Preparation and Characterization of Cyperus-Derived Exosomes Loaded with Selenium Nanoparticles for Selenium Delivery Based on Exosome Protein Quantitation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of SeNPs
2.3. Extraction of Cyperus ELNs
2.4. SeNPs-ELNs Preparation
2.4.1. Preparation by Ultrasonic Washer
2.4.2. Preparation by Incubation
2.4.3. Preparation by Ultrasonic Cell Fragmentation Instrument
2.5. The Fourier Transform Infrared Spectrum (FTIR)
2.6. The UV-Visible Light Spectrum (UV-Vis)
2.7. Transmission Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (TEM-EDS Mapping)
2.8. X-Ray Photoelectron Spectroscopy (XPS)
2.9. X-Ray Diffraction (XRD)
2.10. Scanning Electron Microscope (SEM)
2.11. Determination of Loading Amount
2.12. Transmission Electron Microscopy (TEM)
2.13. Dynamic Light Scattering (DLS)
2.14. Temperature Stability Investigation
2.15. pH Stability Investigation
2.16. Digestive Stability Test
2.17. Cytotoxicity Measurement
2.18. Relative Erythrocyte Hemolysis Rate Study
2.19. Statistical Analyses
3. Results and Discussion
3.1. FTIR Analysis
3.2. UV-Vis Analysis
3.3. TEM-EDS Mapping Analysis
3.4. XPS Analysis
3.5. XRD Analysis
3.6. SEM Analysis
3.7. Determination of Loading Amount Analysis
3.8. TEM Morphology
3.9. Particle Size, Zeta Potential, and Polydispersity Index
3.10. Temperature Stability Analysis
3.11. pH Stability Analysis
3.12. Digestive Stability Analysis
3.13. In Vitro Cytotoxicity Study
3.14. Relative Erythrocyte Hemolysis Rate Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SeNPs | Selenium nanoparticles |
ELNs | Exosome-like nanoparticles |
SeNPs-ELNs | SeNPs-loaded exosomes |
SeNPs-ELNs I | The combination of ELNs and SeNPs prepared by an ultrasonic washer |
SeNPs-ELNs II | The combination of ELNs and SeNPs prepared by incubation |
SeNPs-ELNs III | The combination of ELNs and SeNPs prepared by an ultrasonic cell fragmentation instrument |
Na2SeO3 | Sodium selenite |
FTIR | Fourier transform infrared spectroscopy |
UV-Vis | UV-visible spectrum |
TEM-EDS | Transmission electron microscopy and energy dispersive X-ray spectroscopy |
XPS | X-Ray photoelectron spectroscopy |
XRD | X-Ray diffraction |
DLS | Dynamic light scattering |
PEG | Polyethylene glycol |
PDI | Polydispersity index |
SEM | Scanning electron microscope |
LC | Load volume |
BCA | Bicinchoninic acid |
BSA | Bovine serum albumin |
TEM | Transmission electron microscopy |
PBS | Phosphate-buffered saline |
CCK-8 | Cell Counting Kit-8 |
ANOVA | Analysis of variance |
SGF | Simulated gastric fluid |
SIF | Simulated intestinal fluid |
References
- Tendenedzai, J.; Brink, H.G.; Chirwa, E.M.N. Formation of Elemental Selenium Nanoparticles (SeNPs) from the Reduction of Selenite (SeO32−) by a Pure culture of Pseudomonas stutzeri NT-I. Chem. Eng. Trans. 2021, 86, 193–198. [Google Scholar]
- Liao, G.; Tang, J.; Wang, D.; Zuo, H.; Zhang, Q.; Liu, Y.; Xiong, H. Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J. Surg. Oncol. 2020, 18, 81. [Google Scholar] [CrossRef]
- Gao, F.; Liu, H.; Han, H.; Wang, X.; Qu, L.; Liu, C.; Tian, X.; Hou, R. Ameliorative effect of Berberidis radix polysaccharide selenium nanoparticles against carbon tetrachloride induced oxidative stress and inflammation. Front. Pharmacol. 2022, 13, 1058480. [Google Scholar] [CrossRef]
- Murugan, P.; Chandrasekar, S.; Robert, B.; Chenthamara, D.; Inbaraj, P.; Subramaniam, S. Phytofabrication of cost-effective selenium nanoparticles from edible and non-edible plant materials of Senna auriculata: Characterization, antioxidant, antidiabetic, antimicrobial, biocompatibility, and wound healing. J. Mol. Liq. 2022, 367, 120337. [Google Scholar]
- Liu, S.; Wei, W.; Wang, J.; Chen, T. Theranostic applications of selenium nanomedicines against lung cancer. J. Nanobiotechnology 2023, 21, 96. [Google Scholar] [CrossRef]
- Zhu, C.; Li, L.; Liu, Q.; Li, J.; Peng, G.; Zhang, L.; Qi, M.; Yang, F.; Ji, H.; Dong, W. Effect of selenium nanoparticles (SeNPs) supplementation on the sperm quality of fish after short-term storage. Aquaculture 2023, 562, 738876. [Google Scholar] [CrossRef]
- He, H.; Liu, C.; Shao, C.; Wu, Y.; Huang, Q. Green synthesis of ultrasmall selenium nanoparticles (SeNPs) using Hericium erinaceus polysaccharide (HEP) as nanozymes for efficient intracellular antioxidation. Mater. Lett. 2022, 317, 132079. [Google Scholar] [CrossRef]
- Skotland, T.; Sandvig, K.; Llorente, A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res. 2017, 66, 30–41. [Google Scholar] [CrossRef]
- Clotilde, T.; Sebastian, A.; Graça, R.; Aled, C. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006. [Google Scholar]
- Meckes, D.G., Jr.; Shair, K.H.; Marquitz, A.R.; Kung, C.P.; Edwards, R.H.; Raab-Traub, N. Human tumor virus utilizes exosomes for intercellular communication. Proc. Natl. Acad. Sci. USA 2010, 107, 20370–20375. [Google Scholar] [CrossRef] [PubMed]
- Zainuddin, Q.; Ahmed, E.; Erhard, B. Extracellular Vesicles in Pharmacology: Novel Approaches in Diagnostics and Therapy. Pharmacol. Res. 2021, 175, 105980. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Liu, F.; Meng, F.; Yang, Z.; Wang, H.; Ren, Y.; Cai, Y.; Zhang, X. Exosome-biomimetic nanocarriers for oral drug delivery. Chin. Chem. Lett. 2023, 35, 109335. [Google Scholar] [CrossRef]
- Lai, R.C.; Yeo, R.W.Y.; Tan, K.H.; Lim, S.K. Exosomes for drug delivery—a novel application for the mesenchymal stem cell. Biotechnol. Adv. 2013, 31, 543–551. [Google Scholar] [CrossRef]
- Tan, A.; Rajadas, J.; Seifalian, A.M. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv. Drug Deliv. Rev. 2013, 65, 357–367. [Google Scholar] [CrossRef]
- Qiao, Z.; Zhang, Y.; Ge, M.; Liu, S.; Jiang, X.; Shang, Z.; Liu, H.; Cao, C.; Xiao, H. Cancer Cell Derived Small Extracellular Vesicles Contribute to Recipient Cell Metastasis Through Promoting HGF/c-Met Pathway. Mol. Cell. Proteom. MCP 2019, 18, 1619–1629. [Google Scholar] [CrossRef]
- Gu, Y.; Li, A.; Zeng, Y.; He, M.; Qi, F.; Liu, R.; Cai, H.; Li, D.; Tang, X.; Fu, Z.; et al. Engineering hybrid nanoparticles for targeted codelivery of triptolide and CYP3A4-siRNA against pulmonary metastatic melanoma. Sci. Adv. 2025, 11, eadv6990. [Google Scholar]
- Iruoghene, E.G.; Ogheneoruese, O.F.; Ngukuran, J.A.; Onyinyechi, O.G.; Oghenekeno, S.P.; Ajiri, R.O.; Ovie, I.; Othuke, A.P.; Johnson, A.J.; Avuokerie, E.H.; et al. Cyperus esculentus (tiger nut): An insight into its bioactive compounds, biological activities, nutritional and health benefits. Food Chem. Adv. 2023, 3, 100511. [Google Scholar] [CrossRef]
- Wang, W.; Quan, Z.; Kou, F.; Zhang, S.; Cao, L.; Zhang, Z. Preparation and characterization of soluble dietary fiber from tiger nut residues, showing enhanced antioxidant activity and metal-ion-binding properties. Front. Nutr. 2023, 10, 1275473. [Google Scholar] [CrossRef] [PubMed]
- Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol. Ther. 2020, 29, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Mó, M.; Siljander, P.R.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Nathalie, C.; Clotilde, T. Exosomes: Immune properties and potential clinical implementations. Semin. Immunopathol. 2011, 33, 419–440. [Google Scholar]
- Clayton, A.; Court, J.; Navabi, H.; Adams, M.; Mason, M.D.; Hobot, J.A.; Newman, G.R.; Jasani, B. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 2001, 247, 163–174. [Google Scholar] [CrossRef]
- Rider, M.A.; Hurwitz, S.N.; Meckes, D.G. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Sci. Rep. 2016, 6, 23978. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.S.; Ortiz, D.; Zuhorn, I.S. Converting extracellular vesicles into nanomedicine: Loading and unloading of cargo. Mater. Today Nano 2021, 16, 100148. [Google Scholar] [CrossRef]
- Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 2017, 38, 754–763. [Google Scholar] [CrossRef]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Yu, Z.; Lin, Z.; Lei, Z.; Ning, Z.; Regenstein, J.M.; Yang, J.; Ren, J. Biofunctionalization of Selenium Nanoparticle with Dictyophora Indusiata Polysaccharide and Its Antiproliferative Activity through Death-Receptor and Mitochondria-Mediated Apoptotic Pathways. J. Sci. Rep. 2015, 5, 18629. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Xiu, W.; Yang, M.; Yu, S.; Ma, Y. Selenium nanoparticles stabilized by sweet corncob polysaccharide inhibit hypoglycemia in vitro and alleviate symptoms in type 2 diabetes mice. J. Funct. Foods 2024, 112, 105920. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Ji, T.; Wen, C.; Ye, Z.; Liu, X.; Li, L.; Liu, G.; Xu, X. Digestion and absorption properties of Lycium barbarum polysaccharides stabilized selenium nanoparticles. Food Chem. 2022, 373, 131637. [Google Scholar]
- Garza-García, J.J.O.; Hernández-Díaz, J.A.; León-Morales, J.M.; Velázquez-Juárez, G.; Zamudio-Ojeda, A.; Arratia-Quijada, J.; Reyes-Maldonado, O.K.; López-Velázquez, J.C.; García-Morales, S. Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties. J. Nanobiotechnol. 2023, 21, 252. [Google Scholar] [CrossRef]
- Lee, S.C.; Lee, N.H.; Patel, K.D.; Jang, T.S.; Knowles, J.C.; Kim, H.W.; Lee, H.H.; Lee, J.H. The Effect of Selenium Nanoparticles on the Osteogenic Differentiation of MC3T3-E1 Cells. Nanomaterials 2021, 11, 557. [Google Scholar]
- Zhang, J.; Ji, T.; Yang, X.; Liu, G.; Liang, L.; Liu, X.; Wen, C.; Ye, Z.; Wu, M.; Xu, X. Properties of selenium nanoparticles stabilized by Lycium barbarum polysaccharide-protein conjugates obtained with subcritical water. Int. J. Biol. Macromol. 2022, 205, 672–681. [Google Scholar] [CrossRef]
- Jha, N.; Annamalai, A.; Essakiraj, P.; Balamurugan, R.; Lakra, A.K.; Tilwani, Y.M.; Arul, V. Effects of polysaccharide-based silver and selenium nanoparticles on growth performance, biochemical parameters, and immune response of Cyprinus carpio. Fish Shellfish. Immunol. Rep. 2022, 3, 100062. [Google Scholar] [CrossRef]
- Hierholzer, J.C.; Killington, R.A. Virus isolation and quantitation. Virol. Methods Man. 1996, 25–46. [Google Scholar] [CrossRef]
- Lv, C.Y.; Ding, W.J.; Wang, Y.L.; Zhao, Z.Y.; Li, J.H.; Chen, Y.; Lv, J. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis. Int. Urol. Nephrol. 2018, 50, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Ridder, K.; Sevko, A.; Heide, J.; Dams, M.; Rupp, A.K.; Macas, J.; Starmann, J.; Tjwa, M.; Plate, K.H.; Sültmann, H.J.O. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 2015, 4, e1008371. [Google Scholar] [CrossRef]
- Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 2015, 207, 18–30. [Google Scholar] [CrossRef]
- Herrer, L.; Sebastian, V.; Martín, S.; González-Orive, A.; Pérez-Murano, F.; Low, P.J.; Serrano, J.L.; Santamaría, J. High surface coverage of a self-assembled monolayer by in situ synthesis of palladium nanodeposits. Nanoscale 2019, 9, 13281–13290. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Y.; Ouyang, X.K.; Ling, J. Fabrication of soy protein isolate/cellulose nanocrystal composite nanoparticles for curcumin delivery-ScienceDirect. Int. J. Biol. Macromol. 2020, 165, 1468–1474. [Google Scholar] [CrossRef]
- Feng, C.; Shen, Z.; Li, Y.; Gu, L.; Zhang, Y.; Lu, G.; Huang, X. PNIPAM-b-(PEA-g-PDMAEA) Double-Hydrophilic Graft Copolymer: Synthesis and Its Application for Preparation of Gold Nanoparticles in Aqueous Media. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 1811–1824. [Google Scholar] [CrossRef]
- Fadl, A.M.; El-Kholy, E.M.S.; Abulyazid, I.; Shoman, A.A.; Awad, H.H.; Mohammed, H.S. Radiation-Assisted Green Synthesis and Characterization of Selenium Nanoparticles, and Larvicidal Effects on Culex pipiens complex. J. Clust. Sci. 2021, 33, 2601–2615. [Google Scholar] [CrossRef]
- Tabibi, M.; Aghaei, S.; Amoozegar, M.A.; Nazari, R.; Zolfaghari, M.R. Characterization of green synthesized selenium nanoparticles (SeNPs) in two different indigenous halophilic bacteria. BMC Chem. 2023, 17, 115. [Google Scholar] [CrossRef]
- Tilwani, Y.M.; Lakra, A.K.; Domdi, L.; Jha, N.; Arul, V. Preparation, Physicochemical Characterization, and In Vitro Biological Properties of Selenium Nanoparticle Synthesized from Exopolysaccharide of Enterococcus faecium MC-5. BioNanoScience 2023, 13, 413–425. [Google Scholar] [CrossRef]
- Bai, K.; Hong, B.; Hong, Z.; Sun, J.; Wang, C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in D-galactose-induced aging mice. J. Nanobiotechnology 2017, 15, 92. [Google Scholar] [CrossRef]
- Cui, D.; Yan, C.; Miao, J.; Zhang, X.; Chen, J.; Sun, L.; Meng, L.; Liang, T.; Li, Q. Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Mater. Sci. Eng. C 2018, 90, 104–112. [Google Scholar] [CrossRef]
- Prasad, K.S.; Vaghasiya, J.V.; Soni, S.S.; Patel, J.; Patel, R.; Kumari, M.; Jasmani, F.; Selvaraj, K. Microbial Selenium Nanoparticles (SeNPs) and Their Application as a Sensitive Hydrogen Peroxide Biosensor. Appl. Biochem. Biotechnol. 2015, 177, 1386–1393. [Google Scholar] [CrossRef]
- GB 5009.93–2017; National Food Safety Standard Determination of Selenium in Foods. Standards Press of China: Beijing, China, 2017.
- Wang, M.; Zhong, Y.; Qin, J.; Zhang, Z.; Li, S.; Yang, B. Determination of Total Selenium in Food Samples by d-CPE and HG-AFS. Food Chem. 2016, 227, 329–334. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, X.; Zhong, Y.; Zhorigtu; Cao, C.; Jiang, X.; Er, D.; Yang, B. Research, Isolation and Characterisation of Bactrian Camel Milk-Derived Exosomes. 2021. Available online: https://www.indianjournals.com/ijor.aspx?target=ijor:jcpr&volume=28&issue=3&article=015 (accessed on 1 July 2025).
- Pei, S.; Sun, W.; Han, Q.; Wang, H.; Liang, Q. Bifunctional immunoaffinity magnetic nanoparticles for high-efficiency separation of exosomes based on host-guest interaction. Talanta 2024, 272, 125790. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, M.; Peng, X.; Tan, S. Extraction and identification of exosomesderivedfrom leukemia cells. J. Hunan Norm. Univ. Med. Sci. 2018, 2, 13–16. [Google Scholar]
- Lässer, C.; Eldh, M.; Lötvall, J. Isolation and Characterization of RNA-Containing Exosomes. J. Vis. Exp. 2012, 59, e3037. [Google Scholar]
- Shang, Z.; Liu, Z.; Han, M.; Fan, H.; Lu, D.; Zhou, Z.; Wang, Z.; Li, Y.; Wang, X.; Wang, B.; et al. Individualized bio-scaffold encapsulating siPTEN-loaded exosomes for promoting neuronal regeneration in spinal cord injury. Compos. Part B Eng. 2024, 270, 111146. [Google Scholar] [CrossRef]
- Saari, H.; Lázaro-Ibáñez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J. Control. Release 2015, 220, 727–737. [Google Scholar] [CrossRef]
- Sancho-Albero, M.; Encabo-Berzosa, M.; Beltran-Visiedo, M.; Fernandez-Messina, L.; Martin-Duque, P. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: Leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale 2019, 11, 18825–18836. [Google Scholar] [CrossRef]
- Hood, J.L.; Scott, M.J.; Wickline, S.A. Maximizing exosome colloidal stability following electroporation. Anal. Biochem. 2014, 448, 41–49. [Google Scholar] [CrossRef]
- Simbari, F.; McCaskill, J.; Coakley, G.; Millar, M.; Maizels, R.M.; Fabriás, G.; Casas, J.; Buck, A.H. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: Implications for exosome stability and biology. J. Extracell. Vesicles 2016, 5, 30741. [Google Scholar] [CrossRef] [PubMed]
- Kalra, H.; Adda, C.G.; Liem, M.; Ang, C.S.; Mechler, A.; Simpson, R.J.; Hulett, M.D.; Mathivanan, S. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 2013, 13, 3354–3364. [Google Scholar] [CrossRef] [PubMed]
- Kumeda, N.; Ogawa, Y.; Akimoto, Y.; Kawakami, H.; Tsujimoto, M.; Yanoshita, R. Characterization of Membrane Integrity and Morphological Stability of Human Salivary Exosomes. Biol.. Pharm Bull. 2017, 40, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; Cui, D.; Yan, C.; Meng, L.; Sun, L.; Ban, S.; Ge, R.; Liang, T.; Li, Q. Synthesis and cytotoxic activities of novel 4-methoxy-substituted and 5-methyl-substituted (3′S,4′S)-(-)-cis-khellactone derivatives that induce apoptosis via the intrinsic pathway. Drug Des. Devel. Ther. 2017, 11, 1891–1904. [Google Scholar] [CrossRef][Green Version]
- Zhou, X.J.; Xu, H.M.; Huang, G.S.; Lin, B.R. Nasopharyngeal carcinoma derived exosomes regulate the proliferation and migration of nasopharyngeal carcinoma cells by mediating the miR-99a-5p BAZ2A axis. Braz. J. Otorhinolaryngol. 2023, 90, 101343. [Google Scholar] [CrossRef]
- Qiao, L.; Chen, Y.; Dou, X.; Song, X.; Xu, C. Biogenic Selenium Nanoparticles Attenuate Aβ25–35-Induced Toxicity in PC12 Cells via Akt/CREB/BDNF Signaling Pathway. Neurotox. Res. 2022, 40, 1869–1881. [Google Scholar] [CrossRef]
- Deng, R.; Wu, J.; Zhu, B.; Song, G.; Zhou, T.; Yang, M.; Pan, L.; Wang, J.; Zou, X.; Lv, Z.; et al. Engineered exosomes loaded with M1–8 peptide for targeted therapy of hepatocellular carcinoma. Appl. Mater. Today 2024, 37, 102071. [Google Scholar] [CrossRef]
- Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.-G. A Novel Nanoparticle Drug Delivery System: The Anti-inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes. Mol. Ther. 2010, 18, 1606–1614. [Google Scholar] [CrossRef]
- Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed. Nanotechnol. Biol. Medicine. 2016, 12, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Alvarez, V.B.; Harper, W.J.; Rodriguez-Saona, L.E. Monitoring amino acids, organic acids, and ripening changes in Cheddar cheese using Fourier-transform infrared spectroscopy. Int. Dairy J. 2011, 21, 434–440. [Google Scholar] [CrossRef]
- Bai, Y.P.; Zhou, H.M.; Zhu, K.R.; Li, Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021, 271, 118416. [Google Scholar] [CrossRef]
- Chen, W.; Cheng, H.; Xia, W. Construction of Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants. 2022, 11, 240. [Google Scholar] [CrossRef]
- Zhu, Y.; Ren, B.; Li, H.; Lin, Z.; Bañuelos, G.; Li, L.; Zhao, G.; Guo, Y. Biosynthesis of selenium nanoparticles and effects of selenite, selenate, and selenomethionine on cell growth and morphology in Rahnella aquatilis HX2. Appl. Microbiol. Biotechnol. 2018, 102, 6191–6205. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, X.; Zhang, J.; Liang, L.; Miao, F.; Ji, T.; Ye, Z.; Chu, M.; Ren, J.; Xu, X. Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. Int. J. Biol. Macromol. 2021, 179, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Palomar-Alonso, N.; Lee, M.; Kim, M. Exosomes: Membrane-associated proteins, challenges and perspectives. Biochem. Biophys. Rep. 2024, 37, 101599. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, S.; Liu, Y.; Wu, W.; Shen, Y.; Zhang, L.; Li, C.; Chen, H.; Liu, A.; Shen, L.; et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int. J. Biol. Macromol. 2018, 114, 632–639. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Y.; Yue, P.; Li, H.; Wu, Y.; Hao, X.; Peng, F. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissimi. Carbohydr. Polym. 2023, 299, 120219. [Google Scholar] [CrossRef] [PubMed]
- Barzegarparay, F.; Najafzadehvarzi, H.; Pourbagher, R.; Parsian, H.; Ghoreishi, S.; Mortazavi-Derazkola, S. Green synthesis of novel selenium nanoparticles using Crataegus monogyna extract (SeNPs@CM) and investigation of its toxicity, antioxidant capacity, and anticancer activity against MCF-7 as a breast cancer cell line. Biomass-Convers. Biorefinery 2023, 14, 25369–25378. [Google Scholar] [CrossRef]
- Briones-Márquez, L.F.; Navarro-Partida, J.; Herrera-González, A.; García-Bon, M.A.; Martínez-Álvarez, I.A.; Uribe-Rodríguez, D.; González-Ortiz, L.J.; López-Naranjo, E.J. HPLC-UV evaluation of a microwave assisted method as an active drug loading technique for exosome-based drug delivery system. Heliyon 2023, 9, e20742. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, H.; Lao, Y.; Jiang, Y.; Gong, L. MicroRNAs in the exosome-like nanoparticles from orange juice inhibit Citrus blue mold caused by Penicillium italicum. LWT 2023, 182, 114781. [Google Scholar] [CrossRef]
- Yin, L.; Yan, L.; Yu, Q.; Wang, J.; Liu, C.; Wang, L.; Zheng, L. Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and Their Anti-Inflammatory Effects in Intestinal Caco-2 Cells. J. Agric. Food Chem. 2022, 70, 4725–4734. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, 640. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Tan, C.P.; Hamid, N.S.A.; Yusof, S. Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocoll. 2008, 22, 1212–1223. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh, D.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Wang, B.; Zhuang, X.; Deng, Z.B.; Jiang, H.; Mu, J.; Wang, Q.; Xiang, X.; Guo, H.; Zhang, L.; Dryden, G.; et al. Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit. Mol. Ther. 2014, 22, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Feng, S.; Wang, X.; Long, K.; Luo, Y.; Wang, Y.; Ma, J.; Tang, Q.; Jin, L.; Li, X.; et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 2018, 6, e5186. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.B.; Wang, B.; Zhang, L.; et al. Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis. Mol. Ther. 2013, 21, 1345–1357. [Google Scholar] [CrossRef]
- Koog, L.V.D.; Gandek, T.B.; Nagelkerke, A. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization. Adv. Heal. Mater. 2021, 11, 2100639. [Google Scholar] [CrossRef]
- Souza, E.M.C.; Ferreira, M.R.A.; Soares, L.A. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll. 2022, 131, 107781. [Google Scholar] [CrossRef]
- Park, S.J.; Jeon, H.; Yoo, S.-M.; Lee, M.-S. The effect of storage temperature on the biological activity of extracellular vesicles for the complement system. Vitr. Cell. Dev. Biol.-Anim. 2018, 54, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Gelibter, S.; Marostica, G.; Mandelli, A.; Siciliani, S.; Podini, P.; Finardi, A.; Furlan, R. The impact of storage on extracellular vesicles: A systematic study. J. Extracell. Vesicles 2022, 11, e12162. [Google Scholar] [CrossRef]
- Midekessa, G.; Godakumara, K.; Ord, J.; Viil, J.; Lattekivi, F.; Dissanayake, K.; Kopanchuk, S.; Rinken, A.; Andronowska, A.; Bhattacharjee, S.; et al. Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS Omega 2020, 5, 16701–16710. [Google Scholar] [CrossRef]
- Beit-Yannai, E.; Tabak, S.; Stamer, W.D. Physical exosome:exosome interactions. J. Cell. Mol. Med. 2018, 22, 2001–2006. [Google Scholar] [CrossRef]
- Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.B.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D.; et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Shi, L.; Feng, H.; Zhang, Y.; Dong, J.; Shen, Z. Engineered Exosomes Loaded with Triptolide: An Innovative Approach to Enhance Therapeutic Efficacy in Rheumatoid Arthritis. Int. Immunopharmacol. 2024, 129, 111677. [Google Scholar] [CrossRef] [PubMed]
Sample | Element | Atom(%) |
---|---|---|
SeNPs | N | 4.85 |
O | 11.68 | |
Se | 83.46 | |
ELNs | N | 26.43 |
O | 73.57 | |
Se | ND | |
SeNPs-ELNs I | N | 0.79 |
O | 99.21 | |
Se | ND | |
SeNPs-ELNs II | N | 44.37 |
O | 55.46 | |
Se | 0.17 | |
SeNPs-ELNs III | N | 4.48 |
O | 93.8 | |
Se | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Yang, X.; Kelimu, A.; Wu, B.; Hu, W.; Fan, H.; Jing, L.; Yang, D.; Huang, X. Preparation and Characterization of Cyperus-Derived Exosomes Loaded with Selenium Nanoparticles for Selenium Delivery Based on Exosome Protein Quantitation. Foods 2025, 14, 2724. https://doi.org/10.3390/foods14152724
Zhao D, Yang X, Kelimu A, Wu B, Hu W, Fan H, Jing L, Yang D, Huang X. Preparation and Characterization of Cyperus-Derived Exosomes Loaded with Selenium Nanoparticles for Selenium Delivery Based on Exosome Protein Quantitation. Foods. 2025; 14(15):2724. https://doi.org/10.3390/foods14152724
Chicago/Turabian StyleZhao, Dexiu, Xiaojun Yang, Abulimiti Kelimu, Bin Wu, Weicheng Hu, Hongbo Fan, Lei Jing, Dongmei Yang, and Xinhong Huang. 2025. "Preparation and Characterization of Cyperus-Derived Exosomes Loaded with Selenium Nanoparticles for Selenium Delivery Based on Exosome Protein Quantitation" Foods 14, no. 15: 2724. https://doi.org/10.3390/foods14152724
APA StyleZhao, D., Yang, X., Kelimu, A., Wu, B., Hu, W., Fan, H., Jing, L., Yang, D., & Huang, X. (2025). Preparation and Characterization of Cyperus-Derived Exosomes Loaded with Selenium Nanoparticles for Selenium Delivery Based on Exosome Protein Quantitation. Foods, 14(15), 2724. https://doi.org/10.3390/foods14152724