Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,240)

Search Parameters:
Keywords = diffractive designs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9047 KB  
Article
Comparative Chemical and Physical Characterization of Biomimetic Versus Commercial Hydroxyapatites for Tooth Enamel Repair
by Marco Lelli, Ismaela Foltran, Rossella Pucci and Fabrizio Tarterini
Biomimetics 2025, 10(10), 672; https://doi.org/10.3390/biomimetics10100672 - 6 Oct 2025
Abstract
Background: Substituted hydroxyapatites (HAps) are widely used in oral-care formulations for enamel repair; however, head-to-head comparisons among commercial grades remain limited. Objective: To compare four commercial HAps: A (Kal-HAp), B (FL-HAp), C (FL-HAp-SC), and D (microRepair®, a biomimetic Zn–carbonate-substituted HAp) and [...] Read more.
Background: Substituted hydroxyapatites (HAps) are widely used in oral-care formulations for enamel repair; however, head-to-head comparisons among commercial grades remain limited. Objective: To compare four commercial HAps: A (Kal-HAp), B (FL-HAp), C (FL-HAp-SC), and D (microRepair®, a biomimetic Zn–carbonate-substituted HAp) and to evaluate their ability to form an enamel-like coating in vitro. Methods: We characterized the powders by X-ray diffraction (crystalline phase, Landi crystallinity index), FTIR-ATR (phosphate/carbonate bands), SEM/EDS (morphology, surface Ca/P), and DLS (particles size, ζ-potential). In vitro, human enamel sections were treated with 5% slurries in artificial saliva; surface coverage was quantified by image analysis on SEM. Results: All commercial materials analyzed in this work were composed of HAp. Differences were observed between HApin terms of crystallinity-range [2 Theta 8.0–60.0°], carbonate substitution (ATR [carbonate group evaluated −870 cm−1]), and particle size (DLS [in a range 0.1–10,000 nm], Z-mean [mV]). On enamel, all samples form a hydroxyapatite layer; coverage differed between groups ([A] 28.83 ± 7.35% vs. [B] 31.11 ± 3.12% vs. [C] 57.20 ± 33.12% vs. [D] 99.90 ± 0.12%), with the biomimetic Zn-carbonate-substituted HAp showing the highest coverage, and the post-treatment Ca/P ratio approached values similar to those of dental enamel. Conclusions: Complementary physic-chemical signatures (crystallinity, carbonate substitution, and morphology) relate to enamel-surface coverage in vitro, providing evidence base for selecting HAp grades for enamel-repair formulations, which is a practical implication for product design. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
14 pages, 1086 KB  
Article
Magnetite-Catalyzed Enhancement of Heavy Oil Oxidation: Thermal and Kinetic Analysis of Fe(acac)3 Effects on High-Temperature Oxidation Reactions
by Younes Djouadi, Mohamed-Said Chemam, Alexey A. Eskin, Alexey V. Vakhin and Mohammed Amine Khelkhal
Catalysts 2025, 15(10), 953; https://doi.org/10.3390/catal15100953 - 4 Oct 2025
Abstract
This study investigates iron acetylacetonate (Fe(acac)3) as a catalyst for enhancing high-temperature oxidation (HTO) during in situ combustion (ISC) of heavy oil. Thermal analysis revealed that Fe(acac)3 decomposes at 360 °C to form crystalline magnetite (Fe3O4). [...] Read more.
This study investigates iron acetylacetonate (Fe(acac)3) as a catalyst for enhancing high-temperature oxidation (HTO) during in situ combustion (ISC) of heavy oil. Thermal analysis revealed that Fe(acac)3 decomposes at 360 °C to form crystalline magnetite (Fe3O4). This transformation precedes the HTO regime. Differential scanning calorimetry demonstrated significantly intensified HTO reactions in catalytic systems, as peak temperatures were lower than those in non-catalytic reactions. Kinetic analysis showed that the catalyst reduces HTO activation energy by 15.6%, substantially increasing reaction rates across the HTO temperature range. X-ray powder diffraction confirmed that the mixed-valence Fe2+/Fe3+ configuration in the magnetite structure facilitates electron transfer during oxidation, enabling more complete combustion at lower temperatures. These findings represent a novel approach to catalyst design, from general activity to temperature-specific activation for a more stable and efficient in situ combustion process. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

13 pages, 2116 KB  
Article
The Role of Anharmonicity in (Anti-)Ferroelectric Alkali Niobates
by Leif Carstensen and Wolfgang Donner
Materials 2025, 18(19), 4593; https://doi.org/10.3390/ma18194593 - 3 Oct 2025
Abstract
NaNbO3 (NN), known for the complexity of its phase transition sequence, is antiferroelectric (AFE) at room temperature, while both LiNbO3 (LN) and KNbO3 (KN) are ferroelectric (FE). The origin of ferroelectricity in ABO3 perovskites is believed to lie in [...] Read more.
NaNbO3 (NN), known for the complexity of its phase transition sequence, is antiferroelectric (AFE) at room temperature, while both LiNbO3 (LN) and KNbO3 (KN) are ferroelectric (FE). The origin of ferroelectricity in ABO3 perovskites is believed to lie in the B-O hybridization, but the origin of antiferroelectricity remains unclear. Recent ab initio studies have shown that the same B-O hybridization is necessary in AFE and proposed an additional, anharmonic contribution to the potential of the A-site atom as the crucial difference between FE and AFE perovskites. We used structure factors obtained from X-ray diffraction experiments in combination with the Maximum Entropy Method to obtain electron densities for LN, KN, and NN and identify differences in their bonding behavior. We present experimental evidence for anharmonic A-site contributions of varying strength in alkali niobates, pointing at a new path for the design of (anti-)ferroelectric materials. Full article
(This article belongs to the Section Energy Materials)
19 pages, 2759 KB  
Article
Lanthanum-Doped Co3O4 Nanocubes Synthesized via Hydrothermal Method for High-Performance Supercapacitors
by Boddu Haritha, Mudda Deepak, Merum Dhananjaya, Obili M. Hussain and Christian M. Julien
Nanomaterials 2025, 15(19), 1515; https://doi.org/10.3390/nano15191515 - 3 Oct 2025
Abstract
The development of high-performance supercapacitor electrodes is crucial to meet the increasing demand for efficient and sustainable energy storage systems. Cobalt oxide (Co3O4), with its high theoretical capacitance, is a promising electrode material, but its practical application is hindered [...] Read more.
The development of high-performance supercapacitor electrodes is crucial to meet the increasing demand for efficient and sustainable energy storage systems. Cobalt oxide (Co3O4), with its high theoretical capacitance, is a promising electrode material, but its practical application is hindered by poor conductivity limitations and structural instability during cycling. In this work, lanthanum La3+-doped Co3O4 nanocubes were synthesized via a hydrothermal approach to tailor their structural and electrochemical properties. Different doping concentrations (1, 3, and 5%) were introduced to investigate their influence systematically. X-ray diffraction confirmed the retention of the spinel phase with clear evidence of La3+ incorporation into the Co3O4 lattice. Also, Raman spectroscopy validated the structural integrity through characteristic Co-O vibrational modes. Scanning electron microscopy analysis revealed uniform cubic morphologies across all samples. The formation of the cubic spinel structure of 1% La3+-doped Co3O4 are confirmed from XPS and TEM studies. Electrochemical evaluation in a 3 M KOH electrolyte demonstrated that 1% La3+-doped Co3O4 nanocubes delivered the highest performance, achieving a specific capacitance of 1312 F g−1 at 1 A g−1 and maintaining a 79.8% capacitance retention and a 97.12% Coulombic efficiency over 10,000 cycles at 5 Ag−1. It can be demonstrated that La3+ doping is an effective strategy to enhance the charge storage capability and cycling stability of Co3O4, offering valuable insights for the rational design of next-generation supercapacitor electrodes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

14 pages, 2398 KB  
Article
Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment
by Yiting Wang, Chiranjit Maiti, Fahim Faysal, Jayanta Bhusan Deb and Jihua Gou
J. Compos. Sci. 2025, 9(10), 537; https://doi.org/10.3390/jcs9100537 - 2 Oct 2025
Abstract
Hydrogen energy offers high energy density and carbon-free combustion, making it a promising fuel for next-generation propulsion and power generation systems. Hydrogen offers approximately three times more energy per unit mass than natural gas, and its combustion yields only water as a byproduct, [...] Read more.
Hydrogen energy offers high energy density and carbon-free combustion, making it a promising fuel for next-generation propulsion and power generation systems. Hydrogen offers approximately three times more energy per unit mass than natural gas, and its combustion yields only water as a byproduct, making it an exceptionally clean and efficient energy source. Materials used in hydrogen-fueled combustion engines must exhibit high thermal stability as well as resistance to corrosion caused by high-temperature water vapor. This study introduces a novel ceramic matrix composite (CMC) designed for such harsh environments. The composite is made of yttria-stabilized zirconia (YSZ) fiber-reinforced silicoboron carbonitride [Si(B)CN]. CMCs were fabricated via the polymer infiltration and pyrolysis (PIP) method. Multiple PIP cycles, which help to reduce the porosity of the composite and enhance its properties, were utilized for CMC fabrication. The Si(B)CN precursor formed an amorphous ceramic matrix, where the presence of boron effectively suppressed crystallization and enhanced oxidation resistance, offering superior performance than their counter part. Thermogravimetric analysis (TGA) confirmed negligible mass loss (≤3%) after 30 min at 1350 °C. The real-time ablation performance of the CMC sample was assessed using a hydrogen torch test. The material withstood a constant heat flux of 185 W/cm2 for 10 min, resulting in a front-surface temperature of ~1400 °C and a rear-surface temperature near 700 °C. No delamination, burn-through, or erosion was observed. A temperature gradient of more than 700 °C between the front and back surfaces confirmed the material’s effective thermal insulation performance during the hydrogen torch test. Post-hydrogen torch test X-ray diffraction indicated enhanced crystallinity, suggesting a synergistic effect of the oxidation-resistant amorphous Si(B)CN matrix and the thermally stable crystalline YSZ fibers. These results highlight the potential of YSZ/Si(B)CN composites as high-performance materials for hydrogen combustion environments and aerospace thermal protection systems. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

26 pages, 5547 KB  
Article
Coffee Waste as a Green Precursor for Iron Nanoparticles: Toward Circular, Efficient and Eco-Friendly Dye Removal from Aqueous Systems
by Cristina Rodríguez-Rasero, Juan Manuel Garrido-Zoido, María del Mar García-Galán, Eduardo Manuel Cuerda-Correa and María Francisca Alexandre-Franco
J. Xenobiot. 2025, 15(5), 158; https://doi.org/10.3390/jox15050158 - 2 Oct 2025
Abstract
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been [...] Read more.
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been investigated. The nanoparticles, generated in situ in the presence of controlled amounts of hydrogen peroxide, were applied in the removal of organic dyes—including methylene blue, methyl orange, and orange G—through a heterogeneous Fenton-like catalytic process. The synthesized nZVI were thoroughly characterized by nitrogen adsorption at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD). A statistical design of experiments and response surface methodology were employed to evaluate the effect of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. Results showed that under optimized conditions, a 100% removal efficiency could be achieved. This work highlights the potential of nZVI synthesized from agro-industrial waste through sustainable routes as an effective solution for water remediation, contributing to circular economy strategies and environmental protection. Full article
Show Figures

Graphical abstract

13 pages, 1618 KB  
Article
Application Potential of Lysinibacillus sp. UA7 for the Remediation of Cadmium Pollution
by Yue Liang, Peng Zhao, Haoran Shi and Feiyan Xue
BioChem 2025, 5(4), 34; https://doi.org/10.3390/biochem5040034 - 2 Oct 2025
Abstract
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation [...] Read more.
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation potential. Methods: The isolated strain UA7 was identified through 16S rDNA gene sequencing. Urease production was enhanced by optimizing the culture conditions, including temperature, dissolved oxygen levels—which were affected by the rotational speed and the design of the Erlenmeyer flask, and the concentration of urea added. Its Cd remediation efficacy was assessed both in water and soil. Results: UA7 was identified as Lysinibacillus sp., achieving peak urease activity of 188 U/mL. The immobilization rates of soluble Cd reached as high as 99.61% and 63.37%, respectively, at initial concentrations of 2000 mg/L in water and 50 mg/kg in soil. The mechanism of Cd immobilization by strain UA7 via MICP was confirmed by the microstructure of the immobilized products with attached bacteria, characteristic absorption peaks, and the formed compound Ca0.67Cd0.33CO3, which were analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The Cd-remediation effect of strain UA7, which reduces lodging in wheat plants, prevents the thinning and yellowing of stems and leaves, and hinders the transition of soluble Cd to the above-ground parts of the plant, was also demonstrated in a pot experiment. Conclusions: Therefore, Lysinibacillus sp. UA7 exhibited high potential for efficiently remediating contaminated Cd. Full article
Show Figures

Graphical abstract

34 pages, 6690 KB  
Article
Assessing the Effect of Mineralogy and Reaction Pathways on Geological Hydrogen (H2) Generation in Ultramafic and Mafic (Basaltic) Rocks
by Abubakar Isah, Hamidreza Samouei and Esuru Rita Okoroafor
Hydrogen 2025, 6(4), 76; https://doi.org/10.3390/hydrogen6040076 - 1 Oct 2025
Abstract
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock [...] Read more.
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock interaction. Pre- and post-interactions, the solid phase was analyzed using X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS), while Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to determine the composition of the aqueous fluids. Results show that not all geologic H2-generating reactions involving ultramafic and mafic rocks result in the formation of serpentine, brucite, or magnetite. Our observations suggest that while mineral transformation is significant and may be the predominant mechanism, there is also the contribution of surface-mediated electron transfer and redox cycling processes. The outcome suggests continuous H2 production beyond mineral phase changes, indicating active reaction pathways. Particularly, in addition to transition metal sites, some ultramafic rock minerals may promote redox reactions, thereby facilitating ongoing H2 production beyond their direct hydration. Fluid–rock interactions also regenerate reactive surfaces, such as clinochlore, zeolite, and augite, enabling sustained H2 production, even without serpentine formation. Variation in reaction rates depends on mineralogy and reaction kinetics rather than being solely controlled by Fe oxidation states. These findings suggest that ultramafic and mafic rocks may serve as dynamic, self-sustaining systems for generating H2. The potential involvement of transition metal sites (e.g., Ni, Mo, Mn, Cr, Cu) within the rock matrix may accelerate H2 production, requiring further investigation. This perspective shifts the focus from serpentine formation as the primary driver of H2 production to a more complex mechanism where mineral surfaces play a significant role. Understanding these processes will be valuable for refining experimental approaches, improving kinetic models of H2 generation, and informing the site selection and design of engineered H2 generation systems in ultramafic and mafic formations. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

16 pages, 4973 KB  
Article
Microstructure Evolution of a TRIP Fe–1.4Si–2.6Mn–0.17C Steel After Intercritical Treating and Its Effect on Mechanical Properties
by Valeria Miranda-Lopez, Manuel Alejandro Beltrán-Zúñiga, Victor M. Lopez-Hirata, Hector J. Dorantes-Rosales and Maribel L. Saucedo-Muñoz
Metals 2025, 15(10), 1096; https://doi.org/10.3390/met15101096 - 1 Oct 2025
Abstract
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. [...] Read more.
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. Microstructural analysis was performed by optical microscopy, scanning electron microscopy, and X-ray diffraction. All heat-treated specimens were mechanically characterized by uniaxial tension and Vickers hardness tests. Thermo-Calc software 2024b was used to analyze the microstructure and phases of heat-treated steel. The microstructural characterization results revealed that the phases and microconstituents were ferrite, austenite, cementite, pearlite, and retained austenite. Thermo-Calc results were consistent with the phases and microconstituents identified for each heat-treatment condition. On the other hand, the tension test results showed that the yield strength and ultimate tensile strength ranged between 690 and 820 MPa and 1190–1255 MPa, respectively, for these heat-treated steels. Likewise, Thermo-Calc proved to be a powerful tool for designing intercritical heat treatments for TRIP steels. Full article
Show Figures

Graphical abstract

12 pages, 1565 KB  
Article
Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics
by Marcin Środa, Szymon Świontek and Maciej Szal
Crystals 2025, 15(10), 859; https://doi.org/10.3390/cryst15100859 - 30 Sep 2025
Abstract
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim [...] Read more.
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim of this study is to obtain a fluoride crystalline phase in the glassy matrix. Such a phase, due to its low phonon energy, increases the probability of radiative transitions (decay) of optically active lanthanide dopants, thereby enhancing luminescence. The scope of the work included the preparation of two glass series with varying amounts of La2O3 and LaF3 to determine the glass-forming range and to identify the characteristic temperatures of the glasses using Differential Thermal Analysis. It was found that increasing the La2O3 content above 10 mol% in this glass leads to exceeding the target melting temperature (1400 °C) of the glass batch. In contrast, the introduction of 10 mol% LaF3 prevents the formation of homogeneous glass. Based on these results, a controlled crystallization process was designed, and the resulting crystalline phases were identified using X-ray diffraction (XRD). In the base glass, two crystalline phases were identified: Na2O·Al2O3·SiO2 and Na2SiO3. For the La-oxide series, the crystallization of NaAlSiO4 and La2SiO5 was confirmed. In the case of the La-fluoride series, the formation of LaF3 was observed. It was found that by introducing an appropriate amount of LaF3 (7.5 mol%) into the aluminosilicate network, it is possible to obtain a glass suitable for controlled crystallization, leading to the formation of a low-phonon LaF3 phase. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
25 pages, 11406 KB  
Article
Experimental Optimization, Scaling Up, and Characterization for Continuous Aragonite Synthesis from Lime Feedstock Using Magnesium Chloride as Chemical Inducer
by Mohammad Ghaddaffi M. Noh, Nor Yuliana Yuhana, Mohammad Hafizuddin Hj Jumali, Mohammad Syazwan Onn and Ruzilah Sanum
Processes 2025, 13(10), 3142; https://doi.org/10.3390/pr13103142 - 30 Sep 2025
Abstract
The current state of the art research, and latest engineering technology application in the synthesis of the aragonite crystalline phase of calcium carbonate is presented here. Aragonite crystalline products are highly valuable in selected industries, such as medical and personal care, and in [...] Read more.
The current state of the art research, and latest engineering technology application in the synthesis of the aragonite crystalline phase of calcium carbonate is presented here. Aragonite crystalline products are highly valuable in selected industries, such as medical and personal care, and in food additives using MgCl2 as a chemical inducer. The outcome of this literature review provides the outlook of the available research whitespace opportunity in optimizing the current process parameters and in ensuring that sustainable and economically feasible continuous production of aragonite products could be achieved. One of the major improvements proposed in this study is to investigate the methods of synthesizing aragonite crystalline particles using a continuous mineral carbonation reactor system and optimizing the operating parameters. An experimental design was established to identify all the main effects to maximize aragonite production. The three main effects investigated are the effect of feedstock or reactant concentration, the effect of reaction temperature, and the effect of reaction time towards aragonite yield in the final products synthesized. An optimized operating parameter for maximum aragonite yield at 95% purity was proposed at the reaction temperature T of 90 °C, reaction time t of 10 min, and feedstock ratio Mg-to-Ca of 0.4. Subsequently, the continuous reactor system was designed, operated, and tested for at least 50 h operation, where the lime CaO(s) feed was successfully converted into aragonite products with purity between 75 and 81%. The properties and quality of the aragonite produced were analytically characterized from the following laboratory methods which include the thermalgravimetric analysis, TGA; X-Ray Diffraction, XRD; scanning electron microscopy, SEM; and induction coupled plasma, ICP. TGA mass balance after decomposition suggests that 44% of the mass balance represents the weight of CO2 sequestered in the aragonite crystalline carbonates. Hence, the aragonite crystalline carbonates can be labeled as a green product which sequesters 0.44 kg of CO2 per 1 kg of precipitated aragonite products synthesized. Interestingly, SEM microscopy characterization results revealed that the aragonite precipitate has a physical morphology of needle-like shape with a good aspect ratio (length/diameter) AR of between 8.67 micron and 11.35 micron. The properties were found to be suitable for paper making fillers, medical, personal care, and food additive applications. Full article
43 pages, 1523 KB  
Article
Comparison of Cu (II) Adsorption Using Fly Ash and Natural Sorbents During Temperature Change and Thermal–Alkaline Treatment
by Anna Ďuricová, Veronika Štefanka Prepilková, Michal Sečkár, Marián Schwarz, Dagmar Samešová, Tomáš Murajda, Peter Andráš, Adriana Eštoková, Miriama Čambál Hološová, Juraj Poništ, Andrea Zacharová, Jarmila Schmidtová, Darina Veverková and Adrián Biroň
Materials 2025, 18(19), 4552; https://doi.org/10.3390/ma18194552 - 30 Sep 2025
Abstract
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of [...] Read more.
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of design, affordability or high efficiency. The latest scientific knowledge has shown that the use of waste and natural adsorbents is economical and effective. This study aimed to evaluate the efficiency of the adsorption process of natural and waste materials—zeolite, bentonite and fly ash—under the influence of temperature and modification of these adsorbents. The novelty of this study resides in an adjustment of the modification method of adsorbents compared to previous research: thermal–alkaline treatment versus hydrothermal one. Another novelty is the use of modified fly ash from biomass combustion as an adsorbent in comparison with the previously used fly ash from coal combustion. The modification of the adsorbents made the adsorption process more effective at all experimental concentrations. The characterisation of adsorbent samples was performed using X-ray diffraction (XRD). The parameters of the adsorption isotherms, Langmuir, Freundlich and Temkin, were estimated by nonlinear regression analysis. The adsorption capacity of Cu (II) of fly ash was comparable to natural adsorbents. Adsorption processes were better described by pseudo-second-order kinetics. At the end of this study, the suitability of using the adsorbents to reduce the concentration of Cu (II) in neutral mine effluents was observed in the following order at 30 °C: unmodified fly ash > modified bentonite > unmodified zeolite. At the temperatures of 20 °C and 10 °C, the same trend of the suitability of adsorbents use was confirmed: modified bentonite > modified zeolite > modified fly ash. The practical applicability of this study lies in the expansion of knowledge in the field of adsorption processes and in the improvement of waste management efficiency of heating plants not only in Slovakia, but also globally. Full article
(This article belongs to the Special Issue Materials for Heavy Metals Removal from Waters (2nd Edition))
22 pages, 2908 KB  
Article
Experimental Investigation of Thermal Influence on Shear Strength and Swelling Pressure of Soil Mixtures
by İnan Keskin, Ahmet Necim, Amir Hossein Vakili and Selman Kahraman
Sustainability 2025, 17(19), 8778; https://doi.org/10.3390/su17198778 - 30 Sep 2025
Abstract
The influence of temperature on soil behavior has traditionally attracted attention for geotechnical engineers, especially in the design of engineering works and nuclear facilities located in regions with severe cold climates. This research emphasizes exploring how temperature variations affect essential soil properties that [...] Read more.
The influence of temperature on soil behavior has traditionally attracted attention for geotechnical engineers, especially in the design of engineering works and nuclear facilities located in regions with severe cold climates. This research emphasizes exploring how temperature variations affect essential soil properties that are significant for the resilience and long-term stability of geotechnical structures. For this reason, the influence of temperature on the soil’s mechanical and physical attributes was comprehensively evaluated. To achieve this, soil mixtures consisting of two blends prepared as 70% bentonite with 30% sand and 70% sand with 30% bentonite (70B30S and 70S30B) were exposed to temperatures ranging from –45 °C to +105 °C for durations of 24 and 48 h. The study examined how temperature variations affect the mechanical, physical, and mineralogical features of soil through consistency limit tests, direct shear tests, swelling pressure tests, and X-ray diffraction (XRD) analysis. It was observed that the internal friction angle (Φ) declined as temperature increased in both mixtures, particularly in specimens with higher sand content. Similarly, cohesion (c) values decreased with increasing temperature, more significantly in mixtures with higher bentonite content. Additionally, the consistency limits and swelling pressure decreased as temperature rose. This trend was evident in both mixtures. Swelling pressure results showed that from 20 °C to 105 °C, the pressure rose with temperature in bentonite-rich soils, while it decreased in sand-rich soils. Conversely, at subzero conditions (–10 to –45 °C), swelling pressure increased as temperature decreased in mixtures dominated by bentonite, while it dropped in those rich in sand. Full article
Show Figures

Figure 1

18 pages, 5239 KB  
Article
Hybrid Reflection/Transmission Diffraction Grating Solar Sail
by Ryan M. Crum, Prateek R. Srivastava, Qing X. Wang, Tasso R. M. Sales and Grover A. Swartzlander
Photonics 2025, 12(10), 972; https://doi.org/10.3390/photonics12100972 - 30 Sep 2025
Abstract
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side [...] Read more.
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side facets. Predictions of radiation pressure are compared for analytical geometrical optics and numerical finite difference time domain approaches. Our calculations across a spectral irradiance band from 0.5 to 3 μm suggest the transverse force in a sun facing configuration reaches 48% when the refractive index of the sail material is 1.5. Diffraction measurements at a representative optical wavelength of 633 nm support our predictions. Full article
(This article belongs to the Special Issue Diffractive Optics and Its Emerging Applications)
Show Figures

Figure 1

27 pages, 4484 KB  
Article
Formulation of Self-Emulsifying Microemulsion for Acemetacin Using D-Optimal Design: Enteric-Coated Capsule for Targeted Intestinal Release and Bioavailability Enhancement
by Zaineb Z. Abduljaleel and Khalid K. Al-Kinani
Pharmaceutics 2025, 17(10), 1270; https://doi.org/10.3390/pharmaceutics17101270 - 27 Sep 2025
Abstract
Objectives: The current work aimed to formulate and optimize a self-emulsifying microemulsion drug delivery system (SEME) for acemetacin (ACM) to increase ACM’s aqueous solubility, improve oral bioavailability, and reduce gastrointestinal complications. Methods: Screening of components capable of enhancing ACM solubility was [...] Read more.
Objectives: The current work aimed to formulate and optimize a self-emulsifying microemulsion drug delivery system (SEME) for acemetacin (ACM) to increase ACM’s aqueous solubility, improve oral bioavailability, and reduce gastrointestinal complications. Methods: Screening of components capable of enhancing ACM solubility was performed. Pseudo-ternary phase diagrams were performed to choose the optimal formulation ratio. The ACM-SEME formulation’s composition was optimized using D-optimal design. Oil, Smix, and water percentages were used as independent variables, while globule size, polydispersity index, ACM content, and in vitro ACM release after 90 min were used as dependent variables. Also, thermodynamic stability and transmittance percentage tests were studied. Zeta potential was assessed for the optimized ACM-SEME formulation, which was then subjected to spray drying. The dried ACM-SEME was characterized using field-emission scanning electron microscope, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The dried ACM-SEME formulation was filled into hard gelatin capsules and coated with Eudragit L100 to achieve pH-dependent release. Results: The antinociceptive activity of ACM-SEME was evaluated in vivo using Eddy’s hot plate test in rats, revealing a significant prolongation of the noxious time threshold compared to control groups. Ex vivo permeation studies across rat intestinal tissue confirmed the enhanced permeation potential of the ACM-SEME. Conclusions: It was concluded that the developed ACM-SEME system demonstrated improved physicochemical properties, enhanced release behavior, and superior therapeutic performance, highlighting its potential as a safer and more effective oral delivery platform for ACM. Full article
(This article belongs to the Special Issue Advances in Emulsifying Drug Delivery Systems)
Show Figures

Graphical abstract

Back to TopTop