Experimental Investigation of Thermal Influence on Shear Strength and Swelling Pressure of Soil Mixtures
Abstract
1. Introduction
2. Material and Method
- I.
- Freezing Conditions: The soil samples were securely wrapped and placed within a freezing chamber for a specified duration, maintaining a constant temperature as outlined in the test protocols provided in Figure 2. Following this, the soil samples were applied to swelling pressure tests, box shear tests, and consistency limit tests.
- II.
- Heating Conditions: The soil samples were carefully wrapped and placed within a laboratory oven chamber for a duration of 24 and 48 h, maintaining a constant temperature as specified by the test protocols provided in Figure 2. Subsequently, the soil samples underwent swelling pressure tests, box shear tests, and consistency limit tests.
3. Findings and Discussions
3.1. Atterberg Limit
3.2. Shear Box Experiment Findings
- The cohesion values decreased as temperatures increased, with approximately a 61% decrease for 70S30B and a 73% decrease for 70B30S. The Φ values also generally decreased as the temperature rose, but the change was not linear. There was approximately a 77% decrease between +30 °C and +105 °C for the sand-dominant mixture and a 73% decrease for the high bentonite content mixture. Both mixtures showed decreased cohesion values and shear strength with increasing temperatures, with a greater decline observed in the high-bentonite mixtures. The Φ values decreased with higher temperatures in both mixtures, with the high sand samples experiencing more pronounced decreases compared to the high bentonite samples.
- After a 24 h exposure to freezing conditions, the c values and shear strength increased with decreasing temperature, along with an increase in Φ values. After a 48 h exposure to freezing conditions, c values and shear strength still increased with lower temperatures, but Φ values decreased (Figure 7).
3.3. Swelling Pressure
3.4. XRD Analysis Findings
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupray, F.; François, B.; Laloui, L. Analysis of the FEBEX Multi-Barrier System Including Thermoplasticity of Unsaturated Bentonite. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 399–422. [Google Scholar] [CrossRef]
- Ausseur, J.Y.; Sauty, J.P. Thermal Exploitation of Shallow Aquifers. Guide for the Preparation of Preliminary Studies of Technical Feasibility (INIS-FR--16-0158). France. 1982. Available online: https://www.osti.gov/etdeweb/biblio/22448274 (accessed on 28 December 2024).
- Bourne-Webb, P.; Burlon, S.; Javed, S.; Kürten, S.; Loveridge, F. Analysis and Design Methods for Energy Geostructures. Renew. Sustain. Energy Rev. 2016, 65, 402–419. [Google Scholar] [CrossRef]
- Ocłoń, P.; Bittelli, M.; Cisek, P.; Kroener, E.; Pilarczyk, M.; Taler, D.; Rao, R.V.; Vallati, A. The Performance Analysis of a New Thermal Backfill Material for Underground Power Cable System. Appl. Therm. Eng. 2016, 108, 233–250. [Google Scholar] [CrossRef]
- Ochsner, K. Carbon Dioxide Heat Pipe in Conjunction with a Ground Source Heat Pump (GSHP). Appl. Therm. Eng. 2008, 28, 2077–2082. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Yan, S.; Zhang, M.; Xia, J.; Xie, Y. Effect of Freeze-Thaw Cycles on Mechanical and Porosity Properties of Recycled Construction Waste Mixtures. Constr. Build. Mater. 2019, 210, 347–363. [Google Scholar] [CrossRef]
- Helms, D. Readings in the History of the Soil Conservation Service. Soil. Conserv. Serv. 1991, 16, 24–28. [Google Scholar]
- Campanella, R.G.; Mitchell, J.K. Influence of Temperature Variations on Soil Behavior. J. Soil Mech. Found. Div. 1968, 94, 709–734. [Google Scholar] [CrossRef]
- Towhata, I.; Kuntiwattanaku, P.; Seko, I.; Ohishi, K. Volume Change of Clays Induced by Heating as Observed in Consolidation Tests. Soils Found. 1993, 33, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Houston, S.L.; Lin, H. Da A Thermal Consolidation Model for Pelagic Clays. Mar. Geotechnol. 2008, 7, 79–98. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Clayton, C. Effect of Temperature on Triaxial Behavior of a Sand with Disaccharide. Period. Polytech. Civ. Eng. 2016, 60, 603–609. [Google Scholar] [CrossRef]
- Qiu, P.; Tang, L.; Zheng, J.; Wang, W.; Li, Y.; Li, G.; Jin, L.; Yu, Y.; Duan, X. Experimental Investigations on the Shear Strength and Creep Properties of Soil-Rock Mixture under Freeze-Thaw Cycles. Cold Reg. Sci. Technol. 2024, 217, 104037. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, A.; Guan, J.; Zhang, W.; Sun, B. Influence of Frozen Soil Site Conditions on Ground Motion Characteristics in Cold Regions. Cold Reg. Sci. Technol. 2023, 217, 104019. [Google Scholar] [CrossRef]
- Alonso, E.E.; Romero, E.; Hoffmann, C.; García-Escudero, E. Expansive Bentonite-Sand Mixtures in Cyclic Controlled-Suction Drying and Wetting. Eng. Geol. 2005, 81, 213–226. [Google Scholar] [CrossRef]
- Nowamooz, H.; Masrouri, F. Hydromechanical Behaviour of an Expansive Bentonite/Silt Mixture in Cyclic Suction-Controlled Drying and Wetting Tests. Eng. Geol. 2008, 101, 154–164. [Google Scholar] [CrossRef]
- Ma, Q.; Shu, H.; Xiao, H.; Huang, C. Temperature-Controlled Triaxial Compression Test of Tire Strip-Reinforced Silty Clay. Arab. J. Sci. Eng. 2020, 45, 4247–4256. [Google Scholar] [CrossRef]
- Yan, Y.; Chang, D.; Liu, J.; Xu, A.; Zhang, M.; Xie, Y. Design and Validation of a New Temperature-Controlled Large-Scale Direct Shear Apparatus. Cold Reg. Sci. Technol. 2023, 216, 103992. [Google Scholar] [CrossRef]
- Hoseinimighani, H.; Szendefy, J. A Review on Effect of Temperature Change on Mechanical Parameters of Fine Soils. Period. Polytech. Civ. Eng. 2021, 65, 825–839. [Google Scholar] [CrossRef]
- Cui, Y.J.; Yahia-Aissa, M.; Delage, P. A Model for the Volume Change Behaviour of Heavily Compacted Swelling Clays. Eng. Geol. 2002, 64, 233–250. [Google Scholar] [CrossRef]
- Cuisinier, O.; Masrouri, F. Hydromechanical Behaviour of a Compacted Swelling Soil over a Wide Suction Range. Eng. Geol. 2005, 81, 204–212. [Google Scholar] [CrossRef]
- Lloret, A.; Villar, M.V.; Sánchez, M.; Gens, A.; Pintado, X.; Alonso, E.E. Mechanical Behaviour of Heavily Compacted Bentonite under High Suction Changes. Géotechnique 2003, 53, 27–40. [Google Scholar] [CrossRef]
- Azhar, M.; Mondal, S.; Tang, A.M.; Singh, A.K. Effect of Temperature on the Mechanical Properties of Fine-Grained Soils—A Review. Geothermics 2024, 116, 102863. [Google Scholar] [CrossRef]
- Taleb Bahmed, I.; Harichane, K.; Ghrici, M.; Boukhatem, B.; Rebouh, R.; Gadouri, H. Prediction of Geotechnical Properties of Clayey Soils Stabilised with Lime Using Artificial Neural Networks (ANNs). Int. J. Geotech. Eng. 2019, 13, 191–203. [Google Scholar] [CrossRef]
- Carrière, S.R.; Jongmans, D.; Chambon, G.; Bièvre, G.; Lanson, B.; Bertello, L.; Berti, M.; Jaboyedoff, M.; Malet, J.P.; Chambers, J.E. Rheological Properties of Clayey Soils Originating from Flow-like Landslides. Landslides 2018, 15, 1615–1630. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, C.; Tang, C.S.; Xie, Y.H.; Yin, L.Y.; Cheng, Q.; Shi, B. Bio-Remediation of Desiccation Cracking in Clayey Soils through Microbially Induced Calcite Precipitation (MICP). Eng. Geol. 2020, 264, 105389. [Google Scholar] [CrossRef]
- Rodríguez, M.A. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories. Jom 2014, 66, 503–525. [Google Scholar] [CrossRef]
- Poinssot, C.; Gin, S. Long-Term Behavior Science: The Cornerstone Approach for Reliably Assessing the Long-Term Performance of Nuclear Waste. J. Nucl. Mater. 2012, 420, 182–192. [Google Scholar] [CrossRef]
- Kim, J.S.; Kwon, S.K.; Sanchez, M.; Cho, G.C. Geological Storage of High Level Nuclear Waste. KSCE J. Civ. Eng. 2011, 15, 721–737. [Google Scholar] [CrossRef]
- Guo, X.; Gin, S.; Frankel, G.S. Review of Corrosion Interactions between Different Materials Relevant to Disposal of High-Level Nuclear Waste. Npj Mater. Degrad. 2020, 4, 34. [Google Scholar] [CrossRef]
- Güllü, H.; Khudir, A. Effect of Freeze-Thaw Cycles on Unconfined Compressive Strength of Fine-Grained Soil Treated with Jute Fiber, Steel Fiber and Lime. Cold Reg. Sci. Technol. 2014, 106–107, 55–65. [Google Scholar] [CrossRef]
- Gharemahmudli, S.; Sadeghi, S.H.; Najafinejad, A.; Darki, B.Z.; Kheirfam, H.; Behbahani, A.M. Effect of a Freezing-thawing Cycle on Overall and Inter-variability of Runoff and Soil Loss Components for a Loess Soil. Preprint, 2021. [Google Scholar] [CrossRef]
- Xie, S.; Qu, J.; Lai, Y.; Zhou, Z.; Xu, X. XEffects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau. J. Mt. Sci. 2015, 12, 999–1009. [Google Scholar] [CrossRef]
- Viklander, P.; Eigenbrod, D. Stone Movements and Permeability Changes in till Caused by Freezing and Thawing. Cold Reg. Sci. Technol. 2000, 31, 151–162. [Google Scholar] [CrossRef]
- Brandl, H. Energy Foundations and Other Thermo-Active Ground Structures. Géotechnique 2015, 56, 81–122. [Google Scholar] [CrossRef]
- Scaringi, G.; Loche, M. A Thermo-Hydro-Mechanical Approach to Soil Slope Stability under Climate Change. Geomorphology 2022, 401, 108108. [Google Scholar] [CrossRef]
- Shibasaki, T.; Matsuura, S.; Okamoto, T. Experimental Evidence for Shallow, Slow-Moving Landslides Activated by a Decrease in Ground Temperature. Geophys. Res. Lett. 2016, 43, 6975–6984. [Google Scholar] [CrossRef]
- Leroueil, S. Natural Slopes and Cuts: Movement and Failure Mechanisms. Geotechnique 2001, 51, 197–243. [Google Scholar] [CrossRef]
- Di Donna, A.; Ferrari, A.; Laloui, L. Experimental Investigations of the Soil–Concrete Interface: Physical Mechanisms, Cyclic Mobilization, and Behaviour at Different Temperatures. Can. Geotech. J. 2016, 53, 659–672. [Google Scholar] [CrossRef]
- Yazdani, S.; Helwany, S.; Olgun, G. Influence of Temperature on Soil-Pile Interface Shear Strength. Geomech. Energy Environ. 2019, 18, 69–78. [Google Scholar] [CrossRef]
- Yavari, N.; Tang, A.M.; Pereira, J.-M.; Hassen, G. Effect of Temperature on the Shear Strength of Soils and the Soil–Structure Interface. Can. Geotech. J. 2016, 53, 1186–1194. [Google Scholar] [CrossRef]
- Cekerevac, C.; Laloui, L. Experimental analysis of the cyclic behaviour of kaolin at high temperature. Géotechnique 2004, 60, 651–655. [Google Scholar] [CrossRef]
- Abuel-Naga, H.M.; Bergado, D.T.; Bouazza, A.; Pender, M.J. Thermal Conductivity of Soft Bangkok Clay from Laboratory and Field Measurements. Eng. Geol. 2009, 105, 211–219. [Google Scholar] [CrossRef]
- Zhang, C.L.; Conil, N.; Armand, G. Thermal Effects on Clay Rocks for Deep Disposal of High-Level Radioactive Waste. J. Rock Mech. Geotech. Eng. 2017, 9, 463–478. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, F.; Li, H.; Cheng, D.; Sun, B. The Influence Mechanism of Freeze-Thaw on Soil Erosion: A Review. Water 2021, 13, 1010. [Google Scholar] [CrossRef]
- Yu, H.; Chen, W.; Gong, Z.; Ma, Y.; Chen, G.; Li, X. Influence of Temperature on the Hydro-Mechanical Behavior of Boom Clay. Int. J. Rock Mech. Min. Sci. 2018, 108, 189–197. [Google Scholar] [CrossRef]
- Xiao, S.; Suleiman, M.T.; Elzeiny, R.; Xie, H.; Al-Khawaja, M. Soil-Concrete Interface Properties Subjected to Temperature Changes and Cycles Using Direct Shear Tests. In Geotechnical Frontiers 2017: Geotechnical Materials, Modeling, and Testing; American Society of Civil Engineers: Orlando, FL, USA, 2017; pp. 175–183. [Google Scholar] [CrossRef]
- Hueckel, T.; Pellegrini, R. Modeling of thermal failure of saturated clays. In Proceedings of the International Symposium on Numerical Models in Geomechanics, NUMOG, Niagara Falls, ON, Canada, 8–11 May 1989; pp. 81–90. [Google Scholar]
- Hueckel, T.; Baldi, G. Thermoplasticity of Saturated Clays: Experimental Constitutive Study. J. Geotech. Eng. 1990, 116, 1778–1796. [Google Scholar] [CrossRef]
- Graham, J.; Tanaka, N.; Crilly, T.; Alfaro, M. Modified Cam-Clay modelling of temperature effects in clays. Can. Geotech. J. 2001, 38, 608–621. [Google Scholar] [CrossRef]
- Morin, R.; Silva, A.J. The Effects of High Pressure and High Temperature on Some Physical Properties of Ocean Sediments. J. Geophys. Res. 1984, 89, 511–526. [Google Scholar] [CrossRef]
- Sultan, N.; Delage, P.; Cui, Y.J. Temperature Effects on the Volume Change Behaviour of Boom Clay. Eng. Geol. 2002, 64, 135–145. [Google Scholar] [CrossRef]
- Youssef, M.S.; El Ramli, A.H.; El Demery, M. Relationships between shear strength, consolidation, liquid limit and plastic limit for remoulded clays. In Proceedings of the 6th International Conference on Soil Mechanical, Montreal, QC, Canada, 8–15 September 1965; pp. 126–129. [Google Scholar]
- Ctori, P. The Effects of Temperature on the Physical Properties of Cohesive Soil. Ground Eng. 1989, 22, 62–73. [Google Scholar]
- Beles, A.A.; Stanculescu, I.I. Thermal Treatment as a Means of Improving the Stability of Earth Masses. Geotechnique 1958, 8, 158–165. [Google Scholar] [CrossRef]
- Hamisi, H.; Park, S.E.; Choi, B.H.; An, Y.T.; Lee, J. Influence of firing temperature on physical properties of same clay and pugu kaolin for ceramic tiles application. Int. J. Mater. Sci. Appl. 2014, 3, 143–146. [Google Scholar] [CrossRef]
- Kuntiwattanakul, P.; Towhata, I.; Ohishi, K.; Seko, I. Temperature Effects on Undrained Shear Characteristics of Clay. Soils Found. 1995, 35, 147–162. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Cui, S.; Jia, L.; Zhou, L.; Chen, H. Engineering Properties of GMZ Bentonite-Sand as Buffer/Backfilling Material for High-Level Waste Disposal. Eur. J. Environ. Civ. Eng. 2012, 16, 1216–1237. [Google Scholar] [CrossRef]
- Yu, W.B.; Lai, Y.M.; Sun, Z.Z.; Jin, H.J.; Zhang, X.F. Experimental Studies on the Ripped-Rock Revetment Embankment in Permafrost Regions of the Qinghai-Tibet Railroad. Cold Reg. Sci. Technol. 2006, 45, 1–7. [Google Scholar] [CrossRef]
- Akinwunmi, B.; Sun, L.; Hirvi, J.T.; Kasa, S.; Pakkanen, T.A. Influence of Temperature on the Swelling Pressure of Bentonite Clay. Chem. Phys. 2019, 516, 177–181. [Google Scholar] [CrossRef]
- Kale, R.C.; Ravi, K. Influence of Thermal Loading on Index and Physicochemical Properties of Barmer Bentonite. Appl. Clay Sci. 2018, 165, 22–39. [Google Scholar] [CrossRef]
- Yilmaz, G. The Effects of Temperature on the Characteristics of Kaolinite and Bentonite. Sci. Res. Essays 2011, 6, 1928–1939. [Google Scholar] [CrossRef]
- Jefferson, I.; Rogers, C.D.F. Liquid Limit and the Temperature Sensitivity of Clays. Eng. Geol. 1998, 49, 95–109. [Google Scholar] [CrossRef]
- Estabragh, A.R.; Khosravi, F.; Javadi, A.A. Effect of Thermal History on the Properties of Bentonite. Environ. Earth Sci. 2016, 75, 657. [Google Scholar] [CrossRef]
- Yılmaz, G. The Effect of Heating on Engineering Properties of Kaolinite and Bentonite. In Proceedings of the National Clay Symposium, Istanbul, Turkey, 15–18 September 1999; Volume 9, pp. 225–232. [Google Scholar]
- Tan, Ö.; Yılmaz, L.; Zaimoğlu, A.S. Variation of some engineering properties of clays with heat treatment. Mater. Lett. 2004, 58, 1176–1179. [Google Scholar] [CrossRef]
- Ding, X.H.; Luo, B.; Zhou, H.T.; Chen, Y.H. Generalized Solutions for Advection–Dispersion Transport Equations Subject to Time- and Space-Dependent Internal and Boundary Sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Chen, Z.; Liu, Z.; Luo, B.; Ding, X.; Xu, L.; Deng, Z.; Lu, Z. Analysis of Triaxial Shear Properties of Mudstone Coarse-Grained Soils Considering Penetrating Erosion Effects. Transp. Geotech. 2025, 50, 101469. [Google Scholar] [CrossRef]
- Cekerevac, C. Thermal Effects on the Mechanical Behaviour of Saturated Clays. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2003. [Google Scholar]
- Baldi, G.; Hueckel, T.; Pellegrini, R. Thermal Volume Changes of the Mineral–Water System in Low-Porosity Clay Soils. Can. Geotech. J. 2011, 25, 807–825. [Google Scholar] [CrossRef]
- Liu, L.; Cai, G.; Liu, X.; Liu, S.; Puppala, A.J. Evaluation of Thermal-Mechanical Properties of Quartz Sand–Bentonite–Carbon Fiber Mixtures as the Borehole Backfilling Material in Ground Source Heat Pump. Energy Build. 2019, 202, 109407. [Google Scholar] [CrossRef]
- Cekerevac, C.; Laloui, L. Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 209–228. [Google Scholar] [CrossRef]
- Oliva, M.; Fritz, M. Erratum to “Permafrost Degradation in a Warmer Earth: Challenges and Perspectives”, [Curr Opin Environ Sci Health, Volume 5, October 2018, Pages 14–18]. Curr. Opin. Environ. Sci. Health 2018, 20, 100231. [Google Scholar] [CrossRef]
- Butkovich, T.R. Ultimate Strength of Ice. Cold Reg. Sci. Technol. 1954, 9, 12. [Google Scholar] [CrossRef]
- Neuber, H.; Waiters, R. Zum Mechanischen Verhalten Gefrorener Lockergesteine Bei Dreiaxialer Druckbelastung. Geolog. Landesamt Nordrh.-Westfal. 1970, 18, 79–87. [Google Scholar]
- Heiner Umdreh’n Orpheus! Arid. Land. Res. Manag. 2021, 35, 311–329. [CrossRef]
- Tsytovich, N.A. Physical Phenomena and Processes in Freezing, Frozen and Thawing Soils; no. NRC-TT-1164; National Research Council of Canada: Ottawa, ON, Canada, 1963; 109p. [Google Scholar] [CrossRef]
- Anderson, D.M.; Hoekstra, P. Migration of Interlamellar Water During Freezing and Thawing of Wyoming Bentonite1. Soil Sci. Soc. Am. J. 1965, 29, 498. [Google Scholar] [CrossRef]
- Ouhadi, V.R.; Yong, R.N.; Goodarzi, A.R.; Safari-Zanjani, M. Effect of temperature on the re-structuring of the microstructure and geo-environmental behaviour of smectite. Appl. Clay Sci. 2010, 47, 2–9. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
SiO2 | 65.43% |
Al2O3 | 17.88% |
Fe2O3 | 5.77% |
CaO + MgO | 6.55% |
K2O | 0.80% |
Na2O | 2.44% |
Sieve Analysis | 10% (75 micron) |
Moisture | 9 |
E | 310 |
Soils | LL | PL | PI |
---|---|---|---|
Bentonite | 300 | 49 | 251 |
70B30S | 223 | 46 | 177 |
70S30B | 103 | 40 | 63 |
Temperature (°C) | Liquid Limit | Plastic Limit | Plasticity Index | |||
---|---|---|---|---|---|---|
70B30S | 70S30B | 70B30S | 70S30B | 70B30S | 70S30B | |
Labaratuvar | ||||||
−45 | 144 | 83 | 69 | 34 | 75 | 49 |
−30 | 135 | 72 | 68 | 33 | 67 | 39 |
−20 | 122 | 65 | 64 | 31 | 58 | 34 |
−10 | 104 | 59 | 62 | 30 | 42 | 29 |
+30 | 210 | 105 | 44 | 36 | 166 | 69 |
+40 | 197 | 95 | 43 | 35 | 154 | 60 |
+50 | 185 | 91 | 42 | 34 | 143 | 57 |
+60 | 172 | 88 | 41 | 33 | 131 | 55 |
+70 | 160 | 85 | 39 | 32 | 121 | 53 |
+80 | 155 | 82 | 37 | 31 | 118 | 51 |
+90 | 149 | 79 | 35 | 30 | 114 | 49 |
+105 | 145 | 77 | 33 | 29 | 111 | 48 |
Mixtures | c (kPa) | Φ (°) |
---|---|---|
70B30S | 131 | 29.8 |
70S30B | 125 | 32.2 |
Temperature °C | Curing Time | Test Time | c (kPa) | Φ (°) | ||
---|---|---|---|---|---|---|
70B30S | 70S30B | 70B30S | 70S30B | |||
−45 | 48 h | Directly | 26 | 30 | 2.3 | 3.0 |
−30 | 35 | 44 | 2.7 | 3.8 | ||
−20 | 43 | 53 | 2.1 | 3.1 | ||
−10 | 46 | 58 | 3.4 | 4.2 | ||
−45 | 48 h | After being exposed | 49 | 60 | 6.2 | 2.8 |
−30 | 45 | 53 | 3.4 | 2.5 | ||
−20 | 43 | 48 | 4.5 | 2.7 | ||
−10 | 41 | 43 | 4.1 | 1.6 | ||
−45 | 24 h | Directly | 48 | 44 | 3.2 | 1.8 |
−30 | 44 | 41 | 5.2 | 2.9 | ||
−20 | 41 | 35 | 4.1 | 1.6 | ||
−10 | 38 | 24 | 6.1 | 5.3 | ||
30 | Directly | 123 | 113 | 26.0 | 21.0 | |
40 | 111 | 99 | 19.5 | 7.1 | ||
50 | 93 | 82 | 11.4 | 12.3 | ||
60 | 72 | 65 | 13.2 | 8.1 | ||
70 | 65 | 59 | 9.8 | 14.5 | ||
80 | 55 | 53 | 3.2 | 2.4 | ||
90 | 44 | 49 | 5.5 | 8.7 | ||
105 | 33 | 44 | 7.1 | 4.8 |
Mixtures | Swelling Pressure (kPa) |
---|---|
70B30S | 126 |
70S30B | 262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keskin, İ.; Necim, A.; Vakili, A.H.; Kahraman, S. Experimental Investigation of Thermal Influence on Shear Strength and Swelling Pressure of Soil Mixtures. Sustainability 2025, 17, 8778. https://doi.org/10.3390/su17198778
Keskin İ, Necim A, Vakili AH, Kahraman S. Experimental Investigation of Thermal Influence on Shear Strength and Swelling Pressure of Soil Mixtures. Sustainability. 2025; 17(19):8778. https://doi.org/10.3390/su17198778
Chicago/Turabian StyleKeskin, İnan, Ahmet Necim, Amir Hossein Vakili, and Selman Kahraman. 2025. "Experimental Investigation of Thermal Influence on Shear Strength and Swelling Pressure of Soil Mixtures" Sustainability 17, no. 19: 8778. https://doi.org/10.3390/su17198778
APA StyleKeskin, İ., Necim, A., Vakili, A. H., & Kahraman, S. (2025). Experimental Investigation of Thermal Influence on Shear Strength and Swelling Pressure of Soil Mixtures. Sustainability, 17(19), 8778. https://doi.org/10.3390/su17198778