Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = differential charge pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6786 KiB  
Article
Hybrid Radio-Frequency-Energy- and Solar-Energy-Harvesting-Integrated Circuit for Internet of Things and Low-Power Applications
by Guo-Ming Sung, Shih-Hao Chen, Venkatesh Choppa and Chih-Ping Yu
Electronics 2025, 14(11), 2192; https://doi.org/10.3390/electronics14112192 - 28 May 2025
Viewed by 487
Abstract
This paper proposes a hybrid energy-harvesting chip that utilizes both radio-frequency (RF) energy and solar energy for low-power applications and extended service life. The key contributions include a wide input power range, a compact chip area, and a high maximum power conversion efficiency [...] Read more.
This paper proposes a hybrid energy-harvesting chip that utilizes both radio-frequency (RF) energy and solar energy for low-power applications and extended service life. The key contributions include a wide input power range, a compact chip area, and a high maximum power conversion efficiency (PCE). Solar energy is a clean and readily available source. The hybrid energy harvesting system has gained popularity by combining RF and solar energy to improve overall energy availability and efficiency. The proposed chip comprises a matching network, rectifier, charge pump, DC combiner, overvoltage protection circuit, and low-dropout voltage regulator (LDO). The matching network ensures maximum power delivery from the antenna to the rectifier. The rectifier circuit utilizes a cross-coupled differential drive rectifier to convert radio frequency energy into DC voltage, incorporating boosting functionality. In addition, a solar harvester is employed to provide an additional energy source to extend service time and stabilize the output by combining it with the radio-frequency source using a DC combiner. The overvoltage protection circuit safeguards against high voltage passing from the DC combiner to the LDO. Finally, the LDO facilitates the production of a stable output voltage. The entire circuit is simulated using the Taiwan Semiconductor Manufacturing Company 0.18 µm 1P6M complementary metal–oxide–semiconductor standard process developed by the Taiwan Semiconductor Research Institute. The simulation results indicated a rectifier conversion efficiency of approximately 41.6% for the proposed radio-frequency-energy-harvesting system. It can operate with power levels ranging from −1 to 20 dBm, and the rectifier circuit’s output voltage is within the range of 1.7–1.8 V. A 0.2 W monocrystalline silicon solar panel (70 × 30 mm2) was used to generate a supplied voltage of 1 V. The overvoltage protection circuit limited the output voltage to 3.6 V. Finally, the LDO yielded a stable output voltage of 3.3 V. Full article
Show Figures

Figure 1

22 pages, 19106 KiB  
Article
Enhanced Charge Pump Architecture with Feedback Supply Selector for Optimized Switching Performance
by Cristian Stancu, Anca Andreea Mitu, Teodora Ionescu, Andrei Neacsu, Lidia Dobrescu and Dragos Dobrescu
Electronics 2025, 14(7), 1484; https://doi.org/10.3390/electronics14071484 - 7 Apr 2025
Viewed by 839
Abstract
Conventional operational amplifier designs often experience parameter performance issues during the transition between complementary input differential stages, which restricts the full rail-to-rail common mode voltage swing. This paper presents an innovative charge pump architecture featuring a feedback supply selector that optimizes the transition [...] Read more.
Conventional operational amplifier designs often experience parameter performance issues during the transition between complementary input differential stages, which restricts the full rail-to-rail common mode voltage swing. This paper presents an innovative charge pump architecture featuring a feedback supply selector that optimizes the transition performance. The proposed approach employs a switched-capacitor technique to boost the supply voltage by 1.5 V relative to the input voltage, thereby enabling the use of a single pMOS differential input stage. The novel supply selector dynamically chooses the maximum available voltage between the external supply and the boosted output, ensuring efficient transistor switching and improved biasing. Schematic-level and post-layout simulations in a 250 nm CMOS process validate the design under varied load currents, supply voltages, temperatures, and process corners. Results show a significant reduction in output voltage ripple, with a maximum value of 48 mV achieved post-layout, and enhanced overall efficiency, even under higher load currents. This architecture provides a robust and scalable solution for advanced operational amplifiers, particularly in fields where high performance and stability are critical. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

38 pages, 1875 KiB  
Article
Reduced-Order Model for Cell Volume Homeostasis: Application to Aqueous Humor Production
by Riccardo Sacco, Greta Chiaravalli, Giovanna Guidoboni, Anita Layton, Gal Antman, Keren Wood Shalem, Alice Verticchio, Brent Siesky and Alon Harris
Math. Comput. Appl. 2025, 30(1), 13; https://doi.org/10.3390/mca30010013 - 24 Jan 2025
Cited by 1 | Viewed by 1015
Abstract
The ability of a cell to keep its volume constant irrespective of intra- and extracellular conditions is essential for cellular homeostasis and survival. The purpose of this study is to elaborate a theoretical model of cell volume homeostasis and to apply it to [...] Read more.
The ability of a cell to keep its volume constant irrespective of intra- and extracellular conditions is essential for cellular homeostasis and survival. The purpose of this study is to elaborate a theoretical model of cell volume homeostasis and to apply it to a simulation of human aqueous humor (AH) production. The model assumes a cell with a spherical shape and only radial deformation satisfying the property that the cell volume in rest conditions equals that of the cell couplets constituting the ciliary epithelium of the human eye. The cytoplasm is described as a homogeneous mixture containing fluid, ions, and neutral solutes whose evolution is determined by net production mechanisms occurring in the intracellular volume and by water and solute exchange across the membrane. Averaging the balance equations over the cell volume leads to a coupled system of nonlinear ordinary differential equations (ODEs) which are solved using the θ-method and the Matlab function ode15s. Simulation tests are conducted to characterize the set of parameters corresponding to baseline conditions in AH production. The model is subsequently used to investigate the relative importance of (a) impermeant charged proteins; (b) sodium–potassium (Na+/K+) pumps; (c) carbonic anhydrase (CA) in the AH production process; and (d) intraocular pressure. Results suggest that (a) and (b) play a role; (c) lacks significant weight, at least for low carbon dioxide values; and (d) plays a role for the elevated values of intraocular pressure. Model results describe a higher impact from charged proteins and Na+/K+ ATPase than CA on AH production and cellular volume. The computational virtual laboratory provides a method to further test in vivo experiments and machine learning-based data analysis toward the prevention and cure of ocular diseases such as glaucoma. Full article
Show Figures

Graphical abstract

21 pages, 7222 KiB  
Article
Design of Multi-Time Programmable Intellectual Property with Built-In Error Correction Code Function Based on Bipolar–CMOS–DMOS Process
by Longhua Li, Soonwoo Kwon, Dohoon Kim, Dongseob Kim, Panbong Ha, Doojin Lee and Younghee Kim
Electronics 2025, 14(1), 68; https://doi.org/10.3390/electronics14010068 - 27 Dec 2024
Viewed by 1479
Abstract
The coupling capacitor of the MTP cell used in this paper is an NCAP-type capacitor that has only a source contact, and the layout size of the unit cell is 6.184 μm × 6.295 μm (=38.93 μm2), which is 0.44% smaller [...] Read more.
The coupling capacitor of the MTP cell used in this paper is an NCAP-type capacitor that has only a source contact, and the layout size of the unit cell is 6.184 μm × 6.295 μm (=38.93 μm2), which is 0.44% smaller than the MTP cell that uses the coupling capacitor of the conventional NMOS transistor type that has both a source contact and a drain contact. In addition, a 4 Kb MTP IP with a built-in ECC function using an extended Hamming code capable of single-error correction and double-error detection was designed for safety considerations. In this paper, a new test algorithm is proposed to test whether the ECC function operates normally in the MTP IP with a built-in ECC function, and it is confirmed through a test using logic tester equipment that the output data DOUT[7:0] and the error flag ERROR_FLAG[1:0] are exactly the same in the cases of no error, a single-bit error, and a double-bit error. In addition, by sharing a current-controlled ring oscillator circuit that uses a current-starved inverter in the VPP, VNN, and VNNL charge pumping circuits that share a single ring oscillator in the erase and program operation modes of the MTP IP and using the regulated VPVR as power, the pumping capacitor size is reduced, and a new technology to reduce ripple voltage variation is proposed. Meanwhile, in the VNN level detector circuit that detects whether the VNN has reached the target voltage, a folded-cascode CMOS OP-AMP whose output swing voltage is almost VDD is used instead of a differential amplifier circuit with a PMOS differential input pair to ensure that normal VNN level detection operation occurs. Full article
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals
by Svetlana A. Bereznaya, Ruslan A. Redkin, Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su and Sergey Yu. Sarkisov
Crystals 2023, 13(11), 1562; https://doi.org/10.3390/cryst13111562 - 1 Nov 2023
Cited by 2 | Viewed by 2028
Abstract
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands [...] Read more.
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands were attributed to the defect states induced by Ga vacancies in two charge states, having the energy positions at 0.23 and 0.61 eV above the valence band maximum at T = 300 K. The optical pump-terahertz probe technique (OPTP) was employed to study the dark and photoexcited terahertz conductivity and charge carrier recombination dynamics at two-photon excitation of as-grown and 9 MeV electron-irradiated GaSe crystals. The measured values of the differential terahertz transmission at a specified photoexcitation condition were used to extract the terahertz charge carrier mobilities. The determined terahertz charge carrier mobility values were ~46 cm2/V·s and ~14 cm2/V·s for as-grown and heavily electron-irradiated GaSe crystals, respectively. These are quite close to the values determined from the Lorentz–Drude–Smith fitting of the measured dielectric constant spectra. The photo-injection-level-dependent charge carrier lifetimes were determined from the measured OPTP data, bearing in mind the model injection-level dependencies of the recombination rates governed by interband and trap-assisted Auger recombination, bulk and surface Shockley–Read–Hall (SRH) recombination and interband radiative transitions in the limit of a high injection level. It was found that GaSe possesses a long charge carrier lifetime (a~1.9 × 10−6 ps−1, b~2.7 × 10−21 cm3ps−1 and c~1.3 × 10−37 cm6ps−1), i.e., τ~0.53 μs in the limit of a relatively low injection, when the contribution from SRH recombination is dominant. The electron irradiation of as-grown GaSe crystals reduced the charge carrier lifetime at a high injection level due to Auger recombination through radiation-induced defects. It was found that the terahertz spectra of the dielectric constants of as-grown and electron-irradiated GaSe crystals can be fitted with acceptable accuracy using the Lorentz model with the Drude–Smith term accounting for the free-carrier conductivity. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

14 pages, 3511 KiB  
Article
A Wideband and Low Reference Spur PLL with Clock Feedthrough Suppressed and Low Current Mismatch Charge Pump and Symmetrical CML Divider
by Yingxi Wang, Yueyue Liu, Haotang Xu, Zhongmao Li and Zhiqiang Li
Electronics 2023, 12(19), 4164; https://doi.org/10.3390/electronics12194164 - 7 Oct 2023
Cited by 4 | Viewed by 2199
Abstract
This paper presents the design and performance analysis of a wideband charge-pump phase-locked loop (CPPLL) characterized by low reference spur and low phase noise. The proposed CPPLL, operating as a wideband phase-locked loop (PLL) with a reference frequency of 100 MHz, achieves a [...] Read more.
This paper presents the design and performance analysis of a wideband charge-pump phase-locked loop (CPPLL) characterized by low reference spur and low phase noise. The proposed CPPLL, operating as a wideband phase-locked loop (PLL) with a reference frequency of 100 MHz, achieves a wide tuning range of 40% from 2.0 GHz to 3.0 GHz. A clock feedthrough suppressed charge pump with additional bias current branches is used to reduce the PLL’s loop reference spur. The 4-stage current mode logic (CML) divide-by-2/3 circuit is utilized in the frequency divider to achieve high-speed frequency division. The circuit of an AND gate and latch in the 2/3 divider adopts a full differential symmetric structure to minimize the phase error of high-frequency differential signals. The voltage-controlled oscillator (VCO) is designed to provide a wide tuning range while optimizing the trade-off between the phase noise and power consumption. The fabricated PLL is implemented using a 0.13 µm CMOS process. Experimental measurements reveal a reference spur of −74.39 dBc at an oscillation frequency of 2.4 GHz. Moreover, the CPPLL achieves phase noise of −102.55 dBc/Hz@100 kHz and −127.15 dBc/Hz@1 MHz, while consuming 33.6 mW under a 1.2 V supply voltage. The integrated root-mean-square (rms) jitter, measured from 10 kHz to 10 MHz, is 340.99 fs, and the figure-of-merit (FoM) is −234.08 dB at a carrier frequency of 2.4 GHz, highlighting the potential of the proposed PLL for integrated circuit applications. Full article
Show Figures

Figure 1

12 pages, 459 KiB  
Article
Coherent Spin Dynamics of Electrons in CsPbBr3 Perovskite Nanocrystals at Room Temperature
by Sergey R. Meliakov, Evgeny A. Zhukov, Evgeniya V. Kulebyakina, Vasilii V. Belykh and Dmitri R. Yakovlev
Nanomaterials 2023, 13(17), 2454; https://doi.org/10.3390/nano13172454 - 30 Aug 2023
Cited by 8 | Viewed by 2281
Abstract
Coherent spin dynamics of charge carriers in CsPbBr3 perovskite nanocrystals are studied in a temperature range of 4–300 K and in magnetic fields of up to 500 mT using time-resolved pump-probe Faraday rotation and differential transmission techniques. We detect electron spin Larmor [...] Read more.
Coherent spin dynamics of charge carriers in CsPbBr3 perovskite nanocrystals are studied in a temperature range of 4–300 K and in magnetic fields of up to 500 mT using time-resolved pump-probe Faraday rotation and differential transmission techniques. We detect electron spin Larmor precession in the entire temperature range. At temperatures below 50 K, hole spin precession is also observed. The temperature dependences of spin-related parameters, such as Landè g-factor and spin dephasing time are measured and analyzed. The electron g-factor increases with growing temperature, which can not be described by the temperature-induced band gap renormalization. We find that photocharging of the nanocrystals with either electrons or holes depends on the sample cooling regime, namely the cooling rate and illumination conditions. The type of the charge carrier provided by the photocharging can be identified via the carrier spin Larmor precession. Full article
(This article belongs to the Special Issue Semiconductor Quantum Dots: Synthesis, Properties and Applications)
Show Figures

Figure 1

16 pages, 6531 KiB  
Article
A Cryo-CMOS, Low-Power, Low-Noise, Phase-Locked Loop Design for Quantum Computers
by Kewei Xin, Mingche Lai, Fangxu Lv, Kaile Guo, Zhengbin Pang, Chaolong Xu, Geng Zhang, Wenchen Wang and Meng Li
Electronics 2023, 12(15), 3237; https://doi.org/10.3390/electronics12153237 - 26 Jul 2023
Cited by 2 | Viewed by 2354
Abstract
This paper analyzes the performance requirements that need to be met by a clock generator applied to a low-temperature quantum computer and analyzes the negative effects on the clock generator circuit under low-temperature conditions. In order to meet the performance requirements proposed in [...] Read more.
This paper analyzes the performance requirements that need to be met by a clock generator applied to a low-temperature quantum computer and analyzes the negative effects on the clock generator circuit under low-temperature conditions. In order to meet the performance requirements proposed in this paper and suppress the negative effects brought about by the low temperature, a clock generator for ultra-low-temperature quantum computing is designed. This clock generator is designed by using F-CLASS Voltage Controlled Oscillator (VCO), power filter, tail resistor, differential charge pump, and other techniques. And the noise characteristics of the clock generator are analyzed by Impulse Sensitive Function (ISF) and simulation results. After simulation tests, the average power consumption of the clock generator designed in this paper is 7 mW, the phase noise is −121 dBc/Hz@1 MHz, and the jitter is 62 fs. The performance of the clock generator meets the performance requirements proposed in this paper, and the reduction in the corner frequency proves that the circuit will have better performance at low temperatures. Full article
(This article belongs to the Section Quantum Electronics)
Show Figures

Figure 1

17 pages, 6942 KiB  
Article
Possibilities of Checking Water Content in Porous Geopolymer Materials Using Impedance Spectroscopy Methods
by Dariusz Mierzwiński, Janusz Walter and Dominika Wanat
Materials 2023, 16(14), 5190; https://doi.org/10.3390/ma16145190 - 24 Jul 2023
Cited by 8 | Viewed by 1404
Abstract
The porous geopolymer has been tested for its content of water using impedance methods. The pores of the material were filled with distilled water using a desiccator and a vacuum pump. An analysis of differential scanning calorimetry (DSC) was carried out in the [...] Read more.
The porous geopolymer has been tested for its content of water using impedance methods. The pores of the material were filled with distilled water using a desiccator and a vacuum pump. An analysis of differential scanning calorimetry (DSC) was carried out in the next step to check the content of water, porosity and approximate value of specific heat of the geopolymer. Additionally, mercury porosimeter has been used for checking the porosity. The geopolymer material characterized in this way was subjected to impedance tests aimed at developing a quick method for assessing the water content in the material. Impedance measurements have been realized on an electrochemical workstation applying a 50 mV non-destructive amplitude of the potential and a frequency range of 1 Hz to 100 kHz. Change in the module of impedance and the phase shift angle were measured while the material was dried out. Significant differences were observed. The obtained graphs were simulated using a schematic model consisting of constant phase elements (CPEs) and a resistor (R). These values showed mechanisms of charge conduction. A simple method for assessing the water content of a porous geopolymer has been proposed in this paper. The real and imaginary impedance values were shown in Nyquist graphs. These graphs have characteristic maxima that move according to a linear equation with decreasing water content. Changes in Nyqiust charts are clearly visible even with small changes in the water content of the material and can be very useful for assessing it. Full article
Show Figures

Figure 1

12 pages, 2632 KiB  
Article
Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart
by Yanwei Li, Marcel Bauer, Sebastian Kelz, Heiko Strack, Jonas Simolka, Christian Mazur, Maximilian Sommer, Anna Mocker and Ralf Srama
Appl. Sci. 2023, 13(7), 4441; https://doi.org/10.3390/app13074441 - 31 Mar 2023
Cited by 3 | Viewed by 2318
Abstract
In this paper, we describe the upgrade of a small electrostatic dust accelerator located at the University of Stuttgart. The newly developed dust source, focusing lens, differential detector and linac stage were successfully installed and tested in the beam line. The input voltage [...] Read more.
In this paper, we describe the upgrade of a small electrostatic dust accelerator located at the University of Stuttgart. The newly developed dust source, focusing lens, differential detector and linac stage were successfully installed and tested in the beam line. The input voltage range of the dust source was extended from 0–20 kV to 0–30 kV. A newly developed dust detector with two differential charge sensitive amplifiers is employed to monitor particles with speeds from several m/s to several km/s and with surface charges above 0.028 fC. The post-stage linac provides an additional acceleration ability with a total voltage of up to 120 kV. The entire system of this dust accelerator works without protection gas and without a complex high voltage terminal. The volumes to be pumped down are small and can be quickly evacuated. The new system was used to accelerate micron- and submicron-sized metal particles or coated mineral materials. Improvements in the acceleration system allow for a wider variety of dust materials and new applications. Full article
Show Figures

Figure 1

11 pages, 2354 KiB  
Article
Differential Frequency Exploration of Vortex Light in Lithium Niobate Crystals
by Xing Wei, Samuel Kesse and Ballipalli Chandra Babu
Crystals 2023, 13(1), 154; https://doi.org/10.3390/cryst13010154 - 16 Jan 2023
Viewed by 2645
Abstract
In recent years, Orbital Angular Momentum (OAM) beams have been applied in optical communications to improve channel capacity and spectral efficiency. However, in practical applications, OAM information is often imprinted on short-wavelength light beams. How to completely transfer this information to the O-band [...] Read more.
In recent years, Orbital Angular Momentum (OAM) beams have been applied in optical communications to improve channel capacity and spectral efficiency. However, in practical applications, OAM information is often imprinted on short-wavelength light beams. How to completely transfer this information to the O-band to achieve long-distance transmission has not been conveniently achieved through most traditional methods. We studied the differential frequency experiment of OAM-carrying beams from both theoretical and experimental facets. In the periodic polarization 0 class matched lithium niobate crystal, the difference in frequency between the incident 1950 nm strong pump light and the 780 nm weak input light is achieved, resulting in output light in the O band. The polarization period of the crystal is 20 μm, and the best phase matching is achieved when the temperature is maintained at 41.2 °C. At this time, 780 nm vortex light produces 1300 nm vortex light, and the nonlinear conversion efficiency reaches 0.1387% (topological charge number l = 5). During the experiment, momentum, energy, and topological charge are all conserved. Our experiment successfully converted vortex light at 780 nm into vortex light at 1300 nm, paving the way for the subsequent conversion of 780 nm single photons generated by quantum dots carrying OAM into OAM photons in the communication band. Full article
(This article belongs to the Special Issue Optical Field Modulation Based on Liquid Crystals and Beyond)
Show Figures

Figure 1

18 pages, 8809 KiB  
Article
Evaluate Asymmetric Peristaltic Pumping Drug Carrying Image in Biological System: Measure Multiphase Flows in Biomedical Applications
by Nahid Fatima, Nouman Ijaz, Arshad Riaz, ElSayed M. Tag El-Din and Sadia Samar Ali
Symmetry 2022, 14(11), 2437; https://doi.org/10.3390/sym14112437 - 17 Nov 2022
Cited by 32 | Viewed by 1992
Abstract
The proposed model of drug delivery has been developed as a medication methodology for the direct treatment of diseased body tissues. The mathematical model is built upon the particulate peristaltic transport of an electrical conducting Jeffrey fluid within an asymmetric duct. The flow [...] Read more.
The proposed model of drug delivery has been developed as a medication methodology for the direct treatment of diseased body tissues. The mathematical model is built upon the particulate peristaltic transport of an electrical conducting Jeffrey fluid within an asymmetric duct. The flow takes place under the action of slip effects due to the occurrence of magnetohydrodynamics, which is generally known as electrical resistance and the energy released by charged particles as they make collisions with other particles. Transportation of drug particles along with Jeffry fluid due to peristaltic pumping in a rectangular duct is demonstrated. Magnetic force is utilized for the control of the process of pumping to the flow path at the right position. Taking into consideration the flow conditions and assumptions, the derivation of the system of partial differential equations of the flow is described. The eigenfunction expansion method is used to establish the solutions, and then the data are graphically displayed to imagine the effects of different parameters. It can be professed that the velocity component for Jeffrey fluid flow is decreased because of magnetic force, volume fraction size, and wall compliance. Heat and mass transfer with nanoparticles of different shapes of particles to extend this work. Full article
Show Figures

Figure 1

12 pages, 5724 KiB  
Communication
Design and Implementation of Charge Pump Phase-Locked Loop Frequency Source Based on GaAs pHEMT Process
by Ranran Zhao, Yuming Zhang, Hongliang Lv and Yue Wu
Sensors 2022, 22(2), 504; https://doi.org/10.3390/s22020504 - 10 Jan 2022
Cited by 4 | Viewed by 3943
Abstract
This paper realized a charge pump phase locked loop (CPPLL) frequency source circuit based on 0.15 μm Win GaAs pHEMT process. In this paper, an improved fully differential edge-triggered frequency discriminator (PFD) and an improved differential structure charge pump (CP) are proposed respectively. [...] Read more.
This paper realized a charge pump phase locked loop (CPPLL) frequency source circuit based on 0.15 μm Win GaAs pHEMT process. In this paper, an improved fully differential edge-triggered frequency discriminator (PFD) and an improved differential structure charge pump (CP) are proposed respectively. In addition, a low noise voltage-controlled oscillator (VCO) and a static 64:1 frequency divider is realized. Finally, the phase locked loop (PLL) is realized by cascading each module. Measurement results show that the output signal frequency of the proposed CPPLL is 3.584 GHz–4.021 GHz, the phase noise at the frequency offset of 1 MHz is −117.82 dBc/Hz, and the maximum output power is 4.34 dBm. The chip area is 2701 μm × 3381 μm, and the power consumption is 181 mw. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 1697 KiB  
Communication
A 0.8 V, 5.3–5.9 GHz Sub-Sampling PLL with 196.5 fsrms Integrated Jitter and −251.6 dB FoM
by Shi Zuo, Jianzhong Zhao and Yumei Zhou
Sensors 2021, 21(22), 7648; https://doi.org/10.3390/s21227648 - 18 Nov 2021
Cited by 1 | Viewed by 3798
Abstract
This paper proposes a hybrid dual path sub-sampling phase-locked loop (SSPLL), including a proportional path (P-path) and an integral path (I-path), with 0.8 V supply voltage. A differential master–slave sampling filter (MSSF), replacing the sub-sampling charge pump (SSCP), composed the P-path to avoid [...] Read more.
This paper proposes a hybrid dual path sub-sampling phase-locked loop (SSPLL), including a proportional path (P-path) and an integral path (I-path), with 0.8 V supply voltage. A differential master–slave sampling filter (MSSF), replacing the sub-sampling charge pump (SSCP), composed the P-path to avoid the degraded feature caused by the decreasing of the supply voltage. The I-path is built by a rail-to-rail SSCP to suppress the phase noise of the voltage-controlled oscillator (VCO) and avoid the trouble of locking at the non-zero phase offset (as in type-I PLL). The proposed design is implemented in a 40-nm CMOS process. The measured output frequency range is from 5.3 to 5.9 GHz with 196.5 fs root mean square (RMS) integrated jitter and 251.6 dB FoM. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 20052 KiB  
Article
A 33 MHz Fast-Locking PLL with Programmable VCO and Automatic Band Selection for Clock Generator Application
by Neeraj Agarwal, Neeru Agarwal, Chih-Wen Lu and Masahito Oh-e
Electronics 2021, 10(14), 1743; https://doi.org/10.3390/electronics10141743 - 20 Jul 2021
Cited by 1 | Viewed by 5730
Abstract
This paper presents a prototype of an auto-ranging phase-locked loop (PLL) with low jitter noise over a wide operating frequency range using the multiband programmable voltage-controlled oscillator (VCO) gain stage with automatic band selection. We successfully reduce the VCO gain (Kvco) and retain [...] Read more.
This paper presents a prototype of an auto-ranging phase-locked loop (PLL) with low jitter noise over a wide operating frequency range using the multiband programmable voltage-controlled oscillator (VCO) gain stage with automatic band selection. We successfully reduce the VCO gain (Kvco) and retain the desired frequency band. The proposed PLL comprises a prescaler, phase frequency detector (PFD), charge pump (CP), programmable VCO and automatic band selection circuit. The PLL prototype with all subblocks was implemented using the TSMC 0.18 μm 1P6M process. Contrary to conventional PLL architectures, the proposed architecture incorporates a real-time check and automatic band selection circuit in the secondary loop. A high-performance dual-loop PLL wide tuning range was realized using an ASIC digital control circuit. A suitable way to maintain the Kvco low is to use multiple discrete frequency bands to accommodate the required frequency range. To maintain a low Kvco and fast locking, the automatic frequency band selection circuit also has two indigenous, most probable voltage levels. The proposed architecture provides the flexibility of not only band hopping but also band twisting to obtain an optimized Kvco for the desired output range, with the minimum jitter and spurs. The proposed programmable VCO was designed using a voltage-to-current-converter circuit and current DAC followed by a four-stage differential ring oscillator with a cross-coupled pair. The VCO frequency output range is 150–400 MHz, while the input frequency is 25 MHz. A sequential phase detection loop with a negligible dead zone was designed to adjust fine phase errors between the reference and feedback clocks. All circuit blocks of the proposed PLL were simulated using the EDA tool HSPICE and layout generation by Laker. The simulation and measured results of the proposed PLL show high linearity, with a dead zone of less than 10 pV. The differential VCO was used to improve the linearity and phase noise of the PLL. The chip measured results show rms jitter of 19.10 ps. The PLL prototype also has an additional safety feature of a power down mode. The automatic band selection PLL has good immunity for possible frequency drifting due to temperature, process and supply voltage variations. The proposed PLL is designed for −40 to +85 °C, a wide temperature range. Full article
(This article belongs to the Special Issue Design of Mixed Analog/Digital Circuits)
Show Figures

Figure 1

Back to TopTop