Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (185)

Search Parameters:
Keywords = digestate liquid fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1165 KiB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 285
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

22 pages, 2129 KiB  
Article
Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge
by Rodolfo Daniel Silva-Martínez, Oscar Aguilar-Juárez, Lourdes Díaz-Jiménez, Blanca Estela Valdez-Guzmán, Brenda Aranda-Jaramillo and Salvador Carlos-Hernández
Fermentation 2025, 11(7), 398; https://doi.org/10.3390/fermentation11070398 - 11 Jul 2025
Viewed by 506
Abstract
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are [...] Read more.
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are established to lay the groundwork for further development of feasible industrial-scale projects. In this study, the biochemical hydrogen potential of OFMSW using a 7 L batch reactor at mesophilic conditions was evaluated. Parameters such as pH, redox potential, temperature, alkalinity, total solids, and substrate/inoculum ratio were adjusted and monitored. Biogas composition was analyzed by gas chromatography. The microbial characterization of SS and post-reaction percolate liquids was determined through metagenomics analyses. Results show a biohydrogen yield of 38.4 NmLH2/gVS OFMSW, which forms ~60% of the produced biogas. Aeration was proven to be an efficient inoculum pretreatment method, mainly to decrease the levels of methanogenic archaea and metabolic competition, and at the same time maintain the required total solid (TS) contents for high-solids conditions. The microbial community analysis reveals that biohydrogen production was carried out by specific anaerobic and aerobic bacteria, predominantly dominated by the phylum Firmicutes, including the genus Bacillus (44.63% of the total microbial community), Clostridium, Romboutsia, and the phylum Proteobacteria, with the genus Proteus. Full article
(This article belongs to the Special Issue Valorization of Food Waste Using Solid-State Fermentation Technology)
Show Figures

Figure 1

22 pages, 3729 KiB  
Article
Assessing the Impact of Residual Municipal Solid Waste Characteristics on Screw Press Performance in a Mechanical Biological Treatment Plant Optimized with Anaerobic Digestion
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Sustainability 2025, 17(14), 6365; https://doi.org/10.3390/su17146365 - 11 Jul 2025
Cited by 1 | Viewed by 372
Abstract
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a [...] Read more.
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a screw press. This study focused on evaluating the efficiency of each mechanical pretreatment step by investigating the composition of the residual waste, organic fraction recovery rate, and screw press performance in recovering organic material and biogas to press water. The results showed that 92% of the organic material from the residual waste was recovered into fine fractions after shredding and trommel screening. The pressing experiments produced high-quality press water with less than 3% inert material (0.063–4 mm size). Mass balance analysis revealed that 47% of the input fresh mass was separated into press water, corresponding to 24% of the volatile solids recovered. Biogas yield tests showed that the press water had a biogas potential of 416 m3/ton VS, recovering 38% of the total biogas potential. In simple terms, the screw press produced 32 m3 of biogas per ton of mechanically separated fine fractions and 20 m3 per ton of input residual waste. This low-pressure, single-step screw press efficiently and cost-effectively prepares anaerobic digestion feedstock, making it a promising optimization for both existing and new facilities. The operational configuration of the screw press remains an underexplored area in current research. Therefore, further studies are needed to systematically evaluate key parameters such as screw press pressure (bar), liquid-to-waste (L/ton), and feed rate (ton/h). Full article
Show Figures

Figure 1

19 pages, 801 KiB  
Review
Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies
by Hongbo Liu, Xiang Yuan, Yuxuan Yao, Lijin Yao, Junbo Zhang and Claudia Maurer
Recycling 2025, 10(3), 116; https://doi.org/10.3390/recycling10030116 - 12 Jun 2025
Viewed by 2081
Abstract
The widespread implementation of anaerobic digestion (AD) systems for organic waste treatment is increasingly challenged by emerging contaminants, including microplastics (MPs), antibiotics, and heavy metals (HMs), which exhibit environmental persistence and pose risks to ecological and human health. This review critically examines the [...] Read more.
The widespread implementation of anaerobic digestion (AD) systems for organic waste treatment is increasingly challenged by emerging contaminants, including microplastics (MPs), antibiotics, and heavy metals (HMs), which exhibit environmental persistence and pose risks to ecological and human health. This review critically examines the sources, transformation pathways, and advanced mitigation strategies for these contaminants within AD systems. MPs, primarily derived from fragmented plastics and personal care products, accumulate in digestates and act as vectors for adsorbing toxic additives and pathogens. Antibiotics, introduced via livestock manure and wastewater, exert selective pressures that propagate antibiotic resistance genes (ARGs) while disrupting methanogenic consortia. HMs, originating from industrial and agricultural activities, impair microbial activity through bioaccumulation and enzymatic interference, with their bioavailability modulated by speciation shifts during digestion. To combat these challenges, promising mitigation approaches include the following: (1) bioaugmentation with specialized microbial consortia to enhance contaminant degradation and stabilize HMs; (2) thermal hydrolysis pretreatment to break down MPs and antibiotic residues; (3) chemical passivation using biochar or sulfides to immobilize HMs. Co-digestion practices inadvertently concentrate these contaminants, with MPs and HMs predominantly partitioning into solid phases, while antibiotics persist in both liquid and solid fractions. These findings highlight the urgency of optimizing mitigation strategies to minimize contaminant mobility and toxicity. However, critical knowledge gaps persist regarding the long-term impacts of biodegradable MPs, antibiotic transformation byproducts, and standardized regulatory thresholds for contaminant residues in digestate. This synthesis underscores the necessity for integrated engineering solutions and policy frameworks to ensure the safe resource recovery from AD systems, balancing energy production with environmental sustainability. Full article
Show Figures

Figure 1

25 pages, 2294 KiB  
Article
Anaerobic Digestion of Duckweed Used to Remediate Water Contaminated with Zinc and Ammonium
by Yan Zhang, Xinmin Zhan, Artin Hatzikioseyian and Piet Nicolaas Luc Lens
Appl. Sci. 2025, 15(11), 6212; https://doi.org/10.3390/app15116212 - 31 May 2025
Viewed by 502
Abstract
This study presents an integrated approach for the remediation of zinc- and ammonium-contaminated water using duckweed, followed by the valorization of the harvested biomass through anaerobic digestion for biogas production. Duckweed was cultured with various initial concentrations of zinc (Zn, 0 mg/L, 2.5 [...] Read more.
This study presents an integrated approach for the remediation of zinc- and ammonium-contaminated water using duckweed, followed by the valorization of the harvested biomass through anaerobic digestion for biogas production. Duckweed was cultured with various initial concentrations of zinc (Zn, 0 mg/L, 2.5 mg/L, and 5 mg/L) and ammonium (NH4+-N, 0 mg/L, 20 mg/L, and 40 mg/L). Subsequently, duckweed was subjected to chemical pretreatment with sulfuric acid and the obtained residual solid and liquid fractions were evaluated as substrates for methane production. The liquid fraction consistently yielded higher methane production compared to the solid fraction. However, when duckweed was grown in zinc- and ammonium-rich conditions (2.5 or 5.0 mg/L Zn and 20 mg/L NH4+-N), methane production from the liquid hydrolysate was significantly reduced (120.90 ± 12.03 mL/g COD and 129.82 ± 10.65 mL/g COD, respectively) compared to the control duckweed (201.67 ± 5.72 mL/g COD). The lowest methane yields were observed for duckweed grown solely in zinc (111.32 ± 5.72 and 99.88 ± 10.49 mL/g COD for 2.5 and 5.0 mg/L Zn, respectively), attributed to the inhibitory effect of high dissolved zinc concentrations in the liquid fraction. The applicability of this integrated system is particularly relevant for the agricultural and industrial sectors, where wastewater streams are often co-contaminated with nutrients and trace metals. By demonstrating that acid-pretreated, zinc-rich duckweed biomass can be used for biogas production—provided that process conditions are optimized to mitigate metal inhibition and acidification—this study provides actionable strategies for developing circular, sustainable wastewater treatment systems. The approach not only maximizes pollutant removal and resource recovery, but also addresses environmental safety concerns associated with residual metals in the digestate. Full article
Show Figures

Figure 1

16 pages, 3243 KiB  
Article
Enhanced Nitrification of High-Ammonium Reject Water in Lab-Scale Sequencing Batch Reactors (SBRs)
by Sandeep Gyawali, Eshetu Janka and Carlos Dinamarca
Water 2025, 17(9), 1344; https://doi.org/10.3390/w17091344 - 30 Apr 2025
Viewed by 487
Abstract
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well [...] Read more.
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well as for nitrate capture in biochar to be used as a slow-release fertilizer is proposed. This study attempted to accomplish enhanced nitrification by tuning the operating parameters in two lab-scale sequential-batch reactors (SBRs), which were fed reject water (containing 520 ± 55 mg NH4-N/L). Sufficient alkalinity as per stoichiometric value was needed to maintain the pH and free nitrous acid (FNA) within the optimum range. A nitrogen loading rate (NLR) of 0.14 ± 0.01 kg/m3·d and 3.34 days hydraulic retention time (HRT) helped to achieved complete 100% nitrification in reactor 1 (R1) on day 61 and in reactor 2 (R2) on day 82. After a well-developed bacterial biomass, increasing the NH4-N concentration up to 750 ± 85 mg/L and NLR to 0.23 ± 0.03 kg/m3·d did not affect the nitrification process. Moreover, a feeding sequence once a day provided adequate contact time between nitrifying sludge and reject water, resulting in complete nitrification. It can be concluded that enhanced stable nitrification of reject water can be achieved with quick adjustment of loading, alkalinity, and HRT in SBRs. Full article
Show Figures

Graphical abstract

15 pages, 2402 KiB  
Article
Optimizing Livestock By-Products Storage to Reduce Ammonia and Greenhouse Gas Emissions Using Biochar and Wood Vinegar
by Alessandra Lagomarsino, Edoardo Verga, Massimo Valagussa, Stefano Rispoli, Filippo Rocchi, Claudia Becagli and Alberto Tosca
Atmosphere 2025, 16(5), 509; https://doi.org/10.3390/atmos16050509 - 28 Apr 2025
Viewed by 440
Abstract
The environmental impact of livestock by-products presents significant challenges, particularly in regions with intensive farming and high pollution levels, such as the Po Valley. This study evaluated the effectiveness of biochar and wood vinegar in reducing gaseous emissions during the laboratory-scale storage of [...] Read more.
The environmental impact of livestock by-products presents significant challenges, particularly in regions with intensive farming and high pollution levels, such as the Po Valley. This study evaluated the effectiveness of biochar and wood vinegar in reducing gaseous emissions during the laboratory-scale storage of livestock slurry, digestate, and liquid fractions. Various types and applications of biochar, both with and without wood vinegar, were tested across three independent incubation periods of varying durations. The results showed that ammonia (NH3) emissions were lower from slurry compared to raw digestate and the liquid fraction, while methane (CH4) emissions exhibited the opposite trend. Pyrolysis biochar effectively reduced NH3 emissions by 47% on average when applied as a 5 cm surface layer. However, its effectiveness was inconsistent when mixed into the material or when produced via gasification. Biochar activated with wood vinegar significantly reduced NH3 emissions from both slurry and digestate by 61%, but it also led to increased emissions of CH4 and CO2. Nitrous oxide (N2O) emissions were detected only after at least one month of incubation and were higher when biochar was used as a cover alone or when activated with wood vinegar. Overall, applying biochar as a cover and activating it with wood vinegar proved effective in reducing NH3 emissions during the storage of livestock by-products. However, the effectiveness varied significantly depending on the type of biochar and its method of application, particularly with respect to CH4 emissions, highlighting the need for careful consideration when using wood vinegar-activated biochar. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

19 pages, 2932 KiB  
Article
Combining Novel Membrane Technologies for Sustainable Nutrient Recovery from Digestate: Effect of Solid Content
by Berta Riaño, Verónica Oliveira, Celia Dias-Ferreira, Beatriz Molinuevo-Salces and Maria Cruz García-González
Sustainability 2025, 17(7), 2917; https://doi.org/10.3390/su17072917 - 25 Mar 2025
Viewed by 401
Abstract
Nutrient recovery from anaerobic digestate has gained increasing importance in recent years due to its potential to reduce resource dependency and to close nutrient cycles. The aim of this work is to evaluate the influence of a previous solid–liquid separation phase on nutrient [...] Read more.
Nutrient recovery from anaerobic digestate has gained increasing importance in recent years due to its potential to reduce resource dependency and to close nutrient cycles. The aim of this work is to evaluate the influence of a previous solid–liquid separation phase on nutrient recovery efficiency using two innovative membrane technologies, namely, gas-permeable membranes (GPM) and electrodialytic (ED) processes, applied individually or in combination. The obtained results were compared with those obtained through the centrifugation of the raw digestate and direct chemical precipitation followed by centrifugation in terms of the efficiency in the recovery of N (nitrogen) and P (phosphorous). A total of nine scenarios of digestate processing were compared. GPM technology allowed for the recovery of 65% of the N content in the raw digestate (41.5 g total solids (TS) kg−1) and 67% of N in the liquid fraction (28.0 g TS kg−1), without any significant difference between the two scenarios. However, the results revealed significant differences in the P recovery with ED from the raw digestate (15%) and the liquid fraction (34%), suggesting that phosphorous extraction can be improved by the application of a prior solid–liquid phase. The recovery of N with the GPM technology also enhanced the further recovery of total P with the ED processes. Furthermore, the combination of these technologies allowed for the recovery of N- and P-rich solutions, which were used to precipitate secondary struvite with an efficiency of up to 85%. This research provides a practical framework for sustainable nutrient management, advancing solutions for resource efficiency and environmental stewardship. Full article
Show Figures

Figure 1

13 pages, 300 KiB  
Article
Enhancing Rumen-Undegradable Protein via Processing Techniques in a Dual-Flow Continuous Culture System
by K. E. Loregian, M. J. Silva, S. B. Dourado, J. Guimarães, B. R. Amâncio, E. Magnani, T. H. Silva, R. H. Branco, P. Del Bianco Benedeti and E. M. Paula
Fermentation 2025, 11(2), 94; https://doi.org/10.3390/fermentation11020094 - 12 Feb 2025
Viewed by 1278
Abstract
The use of processing techniques to increase the rumen-undegradable protein (RUP) content of protein meals aims to enhance the nutritional performance of high-performance animals. This study evaluated the effects of various processing techniques applied to peanut and cottonseed meals on ruminal parameters using [...] Read more.
The use of processing techniques to increase the rumen-undegradable protein (RUP) content of protein meals aims to enhance the nutritional performance of high-performance animals. This study evaluated the effects of various processing techniques applied to peanut and cottonseed meals on ruminal parameters using a dual-flow continuous culture system. These two feeds were individually analyzed in two experiments, each one using five fermenters (1297 ± 33 mL) in a 5 × 5 Latin square arrangement with five periods of 10 d each, with 7 d for diet adaptation and 3 d for sample collections. Five treatments were evaluated in each experiment: no processed meal (control); meal thermally treated in an autoclave with xylose (autoclave); meal thermally treated in a conventional oven with xylose (oven); meal thermally treated in a microwave with xylose (microwave); and meal treated with tannin (tannin). All diets contained 60% concentrate (corn, minerals, and processed meal). Fermenters were fed 55 g of dry matter per day, divided equally into two meals at 06:00 and 18:00 h. The solid and liquid dilution rates were adjusted daily to 5.5% and 11% per hour, respectively. On days 8, 9, and 10, 500 mL samples of solid and liquid digesta effluent were collected, mixed, homogenized, and stored at −20 °C. Subsamples of 10 mL were preserved with 0.2 mL of a 50% H2SO4 solution for later determination of NH3-N and volatile fatty acids. Microbial biomass was isolated from the fermenters for chemical analysis at the end of each experimental period. Data were analyzed using the MIXED procedure in SAS with a significance level of α = 0.05. Regarding cottonseed meal, the tannin treatment tended to have a lower true digestibility of DM compared to the control, autoclave, and oven treatments (p = 0.09). Additionally, tannin fermenters exhibited a lower apparent digestibility of CP compared to all other treatments (p = 0.04). The tannin and microwave treatments resulted in the highest flow of dietary nitrogen and the lowest supply of RDP-N (p < 0.01). The control treatment had a greater flow of NH3-N compared to other treatments (p < 0.01). Regarding peanut meal, the autoclave and tannin treatments exhibited the highest acetate concentration (p = 0.03) and the lowest apparent digestibility of CP (p < 0.01). The tannin treatment increased the RUP content without impairing ruminal fermentation and exhibited a greater supply of RDP-N compared to all other treatments (p = 0.02). No significant differences were observed for the other digestibility and fermentation parameters (p > 0.20). Our results indicate that tannin inclusion and microwave processing were the most effective methods for reducing the protein fraction available in the rumen for cottonseed meal. Additionally, tannin inclusion increased the RUP in peanut meal without negatively affecting ruminal fermentation. Full article
(This article belongs to the Special Issue Ruminal Fermentation)
25 pages, 5607 KiB  
Article
Hydroxypropyl Cellulose Polymers as Efficient Emulsion Stabilizers: The Effect of Molecular Weight and Overlap Concentration
by Diana Cholakova, Krastina Tsvetkova, Viara Yordanova, Kristina Rusanova, Nikolai Denkov and Slavka Tcholakova
Gels 2025, 11(2), 113; https://doi.org/10.3390/gels11020113 - 5 Feb 2025
Viewed by 1844
Abstract
Hydroxypropyl cellulose (HPC) is a non-digestible water-soluble polysaccharide used in various food, cosmetic, and pharmaceutical applications. In the current study, the aqueous solutions of six HPC grades, with molecular mass ranging from 40 to 870 kDa, were characterized with respect to their precipitation [...] Read more.
Hydroxypropyl cellulose (HPC) is a non-digestible water-soluble polysaccharide used in various food, cosmetic, and pharmaceutical applications. In the current study, the aqueous solutions of six HPC grades, with molecular mass ranging from 40 to 870 kDa, were characterized with respect to their precipitation temperatures, interfacial tensions (IFTs), rheological properties and emulsifying and stabilization ability in palm (PO) and sunflower (SFO) oil emulsions. The main conclusions from the obtained results are as follows: (1) Emulsion drop size follows a master curve as a function of HPC concentration for all studied polymers, indicating that polymer molecular mass and solution viscosity have a secondary effect, while the primary effect is the fraction of surface-active molecules, estimated to be around 1–2% for all polymers. (2) Stable emulsions were obtained only with HPC polymers with Mw ≥ 400 kDa at concentrations approximately 3.5 times higher than the critical overlap concentration, c*. At PO concentrations beyond 40 wt. % or when the temperature was 25 °C, these emulsions appeared as highly viscous liquids or non-flowing gels. (3) HPC polymers with Mw < 90 kDa were unable to form stable emulsions, as the surface-active molecules cannot provide steric stabilization even at c ≳ 4–5 c*, resulting in drop creaming and coalescence during storage. Full article
(This article belongs to the Special Issue Food Gels: Gelling Process and Innovative Applications)
Show Figures

Graphical abstract

28 pages, 1935 KiB  
Review
Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate
by Magdalena Zielińska and Katarzyna Bułkowska
Membranes 2025, 15(2), 45; https://doi.org/10.3390/membranes15020045 - 2 Feb 2025
Cited by 6 | Viewed by 2704
Abstract
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration [...] Read more.
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and new tools and techniques such as membrane contactors (MCs) with gas-permeable membranes (GPMs) and electrodialysis (ED). Key aspects that are analyzed include the nutrient concentration efficiency, integration with biological processes and strategies to mitigate challenges such as fouling, high energy requirements and scalability. In addition, innovative hybrid systems and pretreatment techniques are examined for their potential to improve the recovery rates and sustainability. The review also addresses the economic and technical barriers to the full-scale application of these technologies and identifies future research directions, such as improving the membrane materials and reducing the energy consumption. The comprehensive assessment of these processes highlights their contribution to sustainable nutrient management and bio-based fertilizer production. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

18 pages, 2024 KiB  
Article
Varied Growth Media Necessitate Different Light Regimes for Indoor Duckweed Cultivation
by Cian Redmond, Rachel O’Mahoney, Marion Blanchard and Neil E. Coughlan
Plants 2025, 14(3), 397; https://doi.org/10.3390/plants14030397 - 28 Jan 2025
Viewed by 2348
Abstract
Controlled indoor cultivation of duckweed plants can support remediation of wastewaters through generation of plant biomass. Despite numerous advantages, indoor cultivation of duckweeds on agri-food wastewaters remains underexplored. Lighting regimes need to be optimised for duckweed growth and affordability of energy consumption, as [...] Read more.
Controlled indoor cultivation of duckweed plants can support remediation of wastewaters through generation of plant biomass. Despite numerous advantages, indoor cultivation of duckweeds on agri-food wastewaters remains underexplored. Lighting regimes need to be optimised for duckweed growth and affordability of energy consumption, as it has been shown that the composition of wastewater growth medium can alter light utilisation. In the present study, four duckweed (Lemna minor) clones were grown under four different light regimes on either optimised half-strength Hutner’s medium or wastewater derived from the liquid fractions of anaerobically digested pig slurry. Cultivation of L. minor was assessed for the four light regimes using a commercial hydroponics plant growth medium in a 3.96 m2 multitiered cultivation system. When cultivated on optimised half-strength Hutner’s medium or diluted pig slurry under laboratory conditions, it appeared that photoperiod rather than light intensity was more important for duckweed growth. Yet, under moderate flow conditions within a larger scale multitiered cultivation system, greater light intensity appeared to support duckweed cultivation irrespective of photoperiod. These findings emphasise the need to move beyond small-scale and static assessments of duckweed before embarking on larger, industry-relevant scales. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

10 pages, 1689 KiB  
Article
Stability and Bioaccessibility of β-Arbutin in Simulated Digestion Conditions
by Łukasz Sęczyk, Danuta Sugier and Piotr Sugier
Appl. Sci. 2025, 15(2), 720; https://doi.org/10.3390/app15020720 - 13 Jan 2025
Viewed by 894
Abstract
In this study, the effects of physicochemical and biochemical digestion conditions on β-arbutin stability and bioaccessibility were investigated. β-Arbutin, at doses that correspond to its natural occurrence in plant materials (i.e., 1–100 mg), was subjected to gastric and intestinal electrolyte treatments (application of [...] Read more.
In this study, the effects of physicochemical and biochemical digestion conditions on β-arbutin stability and bioaccessibility were investigated. β-Arbutin, at doses that correspond to its natural occurrence in plant materials (i.e., 1–100 mg), was subjected to gastric and intestinal electrolyte treatments (application of physicochemical factors) or the whole digestion process (application of physicochemical and biochemical factors). Its content in in vitro bioaccessible fractions was determined using high-performance liquid chromatography (HPLC), and percentage bioaccessibility was calculated. The study shows very high stability and bioaccessibility of β-arbutin in a wide range of applied concentrations. Especially at doses ≥7.5 mg, bioaccessibility was close to 100% regardless of the stage of digestion and the type of treatment (electrolyte treatment or the whole digestion process). The assessment of phytochemicals in terms of their stability and interactions with the digestion environment can help in the future evaluation of their applicability for therapeutic purposes. The high bioaccessibility of β-arbutin within its multifunctional biological activity makes it a promising substance for phytomedicinal applications. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
Show Figures

Graphical abstract

15 pages, 15355 KiB  
Article
Enhanced Hydrothermal Depolymerization with Fe/Ni Loaded C Catalysts for Improving Anaerobic Digestion Performance of Corn Stover
by Xitong Wang, Chenyang Zhu, Hairong Yuan and Xiujin Li
Energies 2025, 18(1), 192; https://doi.org/10.3390/en18010192 - 5 Jan 2025
Cited by 2 | Viewed by 782
Abstract
This research investigated the effects of hydrothermal depolymerization with Fe/Ni loaded C catalysts on the anaerobic digestion (AD) performance of corn stover (CS). CS was depolymerized at 140 °C for 20 min with Fe/C or Ni/C catalysts, and then anaerobically digested. The results [...] Read more.
This research investigated the effects of hydrothermal depolymerization with Fe/Ni loaded C catalysts on the anaerobic digestion (AD) performance of corn stover (CS). CS was depolymerized at 140 °C for 20 min with Fe/C or Ni/C catalysts, and then anaerobically digested. The results showed that the biomethane yield with Fe/C-600 increased by 36.6% compared to that of the control. This increase could be attributed to effective CS depolymerization with catalysts (DC), indicated by modified structures of solid fraction and enriched available components of liquid fraction. SEM analyses showed that CS microphysical structure after DC was obviously disrupted, resulting in more accessibility of cellulose and hemicellulose. The crystallinity index (CrI) of depolymerized CS was significantly reduced from 32.5% to 23.5%, allowing for a more easily biodegradable non-crystalline area to be available for enzymes. Meanwhile, the DC group produced 4.7 times more reducing sugar (RS), and a 3.4 times increase in total volatile fatty acids (VFAs) as compared to the control. Furthermore, these enhancements in DC led to an increased relative abundance of cellulolytic bacteria (Hydrogenispora and Fermentimonas) and anaerobic methanogenic archaea (Methanosarcina) in following the AD process. This could explain the reason for the biomethane yield increase with DC from microbial perspectives. This study demonstrated that hydrothermal depolymerization with Fe/C or Ni/C could provide an effective approach for obtaining more biomethane from CS via AD. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 1429 KiB  
Article
Effect of the Type of Herbal Preparations (Powdered Plant Material vs. Dry Ethanolic Extracts) on the Bioaccessibility of Bearberry (Arctostaphylos uva-ursi (L.) Spreng.) Phytochemicals in Simulated Digestion Conditions
by Łukasz Sęczyk, Danuta Sugier and Piotr Sugier
Molecules 2024, 29(24), 5968; https://doi.org/10.3390/molecules29245968 - 18 Dec 2024
Viewed by 1255
Abstract
The main aim of this study was to determine the potential bioaccessibility of bearberry phytochemicals influenced by the type of herbal preparations. Herbal preparations–powdered plant materials and dry extracts obtained using various ethanol concentrations (0%, 20%, 40%, 60%, 80%, and 100%) were subjected [...] Read more.
The main aim of this study was to determine the potential bioaccessibility of bearberry phytochemicals influenced by the type of herbal preparations. Herbal preparations–powdered plant materials and dry extracts obtained using various ethanol concentrations (0%, 20%, 40%, 60%, 80%, and 100%) were subjected to simulated gastric or gastrointestinal digestion for the evaluation of the bioaccessibility of the phytochemicals. The phytochemical characterization of the plant material, dry extracts, and potentially bioaccessible fractions was performed using high-performance liquid chromatography (HPLC) and spectrophotometric assays. The content of the main compounds, i.e., arbutin, hydroquinone, hyperoside, pentagalloylglucose, and picein, as well as the total phenolic content and in vitro antioxidant activity through the ABTS•+-scavenging activity and Fe3+-reducing power were determined. The bioaccessibility of arbutin, i.e., the main compound in bearberry, was high, in most cases exceeding 95%, and was generally unaffected by the experimental factors; however, the changes in the content of the other compounds, the total phenolic content, and the antioxidant activity were more prominent and influenced by the type of the herbal preparation and the stage of digestion. Given the compromise between the abundance of the bearberry phytochemicals, the antioxidant activity, and the resulting potential bioaccessibility of these phytochemicals, the dry extracts prepared with 40% ethanol seem to be the most promising for phytopharmaceutical purposes and functional food applications. Full article
Show Figures

Graphical abstract

Back to TopTop