 vaccines. Int. J. Pharm. 2023, 644, 123319. [Google Scholar] [CrossRef]
- Crommelin, D.J.; Anchordoquy, T.J.; Volkin, D.B.; Jiskoot, W.; Mastrobattista, E. Addressing the cold reality of mRNA vaccine stability. J. Pharm. Sci. 2021, 110, 997–1001. [Google Scholar] [CrossRef]
- Niazi, S.K. Affordable mRNA Novel Proteins, Recombinant Protein Conversions, and Biosimilars—Advice to Developers and Regulatory Agencies. Biomedicines 2025, 13, 97. [Google Scholar] [CrossRef]
- Challener, C. Parenteral Formulation: Deciding When to Go Frozen or Freeze-Dried. Available online: https://www.wuxibiologics.com/parenteral-formulation-deciding-when-to-go-frozen-or-freeze-dried/ (accessed on 28 June 2025).
- Kutuzova, S.; Colaianni, P.; Rost, H.; Sachsenberg, T.; Alka, O.; Kohlbacher, O.; Burla, B.; Torta, F.; Schrubbers, L.; Kristensen, M.; et al. SmartPeak automates targeted and quantitative metabolomics data processing. Anal. Chem. 2020, 92, 15968–15974. [Google Scholar] [CrossRef] [PubMed]
- Pedro, F.; Veiga, F.; Mascarenhas-Melo, F. Impact of GAMP 5, data integrity and QbD on quality assurance in the pharmaceutical industry: How obvious is it? Drug Discov. Today 2023, 28, 103759. [Google Scholar] [CrossRef]
- Cohen, S. The basics of machine learning and artificial intelligence. In Digital Pathology; Elsevier: Amsterdam, The Netherlands, 2025; pp. 243–256. [Google Scholar]
- Li, M.; Jia, L.; Xie, Y.; Ma, W.; Yan, Z.; Liu, F.; Deng, J.; Zhu, A.; Siwei, X.; Su, W.; et al. Lyophilization process optimization and molecular dynamics simulation of mRNA-LNPs for SARS-CoV-2 vaccine. npj Vaccines 2023, 8, 153. [Google Scholar] [CrossRef]
- Hakobyan, D.; Heuer, A. Comparing an all-atom and a coarse-grained description of lipid bilayers in terms of enthalpies and entropies: From MD simulations to 2D lattice models. J. Chem. Theory Comput. 2019, 15, 6393–6402. [Google Scholar] [CrossRef]
- Rissanou, A.N.; Ouranidis, A.; Karatasos, K. Complexation of single stranded RNA with an ionizable lipid: An all-atom molecular dynamics simulation study. Soft Matter 2020, 16, 6993–7005. [Google Scholar] [CrossRef] [PubMed]
- Arte, K.S.; Chen, M.; Patil, C.D.; Huang, Y.; Qu, L.; Zhou, Q. Recent Advances in Drying and Development of Solid Formulations for Stable mRNA and siRNA Lipid Nanoparticles. J. Pharm. Sci. 2024, 114, 805–815. [Google Scholar] [CrossRef]
- Herrmann, A.; Abbina, S.; Bathula, N.V.; Nouri, P.M.M.; Chafeeva, I.; Constantinescu, I.; Abbasi, E.; Abbasi, U.; Drayton, M.; Luo, H.D.; et al. An Ultrahydrating Polymer that Protects Protein Therapeutics and RNA-Lipid Nanoparticles Against Freezing, Heat and Lyophilization Stress. Adv. Funct. Mater. 2024, 34, 2406878. [Google Scholar] [CrossRef]
- Wang, T.; Yu, T.; Li, W.; Chen, J.; Cheng, S.; Tian, Z.; Sung, T.-C.; Higuchi, A. Development of lyophilized mRNA-LNPs with high stability and transfection efficiency in specific cells and tissues. Regen. Biomater. 2025, 12, rbaf023. [Google Scholar] [CrossRef]
- Bunker, A.; Kehrein, J. Molecular Modeling in Drug Delivery: Polymer Protective Coatings as Case Study. In Exploring Computational Pharmaceutics—AI and Modeling in Pharma 4.0; Ouyang, D., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2024; pp. 104–198. [Google Scholar] [CrossRef]
- Yadav, S.K.; Jayaramulu, K. Role of quantum technology and artificial intelligence for nano-enabled microfluidics. In Next-Generation Smart Biosensing; Elsevier: Amsterdam, The Netherlands, 2024; pp. 189–208. [Google Scholar]
- VandenBerg, M.A.; Dong, X.; Smith, W.C.; Tian, G.; Stephens, O.; O’Connor, T.F.; Xu, X. Learning from the future: Towards continuous manufacturing of nanomaterials. AAPS Open 2025, 11, 7. [Google Scholar] [CrossRef]
- Castellanos, M.M.; Gressard, H.; Li, X.; Magagnoli, C.; Moriconi, A.; Stranges, D.; Strodiot, L.; Tello Soto, M.; Zwierzyna, M.; Campa, C. CMC strategies and advanced technologies for vaccine development to boost acceleration and pandemic preparedness. Vaccines 2023, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ma, S.; Cui, H.; Chen, J.; Xu, S.; Gong, F.; Golubovic, A.; Zhou, M.; Wang, K.C.; Varley, A.; et al. AGILE platform: A deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 2024, 15, 6305. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Yao, C.; Sun, Z.; Shi, F.; Zhang, L.; Lyu, K.; Bai, X.; Liu, A.; Zhang, X.; Zou, J. LipidBERT: A Lipid Language Model Pre-trained on METiS de novo Lipid Library. arXiv 2024, arXiv:2408.06150. [Google Scholar] [CrossRef]
- Baek, M.-J.; Hur, W.; Kashiwagi, S.; Choi, H.S. Design Considerations for Organ-Selective Nanoparticles. ACS Nano 2025, 19, 14605–14626. [Google Scholar] [CrossRef]
- Nguyen, P.-N. Biomarker discovery with quantum neural networks: A case-study in CTLA4-activation pathways. BMC Bioinform. 2024, 25, 149. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, L.; Rossi, R.; Sechi, F.; Buonocore, D.; Sorrenti, M.; Perteghella, S.; Peviani, M.; Bonferoni, M.C. Effect of Lipid Nanoparticle Physico-Chemical Properties and Composition on Their Interaction with the Immune System. Pharmaceutics 2024, 16, 1521. [Google Scholar] [CrossRef]
- Gyanani, V.; Goswami, R. Key design features of lipid nanoparticles and electrostatic charge-based lipid nanoparticle targeting. Pharmaceutics 2023, 15, 1184. [Google Scholar] [CrossRef]
- Sayour, E.J.; Boczkowski, D.; Mitchell, D.A.; Nair, S.K. Cancer mRNA vaccines: Clinical advances and future opportunities. Nat. Rev. Clin. Oncol. 2024, 21, 489–500. [Google Scholar] [CrossRef]
- Terai, M.; Sato, T. Individualised neoantigen cancer vaccine therapy. Lancet 2024, 403, 590–591. [Google Scholar] [CrossRef]
- Lowenthal, M.S.; Antonishek, A.S.; Phinney, K.W. Quantification of mRNA in lipid nanoparticles using mass spectrometry. Anal. Chem. 2024, 96, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Eichler, H.-G.; Sweeney, F. The evolution of clinical trials: Can we address the challenges of the future? Clin. Trials 2018, 15, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Huda, S.; Islam, M.R.; Abawajy, J.; Kottala, V.N.V.; Ahmad, S. A cyber risk assessment approach to federated identity management framework-based digital healthcare system. Sensors 2024, 24, 5282. [Google Scholar] [CrossRef]
- Conde-Torres, D.; Mussa-Juane, M.; Faílde, D.; Gómez, A.; García-Fandiño, R.; Piñeiro, Á. Classical Simulations on Quantum Computers: Interface-Driven Peptide Folding on Simulated Membrane Surfaces. Comput. Biol. Med. 2024, 182, 109157. [Google Scholar] [CrossRef]
- Pal, S.; Bhattacharya, M.; Lee, S.-S.; Chakraborty, C. Quantum computing in the next-generation computational biology landscape: From protein folding to molecular dynamics. Mol. Biotechnol. 2024, 66, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.A.; Schmidt, S.; Cristofoletti, R. A quantitative systems pharmacology (QSP) platform for preclinical to clinical translation of in-vivo CRISPR-Cas therapy. Front. Pharmacol. 2024, 15, 1454785. [Google Scholar] [CrossRef]
- Wang, W.; Deng, S.; Lin, J.; Ouyang, D. Modeling on in vivo disposition and cellular transportation of RNA lipid nanoparticles via quantum mechanics/physiologically-based pharmacokinetic approaches. Acta Pharm. Sin. B 2024, 14, 4591–4607. [Google Scholar] [CrossRef]
- Zhang, D.; Xiao, Q.; Tang, J.; Xiao, K.; Chen, T.; Chen, Y.; Liu, Y.; Xu, L.; Li, C.; Cai, L.; et al. Machine learning engineered PoLixNano nanoparticles overcome delivery barriers for nebulized mRNA therapeutics. bioRxiv 2024, 1–83. [Google Scholar] [CrossRef]
NCT | Indication | Formulation/Adjuvant Therapy | Route | Sponsors | Clinical Phase/Status |
---|---|---|---|---|---|
NCT00004211 | Metastatic prostate cancer | Dendritic cells + prostate-specific antigen mRNA | IV | Duke University | Phase I and II/Completed |
NCT00204516 | Melanoma | mRNA TAA for melanoma | ID | The Norwegian Radium Hospital | Phase I and II/Completed |
NCT00204607 | Melanoma | Protamine-complexed tumor-associated antigen mRNA | ID | University Hospital Tübingen | Phase I and II/Completed |
NCT00529984 | Advanced/metastatic CEA-expressing solid tumor | Alphavirus replicon particles + SAM | IM | AlphaVax | Phase I and II/Completed |
NCT00831467 | Prostate cancer | RNActive (Protamine) | ID | CureVac | Phase I and II/Completed |
NCT00923312 | Stage IIIB/IV NSCLC | RNActive, (Protamine) | ID | CureVac | Phase I and II/Completed |
NCT01197625 | Prostate cancer | Dendritic cells + mRNA from primary prostate cancer tissue | - | Oslo University Hospital | Phase I and II/Active |
NCT01278940 | Malignant melanoma | Dendritic cells + mRNA | ID/IN | Oslo University Hospital | Phase I and II/Completed |
NCT01326104 | Medulloblastoma, Neuroectodermal tumor | Dendritic cells + tumor mRNA + ex vivo tumor-reactive lymphocytes | ID/IV | University of Florida | Phase I and II/Active |
NCT01456104 | Melanoma | Langerhans-type dendritic cells + Trp2 mRNA | - | Memorial Sloan Kettering Cancer Center | Phase I/Completed |
NCT01684241 | Melanoma | Naked tumor-associated antigen/neo-antigen mRNA | IN | BioNTech RNA Pharmaceuticals GmbH | Phase I/Completed |
NCT01686334 | AML | Dendritic cells + WT1 mRNA and low-dose chemotherapy | ID | Antwerp University Hospital | Phase II/Recruiting |
NCT01890213 | Stage III colorectal cancer | SAM Alphavirus replicon particles | IM | AlphaVax | Phase I/Completed |
NCT01983748 | Uveal melanoma | Dendritic cells + tumor mRNA | IV | University Hospital Erlangen | Phase III/Active |
NCT01995708 | Multiple myeloma | Dendritic cells + CT7, MAGE-A3, WT1 mRNA | ID | Memorial Sloan Kettering Cancer Center | Phase I/Completed |
NCT02035956 | Melanoma | Naked mRNA, neo-antigen/TAA | Ultrasound- guided IN | BioNTech RNA Pharmaceuticals GmbH | Phase I/Completed |
NCT00204607 | Malignant melanoma | Protamine + mRNA vaccine | ID | University Hospital Tuebingen | Phase I and II/Completed |
NCT02316457 | Triple-negative breast cancer | mRNA vaccine | IV | BioNTech SE | Phase I/Completed |
NCT02410733 | Melanoma | mRNA vaccine | IV | BioNTech RNA Pharmaceuticals GmbH | Phase I/Completed |
NCT02465268 | Glioblastoma, malignant glioma, astrocytoma | Dendritic cells + mRNA | ID | Immunomic Therapeutics, Inc. | Phase II/Active |
NCT02649582 | Glioblastoma | Dendritic cells + WT1 mRNA + temozolomide + temozolomide-based chemo-radiation | ID | Antwerp University Hospital | Phase I and II/Recruiting |
NCT02649829 | Malignant pleural mesothelioma | Dendritic cells + WT1 mRNA + chemotherapy | ID | Antwerp University Hospital | Phase I and II/Active |
NCT02709616 | Glioblastoma | Dendritic cells + mRNA encoding patient-specific TAAs + Temozolomide | ID and IV | Guangdong 999 Brain Hospital | Phase I/Completed |
NCT02808364 | Recurrent glioblastoma | Dendritic cells + mRNA encoding patient-specific TAAs | ID and IV | Guangdong 999 Brain Hospital | Phase I/Completed |
NCT03164772 | NSCLC | RNActive (Protamine) + durvalumab, tremelimumab | ID | CureVac | Phase I and II/Completed |
NCT03289962 | Melanoma, NSCLC, bladder cancer, CRC, breast cancer | mRNA vaccine + atezolizumab | IV | BioNTech, Genentech | Phase I/Active |
NCT03313778 | Mono: resected solid tumors; combo: unresectable solid tumor | Neo-antigen vaccine + pembrolizumab | IM | Moderna, Merck | Phase I/Active |
NCT03396575 | Diffuse intrinsic pontine glioma, brain stem glioma | Dendritic cells + tumor mRNA + granulocyte-macrophage colony-stimulating factors, cyclophosphamide, fludarabine, IV infusion of ex vivo lymphocytes | ID | University of Florida | Phase I/Recruiting |
NCT03688178 | Glioblastoma | Dendritic cells + cytomegalovirus matrix protein pp65—lysosomal-associated membrane protein mRNA and temozolomide and varlilumab | ID | Duke University | Phase II/Active |
NCT03739931 | Relapsed/refractory solid tumor malignancy/lymphoma | LNP mRNA-2752, alone in Phase I and immunotherapy; PD-L1 inhibitor, durvalumab in Phase II | Intra-tumoral | ModernaTX, Inc., AstraZeneca | Phase I/Recruiting |
NCT03788083 | Early-stage breast cancer | Naked trimix mRNA | Intra-tumoral | Universitair Zieken huisBrusse | Phase I/Recruiting |
NCT03815058 | Advanced melanoma | Neo-antigen vaccine + pembrolizumab | IV | BioNTech, Genentech | Phase II/Active |
NCT03897881 | High-risk melanoma | Neo-antigen vaccine + pembrolizumab | IM | Moderna, Merck | Phase II/Recruiting |
NCT03908671 | Esophageal cancer, NSCLC | mRNA vaccine encoding neo-antigens | SC | Stemirna Therapeutics | N/A/Recruiting |
NCT03948763 | Colorectal cancer, NSCLC, pancreatic cancer | LNP-Kirsten rat sarcoma virus mutation + pembrolizumab | IM | Moderna, Merck | Phase I/Completed |
NCT04157127 | Pancreatic cancer | Dendritic cells + tumor cell lysate adjuvant to chemotherapy | ID | Baylor College of Medicine | Phase I/Recruiting |
NCT04161755 | Pancreatic cancer | Neo-antigen vaccine + atezolizumab, folfirinox | IV | Memorial Sloan Kettering Cancer Center, Genentech | Phase I/Active |
NCT04335890 | Uveal metastatic melanoma | Dendritic cells + mRNA encoding TAAs and TSAs | IV | Hasumi International Research Foundation | Phase I/Active |
NCT04382898 | Prostate cancer | RNA-lipoplex encoding five prostate TAAs and cemiplimab | IV | BioNTech SE | Phase I and II/Recruiting |
NCT04486378 | Stage II/III CRC | Neo-antigen vaccine | IV | BioNTech SE | Phase II/Recruiting |
NCT04503278 | Solid tumors | RNA-lipoplex and claudin-6 specific CAR-T cells | IV | BioNTech SE | Phase I and II/Recruiting |
NCT04526899 | Melanoma | RNA-lipoplex and emiplimab | IV | BioNTech SE | Phase II/Recruiting |
NCT04534205 | Human papillomavirus 16 + PD-L1+ head/neck squamous cell carcinomas | RNA-lipoplex encoding antigens and pembrolizumab | IV | BioNTech SE | Phase II/Recruiting |
NCT04573140 | Adult glioblastoma | Autologous total tumor mRNA and cytomegalovirus matrix protein pp65—liposome vaccine | IV | University of Florida | Phase I/Recruiting |
NCT04837547 | Neuroblastoma, diffuse intrinsic pontine glioma | Dendritic cells + tumor mRNA + ex vivo expanded lymphocyte transfer + granulocyte colony-stimulating hematopoietic stem cells | - | University of Florida | Phase I/Recruiting |
NCT04911621 | High-grade glioma, diffuse intrinsic pontine glioma | Dendritic cells + mRNA + chemoradiotherapy | ID | University Hospital, Antwerp | Phase I and II/Active |
NCT05000801 | AML | Dendritic cells + mRNA | - | Academy of Military Medical Sciences | N/A/Recruiting |
NCT05192460 | Gastric cancer, esophageal cancer, liver cancer | mRNA vaccine encoding neo-antigens with/without anti-PD-1/PD-L1 | ID | Jianmingxu, NeoCura | N/A/Recruiting |
NCT05198752 | Advanced solid tumors | mRNA cancer vaccine encoding neo-antigens | SC | Stemirna Therapeutics | Phase I/Recruiting |
NCT05227378 | Gastric cancer | mRNA cancer vaccine encoding neo-antigens with/without anti-PD-1/PD-L1 | ID | Shen Lin, NeoCura | N/A/Not yet recruiting |
NCT05264974 | Melanoma (anti-PD1 therapy) | Autologous total tumor mRNA-loaded liposome vaccine | IV | University of Florida | Phase I/Not yet recruiting |
NCT05579275 | Advanced solid tumors | mRNA cancer vaccine encoding neo-antigens | - | Peking University Cancer H | Phase I/Recruiting |
NCT05660408 | Recurrent pulmonary osteosarcoma | mRNA-LNP | IV | University of Florida | Phase I and II/Not yet recruiting |
NCT05714748 | Epstein–Barr virus-related malignancies | mRNA vaccine encoding Epstein–Barr virus antigens | IM | West China Hospital | Phase I/Recruiting |
NCT05738447 | Hepatocellular carcinoma | mRNA vaccine encoding hepatitis B virus antigens | IM | West China Hospital | Phase I/Recruiting |
NCT05761717 | Hepatocellular carcinoma | mRNA cancer vaccine encoding neo-antigens and sintilimab | SC | Shanghai Zhongshan Hospital | N/A/Not yet recruiting |
NCT05799612 | Cutaneous angiosarcoma | Dendritic cells + tumor mRNA + tumor lysate + paclitaxel, pegylated interferon alpha, and filgrastim | IV | M.D. Anderson Cancer Center | Phase I/Not yet recruiting |
NCT05916248 | Advanced solid tumors | mRNA cancer vaccine encoding tumor neo-antigens with/without pembrolizumab | - | Ruijin Hospital, Shanghai XinpuBioTechnology Company Limited | Phase I/Recruiting |
NCT05916261 | Advanced pancreatic cancer | mRNA cancer vaccine encoding neo-antigens and pembrolizumab | - | Ruijin Hospital | Phase I/Recruiting |
NCT05933577 | Melanoma | mRNA cancer vaccine + pembrolizumab | IM and IV | Merck Sharp & Dohme LLC | Phase III/Recruiting |
NCT05938387 | “MGMT-unmethylated” Glioblastoma | CV09050101 mRNA vaccine | IM | CureVac | Phase I/Recruiting |
NCT05940181 | Advanced solid tumors | mRNA cancer vaccine encoding neo-antigens and sintilimab | ID | Jianmingxu, NeoCura | N/A/Not yet recruiting |
NCT05942378 | Advanced solid tumors | mRNA cancer vaccine + adebrelimab | - | Fudan University | Phase I/Not yet recruiting |
NCT05949775 | Advanced solid tumors | mRNA vaccine encoding neo-antigens + sintilimab | SC | Stemirna Therapeutics | N/A/Not yet recruiting |
NCT05981066 | Advanced hepatocellular carcinoma | mRNA cancer vaccine encoding neo-antigens | IM | Peking Union Medical College Hospital | N/A/Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhujel, R.; Enkmann, V.; Burgstaller, H.; Maharjan, R. Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines. Pharmaceutics 2025, 17, 992. https://doi.org/10.3390/pharmaceutics17080992
Bhujel R, Enkmann V, Burgstaller H, Maharjan R. Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines. Pharmaceutics. 2025; 17(8):992. https://doi.org/10.3390/pharmaceutics17080992
Chicago/Turabian StyleBhujel, Ripesh, Viktoria Enkmann, Hannes Burgstaller, and Ravi Maharjan. 2025. "Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines" Pharmaceutics 17, no. 8: 992. https://doi.org/10.3390/pharmaceutics17080992
APA StyleBhujel, R., Enkmann, V., Burgstaller, H., & Maharjan, R. (2025). Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines. Pharmaceutics, 17(8), 992. https://doi.org/10.3390/pharmaceutics17080992