Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (502)

Search Parameters:
Keywords = digestate storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

30 pages, 7811 KiB  
Article
Preparation and Characterization of Cyperus-Derived Exosomes Loaded with Selenium Nanoparticles for Selenium Delivery Based on Exosome Protein Quantitation
by Dexiu Zhao, Xiaojun Yang, Abulimiti Kelimu, Bin Wu, Weicheng Hu, Hongbo Fan, Lei Jing, Dongmei Yang and Xinhong Huang
Foods 2025, 14(15), 2724; https://doi.org/10.3390/foods14152724 - 4 Aug 2025
Abstract
Appropriate carriers or templates are crucial for maintaining the stability, biological activity, and bioavailability of selenium nanoparticles (SeNPs). Selecting suitable templates remains challenging for fully utilizing SeNPs functionalities and developing applicable products. Exosome-like nanoparticles (ELNs) have gained importance in drug delivery systems, yet [...] Read more.
Appropriate carriers or templates are crucial for maintaining the stability, biological activity, and bioavailability of selenium nanoparticles (SeNPs). Selecting suitable templates remains challenging for fully utilizing SeNPs functionalities and developing applicable products. Exosome-like nanoparticles (ELNs) have gained importance in drug delivery systems, yet research on selenium products prepared using exosomes remains limited. To address this gap, we utilized Cyperus bean ELNs to deliver SeNPs, investigated three preparation methods for SeNPs-ELNs, identified the optimal approach, and performed characterization studies. Notably, all three methods successfully loaded SeNPs. Ultrasonic cell fragmentation is the optimal approach, achieving significant increases in selenium loading (5.59 ± 0.167 ng/μg), enlargement of particle size (431.17 ± 10.78 nm), and reduced absolute zeta potential (−4.1 ± 0.43 mV). Moreover, both exosome formulations demonstrated enhanced stability against aggregation during storage at 4 °C, while their stability varied with pH conditions. In vitro digestibility tests showed greater stability of SeNP-ELNs in digestive fluids compared to ELNs alone. Additionally, neither ELNs nor SeNP-ELNs exhibited cytotoxicity toward LO2 cells, and the relative erythrocyte hemolysis remained below 5% at protein concentrations of 2.5, 7.5, 15, 30, and 60 μg/mL. Overall, ultrasonic cell fragmentation effectively loaded plant-derived exosomes with nano-selenium at high capacity, presenting new opportunities for their use as functional components in food and pharmaceutical applications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 4980 KiB  
Article
Quinoa Protein/Sodium Alginate Complex-Stabilized Pickering Emulsion for Sustained Release of Curcumin and Enhanced Anticancer Activity Against HeLa Cells
by Yiqun Zhu, Jianan Li, Shuhong Liu, Hongli Yang, Fei Lu and Minpeng Zhu
Foods 2025, 14(15), 2705; https://doi.org/10.3390/foods14152705 - 1 Aug 2025
Viewed by 244
Abstract
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of [...] Read more.
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of QPI and SA was investigated from pH 1.6 to 7.5, and the structural and interfacial characteristics of the complexes were analyzed using zeta potential measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle analysis. The results showed that the formation of QPI/SA complexes was primarily driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions, with enhanced amphiphilicity observed under optimal conditions (QPI/SA = 5:1, pH 5). The QPI/SA-stabilized Pickering emulsions demonstrated excellent emulsification performance and storage stability, maintaining an emulsification index above 90% after 7 d when prepared with 60% oil phase. In vitro digestion studies revealed stage-specific curcumin release, with sustained release in simulated gastric fluid (21.13%) and enhanced release in intestinal fluid (88.21%). Cytotoxicity assays using HeLa cells confirmed the biocompatibility of QPI/SA complexes (≤500 μg/mL), while curcumin-loaded emulsions exhibited dose-dependent anticancer activity. These findings suggest that QPI/SA holds significant potential for applications in functional foods and oral delivery systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

19 pages, 4083 KiB  
Article
Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition
by María H. Guzmán-López, Susana Sánchez-León, Miriam Marín-Sanz and Francisco Barro
Plants 2025, 14(15), 2355; https://doi.org/10.3390/plants14152355 - 31 Jul 2025
Viewed by 112
Abstract
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A [...] Read more.
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A glutelins. Three CRISPR/Cas9 constructs were designed: one specific to the 13 kDa prolamin subfamily and two targeting conserved GluA glutelin regions. Edited T0 and T1 lines were generated and analyzed using InDel analysis, SDS-PAGE, Bradford assay, and RP-HPLC. Insertions were more frequent than deletions, accounting for 56% and 74% of mutations in prolamin and glutelin genes, respectively. Editing efficiency varied between sgRNAs. All lines with altered protein profiles contained InDels in target genes. SDS-PAGE confirmed the absence or reduction in bands corresponding to 13 kDa prolamins or GluA subunits, showing consistent profiles among lines carrying the same construct. Quantification revealed significant shifts in SSP composition, including increased albumin and globulin content. Prolamin-deficient lines showed reduced prolamins, while GluA-deficient lines exhibited increased prolamins. Total protein content was significantly elevated in all edited lines, suggesting enrichment in lysine-rich fractions. These findings demonstrate that CRISPR/Cas9-mediated editing of SSP genes can effectively reconfigure the rice protein profile and enhance its nutritional value. Full article
(This article belongs to the Special Issue Advances and Applications of Genome Editing in Plants)
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
A Starch Molecular Explanation for Effects of Ageing Temperature on Pasting Property, Digestibility, and Texture of Rice Grains
by Enpeng Li, Xue Xiao, Yifei Huang, Yi Ji, Changquan Zhang and Cheng Li
Foods 2025, 14(15), 2661; https://doi.org/10.3390/foods14152661 - 29 Jul 2025
Viewed by 203
Abstract
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A [...] Read more.
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A small but significant variation was observed for starch chain lengths, and this variation depended on both rice varieties and storage temperatures. Rice grains aged at higher temperatures had much higher peak (~25% larger) and setback viscosities (~50% larger) compared to those stored at lower temperatures. The digestion rate constant was lowered (~10%) most significantly at 40 °C. However, the maximum starch digested percentage increased after ageing. All rice varieties showed the lowest hardness at 4 °C and the highest hardness at 40 °C (~20% larger) after ageing. The changes in starch molecular structures were consistent with altered rice properties according to the established structure–property correlations. These results could improve our understanding of the complex rice ageing process. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

19 pages, 1388 KiB  
Article
Lipid Oxidation of Stored Brown Rice Changes Ileum Digestive and Metabolic Characteristics of Broiler Chickens
by Beibei He, Xueyi Zhang, Weiwei Wang, Li Wang, Jingjing Shi, Kuanbo Liu, Junlin Cheng, Yongwei Wang and Aike Li
Int. J. Mol. Sci. 2025, 26(14), 7025; https://doi.org/10.3390/ijms26147025 - 21 Jul 2025
Viewed by 241
Abstract
Long-term storage may induce lipid oxidation in brown rice and impact its utilization in animal diets. One-day-old male Ross 308 broiler chickens (with an initial body weight of 20 g) were randomly divided into three groups: corn-based diet (Corn), fresh brown rice-based diet [...] Read more.
Long-term storage may induce lipid oxidation in brown rice and impact its utilization in animal diets. One-day-old male Ross 308 broiler chickens (with an initial body weight of 20 g) were randomly divided into three groups: corn-based diet (Corn), fresh brown rice-based diet (BR1) and stored brown rice-based diet (BR6), with 8 replicates of 10 birds per pen, in a 42-day feeding trial. The results showed that lipid oxidation indexes increased and fatty acid composition changed significantly in BR6 (p < 0.05). The dietary replacement of corn with brown rice showed no effects on growth performance of broilers (p > 0.05). However, palmitic acid and oleic acid increased, and stearic acid, linoleic acid and docosadienoic acid decreased in the broiler breast muscle of the BR1 and BR6 groups (p < 0.05). Ileum antioxidant enzyme activities increased in the BR1 and BR6 groups compared to the Corn group (p < 0.05), and the activities of α-amylase, trypsin, chymotrypsin and lipase decreased in the BR6 group compared to the BR1 and Corn groups (p < 0.05). Also, compared to the BR1 group, the overall expression of metabolites involved in drug metabolism—cytochrome P450, GnRH secretion and the estrogen signaling pathway in broiler ileum were down-regulated in the BR6 group (p < 0.05). In conclusion, the lipid oxidation of stored brown rice decreased digestive enzyme activities and changed metabolic characteristics in the ileum of broilers. While replacing corn with brown rice did not affect broiler growth performance, it reduced the contents of unsaturated and essential fatty acids in breast muscle and enhanced the ileal antioxidant functions of broilers. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 1280 KiB  
Article
The Fermentative and Nutritional Effects of Limonene and a Cinnamaldehyde–Carvacrol Blend on Total Mixed Ration Silages
by Isabele Paola de Oliveira Amaral, Marco Antonio Previdelli Orrico Junior, Marciana Retore, Tatiane Fernandes, Yara América da Silva, Mariany Felex de Oliveira, Ana Carolina Amorim Orrico, Ronnie Coêlho de Andrade and Giuliano Reis Pereira Muglia
Fermentation 2025, 11(7), 415; https://doi.org/10.3390/fermentation11070415 - 18 Jul 2025
Viewed by 458
Abstract
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one [...] Read more.
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one additive, using a completely randomized design with four treatments (0, 200, 400, and 600 mg/kg of dry matter), replicated across two seasons (summer and autumn), with five replicates per treatment per season. The silages were assessed for their chemical composition, fermentation profile, aerobic stability (AS), and storage losses. In the LEO trial, the dry matter (DM) content increased significantly by 0.047% for each mg/kg added. Dry matter recovery (DMR) peaked at 97.9% at 473 mg/kg (p < 0.01), while lactic acid (LA) production reached 5.87% DM at 456 mg/kg. Ethanol concentrations decreased to 0.13% DM at 392 mg/kg (p = 0.04). The highest AS value (114 h) was observed at 203.7 mg/kg, but AS declined slightly at the highest LEO dose (600 mg/kg). No significant effects were observed for the pH, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), or non-fiber carbohydrates (NFCs). In the BCC trial, DMR reached 98.2% at 548 mg/kg (p < 0.001), and effluent losses decreased by approximately 20 kg/ton DM. LA production peaked at 6.41% DM at 412 mg/kg (p < 0.001), and AS reached 131 h at 359 mg/kg. BCC increased NDF (from 23.27% to 27.73%) and ADF (from 35.13% to 41.20%) linearly, while NFCs and the total digestible nutrients (TDN) decreased by 0.0007% and 0.039% per mg of BCC, respectively. In conclusion, both additives improved the fermentation efficiency by increasing LA and reducing losses. LEO was more effective for DM retention and ethanol reduction, while BCC improved DMR and AS, with distinct effects on fiber and energy fractions. Full article
Show Figures

Figure 1

20 pages, 2935 KiB  
Article
Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems
by Kattya Rodríguez, Diego Catalán, Tatiana Beldarraín-Iznaga, Juan Esteban Reyes-Parra, Keyla Tortoló Cabañas, Marbelis Valdés Veliz and Ricardo Villalobos-Carvajal
Foods 2025, 14(14), 2455; https://doi.org/10.3390/foods14142455 - 12 Jul 2025
Viewed by 413
Abstract
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W [...] Read more.
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W2) stabilized with pectin-protein complexes on the viability of Limosilactobacillus reuteri (Lr) under thermal treatment (95 °C, 30 min), storage (4 °C, 28 d), and simulated gastrointestinal conditions. Emulsions were prepared with whey protein isolate (WPI) or sodium caseinate (Cas) as outer aqueous phase emulsifiers, followed by pectin coating and ionic gelation with calcium. All emulsions were stable and exhibited high encapsulation efficiency (>92%) with initial viable counts of 9 log CFU/mL. Double emulsions coated with ionically gelled pectin showed the highest protection against heat stress and gastrointestinal conditions due to the formation of a denser layer with lower permeability, regardless of the type of protein used as an emulsifier. At the end of storage, Lr viability exceeded 7 log CFU/mL in cross-linked pectin-coated microcapsules. These microcapsules maintained >6 log CFU/mL after thermal treatment, while viability remained >6.5 log CFU/mL during digestion and >5.0 log CFU/mL after consecutive heat treatment and simulated digestion. According to these results, the combination of double emulsion, multilayer formation and ionic crosslinking emerges as a promising microencapsulation technique. This approach offers enhanced protection for probiotics against extreme thermal and digestive conditions compared to previous studies that only use double emulsions. These findings support the potential application of this encapsulation method for the formulation of functional bakeable products. Full article
Show Figures

Graphical abstract

23 pages, 697 KiB  
Article
Preparation, Physicochemical Properties and Stability of Anthocyanin Nanoliposomes Before and After Double-Layer Modification Using Synanthrin and Pea Protein Isolate
by Lianlian Zhang, Aniya, Shengping Xing, Jing Li, Ying Liu, Chaozhi Li, Jianhang Zhu, Yan Li and Xiaoji Fu
Molecules 2025, 30(14), 2892; https://doi.org/10.3390/molecules30142892 - 8 Jul 2025
Viewed by 284
Abstract
Anthocyanins (ACNs), characterized by their polyhydroxy structures, exhibit high susceptibility to external environmental factors, which significantly limits their application in the food and industrial sectors. To enhance the stability of anthocyanins, anthocyanin nanoliposomes (ACN-NLs) were developed, with encapsulation efficiency, particle size and zeta [...] Read more.
Anthocyanins (ACNs), characterized by their polyhydroxy structures, exhibit high susceptibility to external environmental factors, which significantly limits their application in the food and industrial sectors. To enhance the stability of anthocyanins, anthocyanin nanoliposomes (ACN-NLs) were developed, with encapsulation efficiency, particle size and zeta potential serving as key evaluation parameters. Furthermore, through layer-by-layer self-assembly and electrostatic interactions, ACN-NLs were modified using synanthrin (SY) and pea protein isolate (PPI). Consequently, PPI-modified ACN-NLs (PPI-ACN-NLs) and SY-PPI-modified ACN-NLs (SY-PPI-ACN-NLs) were successfully synthesized. In this study, the structural characteristics of liposomes were investigated using X-ray diffraction (XRD), their in vitro digestibility was evaluated, and their stability under different temperatures, light conditions, and simulated food system conditions was assessed. The results demonstrated that when the mass ratio of soybean lecithin to cholesterol, soybean lecithin to anhydrous ethanol, and drug-to-lipid ratio were set at 5:1, 3:100, and 3:10, respectively, with an ACN concentration of 4 mg/mL, a pea protein solution with pH 3.0, a PPI concentration of 10 mg/mL, and an SY concentration of 8 mg/mL, the prepared ACN-NLs, PPI-ACN-NLs, and SY-PPI-ACN-NLs exhibited optimal performance. Their respective encapsulation efficiencies were 52.59 ± 0.24%, 83.80 ± 0.43%, and 90.38 ± 0.24%; average particle sizes were 134.60 ± 0.76 nm, 213.20 ± 0.41 nm, and 246.60 ± 0.24 nm zeta potentials were −32.4 ± 0.75 mV, −27.46 ± 0.69 mV, and −16.93 ± 0.31 mV. The changes in peak shape observed via X-ray diffraction (XRD), in vitro digestion profiles, and alterations in anthocyanin release rates under different conditions collectively indicated that the modification of ACN-NLs using SY and PPI enhanced the protective effect on the ACNs, improving their biological activity, and providing a robust foundation for the practical application of ACNs. Full article
Show Figures

Figure 1

20 pages, 2601 KiB  
Article
Waste as a Source of Fuel and Developments in Hydrogen Storage: Applied Cases in Spain and Their Future Potential
by Juan Pous de la Flor, María-Pilar Martínez-Hernando, Roberto Paredes, Enrique Garcia-Franco, Juan Pous Cabello and Marcelo F. Ortega
Appl. Sci. 2025, 15(13), 7514; https://doi.org/10.3390/app15137514 - 4 Jul 2025
Viewed by 357
Abstract
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane [...] Read more.
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane to power farm vehicles, using anaerobic digestion and microalgae-based upgrading systems. Smart Met Value refines biogas from a wastewater treatment plant in Guadalajara to produce high-purity biomethane for the municipal fleet, demonstrating the viability of energy recovery from sewage sludge. The UNDERGY project addresses green hydrogen storage by repurposing a depleted natural gas reservoir, showing geochemical and geomechanical feasibility for seasonal underground hydrogen storage. Each project utilises regionally available resources to produce clean fuels—biomethane or hydrogen—while mitigating methane and CO2 emissions. Results show significant energy recovery potential: biomethane production can replace a substantial portion of fossil fuel use in rural and urban settings, while hydrogen storage provides a scalable solution for surplus renewable energy. These applied cases demonstrate not only the technical feasibility but also the socio-economic benefits of integrating waste valorisation and energy transition technologies. Together, they represent replicable models for sustainable development and energy resilience across Europe and beyond. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 6620 KiB  
Article
Protective Effects of Zein/Ferulic Acid (FA)–Pectin (PEC)/Chitosan (CS) Nanocomplexes on DSS-Induced Ulcerative Colitis in Mice
by Yifei Guo, Xinyu Yu, Rongrong He, Jianfei Pei, Haiming Chen and Weijun Chen
Foods 2025, 14(13), 2345; https://doi.org/10.3390/foods14132345 - 1 Jul 2025
Viewed by 375
Abstract
Ferulic acid (FA) exhibits beneficial properties in ulcerative colitis (UC) pathogenesis, while sensitivity to the environment and enzymes limits its use in UC therapy. Therefore, this study aims to develop a colon-targeted nanocomplex delivery system using FA and investigate its protective effects and [...] Read more.
Ferulic acid (FA) exhibits beneficial properties in ulcerative colitis (UC) pathogenesis, while sensitivity to the environment and enzymes limits its use in UC therapy. Therefore, this study aims to develop a colon-targeted nanocomplex delivery system using FA and investigate its protective effects and underlying regulatory mechanisms in UC mice. A novel Zein/FA–pectin (PEC)/chitosan (CS) nanocomplex was successfully fabricated in this study. Through systematic adjustment of the PEC/CS-to-Zein/FA ratio, optimal encapsulation efficiency (60.1%) and loading capacity (26.2%) were achieved. The characterized data indicated that hydrogen bonds, electrostatic interactions, and hydrophobic forces were the main driving forces maintaining the formation of the nanocomplexes, accompanied by alterations in the secondary structure of Zein. The Zein/FA–PEC/CS nanocomplexes demonstrated excellent thermal/storage particle size stability and exhibited both protective and sustained-release effects of FA during simulated gastrointestinal digestion. Furthermore, the results demonstrated that the nanocomplexes potentially alleviate UC by regulating inflammatory cytokines, oxidative stress, and gut microbiota. Compared to unencapsulated FA, the nanocomplexes have a better effect on alleviating UC symptoms. In summary, Zein/FA–PEC/CS nanocomplexes have promising prospects in alleviating colitis in UC mice. Full article
Show Figures

Figure 1

23 pages, 2646 KiB  
Article
Simultaneous Liquid Digestate Treatment and High-Value Microalgal Biomass Production: Influence of Post-Harvest Storage on Biochemical Profiles
by Ewelina Sobolewska, Michał Komar, Sebastian Borowski, Paulina Nowicka-Krawczyk, António Portugal, Nuno Mesquita, Mariana F. G. Assunção, Berk Aksoy, João Cotas and Leonel Pereira
Molecules 2025, 30(13), 2778; https://doi.org/10.3390/molecules30132778 - 27 Jun 2025
Viewed by 758
Abstract
This study investigated the treatment of unsterilized, undiluted, and unfiltered liquid digestate in a large-scale photobioreactor over a period of 33 weeks using a consortium of microalgae and bacteria. The generated biomass was analyzed for a wide spectrum of value-added compounds. The impact [...] Read more.
This study investigated the treatment of unsterilized, undiluted, and unfiltered liquid digestate in a large-scale photobioreactor over a period of 33 weeks using a consortium of microalgae and bacteria. The generated biomass was analyzed for a wide spectrum of value-added compounds. The impact of organic loading rates (OLR) on the microbial culture was determined, and the influence of the biomass storage method on its qualitative composition was also analyzed. The experiment showed optimal growth of microalgae at OLR = 0.1 gCOD/L/day (where COD is Chemical Oxygen Demand), while a higher OLR value led to culture destabilization. Microglena sp., an algae not commonly applied for digestate treatment, showed low tolerance to changes in process conditions (OLR increase) but high readaptation potential when the OLR was lowered to its initial value. Significant changes in the microbial community were observed during the treatment. In Phases 1 and 2, Desmodesmus subspicatus and Actinomycetota phylum dominated in the community, while in Phase 3, Microglena sp. and Firmicutes were the most abundant. Total nitrogen, orthophosphates, and soluble COD were reduced by 89–99%. The biomass storage method had a notable impact on the content of lipids, fatty acids, and pigments. The protein amount was 32.75–33.59% of total solids (TS), while total lipid content was 15.76–19.00% TS, with stearic and palmitic acid being dominant. The effect of the storage regime on the potential biomass valorization was also discussed. Full article
Show Figures

Figure 1

13 pages, 1014 KiB  
Article
Discrete Wavelet Transform-Based Data Fusion with ResUNet Model for Liver Tumor Segmentation
by Ümran Şeker Ertuğrul and Halife Kodaz
Electronics 2025, 14(13), 2589; https://doi.org/10.3390/electronics14132589 - 27 Jun 2025
Viewed by 430
Abstract
Liver tumors negatively affect vital functions such as digestion and nutrient storage, significantly reducing patients’ quality of life. Therefore, early detection and accurate treatment planning are of great importance. This study aims to support physicians by automatically identifying the type and location of [...] Read more.
Liver tumors negatively affect vital functions such as digestion and nutrient storage, significantly reducing patients’ quality of life. Therefore, early detection and accurate treatment planning are of great importance. This study aims to support physicians by automatically identifying the type and location of tumors, enabling rapid diagnosis and treatment. The segmentation process was carried out using deep learning methods based on artificial intelligence, particularly the U-Net architecture, which is designed for biomedical imaging. U-Net was modified by adding residual blocks, resulting in a deeper architecture called ResUNet. Due to the limited availability of medical data, both normal data fusion and discrete wavelet transform (DWT) methods were applied during the data preprocessing phase. A total of 131 liver tumor images, resized to 120 × 120 pixels, were analyzed. The DWT-based fusion method achieved more successful results, with a dice coefficient of 94.45%. This study demonstrates the effectiveness of artificial intelligence-supported approaches in liver tumor segmentation and suggests that such applications will become more widely used in the medical field in the future. Full article
Show Figures

Figure 1

12 pages, 1861 KiB  
Article
Metal–Phenolic Network-Directed Coating of Lactobacillus plantarum: A Promising Strategy to Increase Stability
by Haoxuan Zhang, Huange Zhang and Hao Zhong
Foods 2025, 14(13), 2277; https://doi.org/10.3390/foods14132277 - 26 Jun 2025
Viewed by 446
Abstract
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of [...] Read more.
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of metal–phenol networks (MPNs) fabricated via three polyphenols—tannic acid (TA), tea polyphenol (TP), and anthocyanin (ACN)—combined with Fe(III) coatings in protecting Lactobacillus plantarum during simulated digestion and storage. The results demonstrated that MPNs formed a protective film on the bacterial surface. While TA and ACN inhibited the growth of Lactobacillus plantarum YJ7, TP stimulated proliferation. Within the MPNs system, only Fe(III)-TA exhibited growth-inhibitory effects. Notably, ACN displayed the highest proliferation rate during the initial 2 h, followed by TP between 3 and 4 h. All MPN-coated groups maintained high bacterial viability at 25 °C and −20 °C, with TP-coated bacteria showing the highest viable cell count, followed by TA and ACN. In vitro digestion experiments further revealed that the Fe(III)-ACN group exhibited the strongest resistance to artificial gastric juice. In conclusion, tea polyphenol and anthocyanin demonstrate superior potential for probiotic encapsulation, offering both protective stability during digestion and enhanced viability under storage conditions. Full article
Show Figures

Figure 1

17 pages, 1668 KiB  
Article
Microencapsulated Jaboticaba Berry (M. cauliflora) Juice Improves Storage Stability and In Vitro Bioaccessibility of Polyphenols
by Tatiana de Muros Amaral Barcellos, Mônica Volino-Souza, Carini Aparecida Lelis, Carlos Adam Conte Junior and Thiago da Silveira Alvares
Appl. Biosci. 2025, 4(3), 31; https://doi.org/10.3390/applbiosci4030031 - 20 Jun 2025
Viewed by 319
Abstract
Jaboticaba berry is a rich source of polyphenols with bioactive properties. However, polyphenols are known for their high reactivity under environmental conditions, which poses a challenge to producing stable, functional components for the food industry. This study investigated the storage stability and bioaccessibility [...] Read more.
Jaboticaba berry is a rich source of polyphenols with bioactive properties. However, polyphenols are known for their high reactivity under environmental conditions, which poses a challenge to producing stable, functional components for the food industry. This study investigated the storage stability and bioaccessibility of polyphenols in microencapsulated jaboticaba juice over 21 days at three storage temperatures: −20 °C, 4 °C, and 25 °C. Additionally, phenolic compounds and antioxidant capacity were evaluated before and after in vitro simulated gastrointestinal digestion. Microencapsulation was performed by spray drying at 160 °C using maltodextrin at different concentrations (10%, 12%, and 15%) as the wall material. The results showed that the stability of polyphenols during storage was significantly influenced by both temperature and the proportion of maltodextrin. Greater degradation of phenolic compounds was observed at 25 °C, particularly in the formulation with 10% maltodextrin. On the other hand, the bioaccessibility of polyphenols was significantly higher in microencapsulated juice after simulated gastrointestinal digestion compared to non-encapsulated jaboticaba juice (p < 0.05). These findings suggest that microencapsulation technique improved the bioaccessibility of phenolic compounds in jaboticaba and promoted better stability with the use of a higher concentration of maltodextrin. In conclusion, microencapsulation is a promising strategy for the development of functional food products enriched with natural bioactive compounds, providing greater protection and efficiency in delivering their health benefits. Full article
Show Figures

Figure 1

Back to TopTop