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Abstract: This paper analyzes the performance requirements that need to be met by a clock generator
applied to a low-temperature quantum computer and analyzes the negative effects on the clock
generator circuit under low-temperature conditions. In order to meet the performance requirements
proposed in this paper and suppress the negative effects brought about by the low temperature, a
clock generator for ultra-low-temperature quantum computing is designed. This clock generator is
designed by using F-CLASS Voltage Controlled Oscillator (VCO), power filter, tail resistor, differential
charge pump, and other techniques. And the noise characteristics of the clock generator are analyzed
by Impulse Sensitive Function (ISF) and simulation results. After simulation tests, the average
power consumption of the clock generator designed in this paper is 7 mW, the phase noise is
—121 dBc/Hz@1 MHz, and the jitter is 62 fs. The performance of the clock generator meets the
performance requirements proposed in this paper, and the reduction in the corner frequency proves
that the circuit will have better performance at low temperatures.

Keywords: Cryo-CMOS; quantum computers; phase-locked loop; F-CLASS VCO; power filter; tail
resistor; differential charge pump; ISF

1. Introduction

Quantum computing is a new computer system, with the special state and characteris-
tics of quantum entanglement and superposition. Quantum computers can significantly
reduce the overhead of some complex operations [1-4]. For example, quantum comput-
ing can complete the decomposition of large numbers in a very short period of time [2],
which is almost impossible for traditional computers, and directly threatens the basis of the
existence of existing cryptography and information security.

Existing quantum computers consist of several similar parts containing both a quan-
tum processor and a classical electronic controller. In this case, the quantum processor
consists of one or more quantum bits [5-7], which need to be at a very low temperature
to exhibit quantum properties; usually this temperature is a few tens of millikelvin. But
a quantum processor alone cannot work properly. Quantum processors need an external
input control signal to make them rotate on a Bloch sphere, i.e., a quantum operation, and
a set of circuits to read the result after the quantum operation. Therefore, a quantum com-
puter needs a classical electronic controller to do the above work [8]. The existing classical
electronic controllers for quantum computers are usually implemented by instruments at
room temperature [9,10]. But as the number of quantum bits grows, controllers at room
temperature cannot meet the demand for controlling large-scale quantum processors. So
integrated circuit controllers based on cryogenic CMOS (Cryo-CMOS) circuits operating
at temperatures below 4 Kelvin are proposed [11-14]. Controller circuits operating at
ultra-low temperatures can provide larger system-on-a-chip integration to support higher
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numbers of quantum bits, significantly reducing the connection between low-temperature
and room-temperature electronics. And the resulting high level of integration will pave the
way for future practical quantum computers. The classical quantum computer architecture
is shown in Figure 1, which can be divided into three parts based on temperature: a quan-
tum processor part operating at a few tens of millikelvin, a quantum controller operating at
4 Kelvin, and a control device operating at room temperature to interact with the operator.
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Figure 1. Modern quantum computer scheme.

In quantum computers, clock signals generated by local clock sources are required for
quantum controllers to operate quantum bits, and these signals are necessarily affected
by noise. The impact of noise on quantum computers has been extensively analyzed in
previous works, which partly focused on the different noise aspects of the control signals,
which are usually RF signals whose noise is dominated by phase noise [15,16]. A part
focuses on the effect of noise on the manipulation of quantum bits based on filtering
function processing [17,18]. There are other different analyses [19-24] that address the
effects of noise. All the above analyses show that the clock signal generated by the clock
generator significantly affects the performance of the quantum computer. Therefore, a high-
performance clock generator that can operate in an ultra-low-temperature environment
is essential for quantum computers [25,26]. In order to design such a clock generator,
this paper first analyzes the performance requirements of quantum computers for clock
generators and accurately finds the values of the required target performance. Secondly,
this paper analyzes the negative effects that CMOS circuits will be subjected to in low-
temperature environments. And then this paper designs a clock generator for ultra-low-
temperature quantum computing in response to the analyzed negative effects and analyzes
its noise characteristics. After simulation tests, the average power consumption of the clock
generator designed in this paper is 7 mW, the phase noise is —121 dBc/Hz@1 MHz, and the
jitter is 62 fs, which meets the performance requirements of the clock generator proposed
in this paper. Also, the reduction in the corner frequency proves that the circuit performs
better at low temperatures.

Section 2 of this paper derives the performance requirements of quantum computers
for clock generators. Section 3 analyzes the effects and negative effects of low-temperature
environments on clock generators. Section 4 analyzes the design of the clock generator
circuit and analyzes the principles of the key technologies applied in the circuit that affect
the circuit. The present work is analyzed and discussed in Section 5, and Section 6 concludes
the work of this paper.

2. Performance Requirements for Clock Generators Imposed by Quantum Computers

The process of quantum computing actually involves rotating the state vector on
the Bloch sphere by injecting a suitable RF signal into the quantum processor. Differ-
ent RF signal waveforms operate differently on the state vector, causing it to rotate at
different angles.
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Hamiltonian quantities are often used to evaluate the state evolution of quantum bits
as a function of the RF signal input to the quantum processor. Thus, the U describing the
quantum operation can be expressed in terms of time-varying Hamiltonian quantities.

0 w
U =~ Hn:N e iH(nAt)At (1)

If the ideal quantum operation is denoted as U}, ., then the fidelity of the quantum
computing process can be expressed by the degree of closeness of the actual quantum
operation U to the ideal quantum operation U, ;, and this degree of closeness can be
denoted as F [27,28].

1
F= E|Tr [ui;eal U} | &)

For quantum computers, it is crucial to improve the quantum fidelity. And what
affects the quantum fidelity is not only the characteristics of the quantum processor itself,
but also the mismatch between the RF signal generated from the local clock source and the
resonant frequency of the quantum bits. And the noise of the local clock source itself can
have undesirable effects on the fidelity.

The non-fidelity (1 — F) caused by the non-ideal effects from the local clock source
mentioned above can be expressed as

[, L)
1-F [ 2=t o) Pif ©

where Ly(f) is the phase noise of the clock source and L (f)-f? is the frequency noise of
the clock source. fr is the speed of the quantum spin and Hyo(f) represents the sensitivity
function of the quantum system to the noise, which is obtained according to [26]:

) (1+cos(f£m)-(1+ (£))
|HLO(f)‘ - 2(1_(%{)2)2 4)

The transfer function has a low-pass characteristic, which illustrates that the quantum
bits have different sensitivities to the phase noise of the clock source at different frequencies.
The phase noise of the clock source can be expressed as

bwg , f < bwprr
Ly(f) = ﬁm ©)
e f > bwprL

where B is a constant in Hz?/Hz and bwp; | is the bandwidth of the clock source. For
the phase-locked loop clock source, the in-band noise mainly comes from the divider,
the discriminator, and the charge pump, and the out-of-band noise mainly comes from
the oscillator.

For quantum operations, a fidelity higher than 99.9% is usually required. Therefore,
the local clock source should have at least 99.999% fidelity to avoid the non-fidelity from
the clock source limiting the inherent fidelity of the quantum bits. Considering a 1 MHz fr
and 150 MHz reference frequency, the phase noise demand on the VCO is reduced by a
larger bandwidth bwpy 1, [25]. According to the above requirements, the phase-locked loop
in-band noise should be below —120 dBc/Hz and the jitter should be within 63 fs.

3. Negative Effects of Circuits at Low Temperatures
3.1. Mismatch of Devices

One obvious negative effect of low-temperature circuits is the more severe device
mismatch than at room temperature. CMOS device mismatch becomes more severe as the
temperature decreases, and the device mismatch has a greater impact on the local clock
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source’s charge pump (CP) and Phase Frequency Detector (PFD), which introduces higher
noise than at room temperature.

The mismatch of a circuit is usually analyzed by analyzing the mismatch of the drain
current of a transistor pair by

Alp _ 2(Ip1 — Ipa)
Ip Ip1 + Ip2

(6)

where the superscript is the mean operator and the subscript indicates the first or second
device in a pair. Mismatches in circuits usually include two types, systematic and random
mismatches, with systematic mismatches arising from any asymmetry between a pair of
devices and random mismatches mainly attributed to microscopic variations.

To be able to predict the device variability, the Croon model is used for drain current
mismatch [29], where o is the standard deviation operator and Gy, is the transconductance:

G2
2 _ 2 m 2
Inlp/Tp — UAﬁ/E + (g) OAVry 7)

The well-known dependence of threshold voltage variability and current factor vari-
ability on area is described by Pelgrom’s law [30]:

B= ®)

where Ay,,, and Ag are technology-related factors, and W and L are the width and length
of the active device.

When the temperature is reduced from room temperature to the temperature at
which the quantum computer operates, there is a significant increase in both Ay, and
Ap parameters. This increase indicates that oay;,;, and OAB/B increase when the size of
the device is constant. This means that the possibility of current mismatch between two
devices in one transistor pair is increasing. At the same time, the size change due to low
temperature also increases the mismatch of devices. Therefore, in order to reduce the noise
introduced by mismatch in the circuit, it is necessary to introduce a design that can resist
mismatch in the circuit design.

3.2. Noise at Low Temperature

The circuit noise performance changes significantly at low temperatures, and the flicker
noise increases significantly while the thermal noise decreases significantly. Therefore, a
special circuit structure needs to be introduced to suppress flicker noise [8].

4. Circuit Design and Noise Analysis

In order to overcome the negative effects of low temperature and design a local clock
source for quantum computers, this paper designs a phase-locked loop circuit based on an
F-Class VCO and a differential CP. The structure of the phase-locked loop (PLL) is shown
in Figure 2. The phase-locked loop circuit adopts a typical integer N-division phase-locked
loop structure and contains five parts: VCO, divider, discriminator, charge pump, and filter.
In the design of the charge pump, a cross-current source is used to limit the mismatch of
the circuit; in the design of the VCO, an on-chip transformer is used instead of an inductor
to suppress flicker noise, and a tail resistor is introduced to reduce power consumption.
The VCO noise is further reduced by introducing an Inductive Capacitance (LC) tank in
the common-mode current path.
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Figure 2. Phase-locked loop structure.

The phase-locked loop is designed in a 28 nm process; the layout is shown in Figure 2,
the area is 0.35 mm?, and the power consumption of the phase-locked loop is 7 mW. To
compensate for the 20% frequency rise at low temperature, the phase-locked loop is locked at
10 GHz in the simulation. The phase noise is shown in Figure 3a as —121 dbc/Hz@1 MHz
and the jitter is shown in Figure 3b as 62 fs.
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Figure 3. (a) Phase noise of the PLL; (b) jitter of the PLL.

In order to analyze in detail the improvements and innovations made in this paper to
improve the performance of the phase-locked loop, this section will focus on the structure
and characteristics of the VCO and CP and analyze their noise performance.

4.1. F-Class VCO
4.1.1. Design of the Circuit

The noise of a phase-locked loop can be divided into in-band noise and out-of-band
noise. The main source of out-of-band noise is the VCO, which is also the most important
part of the PLL noise. So, it is important to design a high-performance VCO for designing
phase-locked loops. According to the above analysis, flicker noise becomes an important
noise source at low temperatures, so this paper constructs an F-Class VCO by using an
on-chip transformer to suppress flicker noise.

According to the literature [31], the upconversion of flicker noise is a very important
factor affecting the VCO noise performance. The modulation effect of the second harmonic
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with the VCO fundamental makes the oscillator waveform asymmetric, and this asymmetry
affects the ISF of the oscillator, leading to the upconversion of flicker noise. And the auxil-
iary resonance at the third harmonic of the fundamental frequency is beneficial to improve
the oscillator phase noise (PN) performance by creating a pseudo-square waveform. The
VCO designed in this paper creates a resonance at the third harmonic of the fundamental
frequency through a class F operation, which forms a pseudo-square waveform with the
fundamental frequency, and the VCO structure is shown in Figure 4.
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Figure 4. (a) Conventional LC oscillator; (b) F-Class VCO proposed in this paper.

Compared to the conventional LC oscillator in Figure 4a, the F-CLASS VCO proposed
in this paper is shown in Figure 4b, where the parts making improvements are marked by
colored lines and analyzed in detail in the following.

In the transformer of the F-CLASS VCO, the primary coil is the top layer of thick metal
and the secondary coil is the penultimate layer, located directly below the primary coil.
This arrangement of the transformer allows for a higher quality factor (Q) value of the two
coils [32]. According to electromagnetic simulations, the transformer has a Q value of 20
for the primary coil and 25 for the secondary coil, and the mutual inductance coefficient
Km is 0.6. This VCO contains two sets of voltage-controlled capacitors, and all of these
capacitors correspond to the resonant cavity formed by the primary and secondary coils of
the transformer.

According to the conclusion of [33], in order to further suppress the second harmonic,
the oscillator proposed in this paper also introduces an LC tank at the power supply input
to provide an LC Resonant Cavity at the second harmonic and the common mode current.
This LC tank is directly connected to the taps of the primary coil, which can effectively
suppress the effect of the second harmonic. The third harmonic excited by the transformer
and the second harmonic suppressed by the resonant cavity at the power supply result
in a significant increase in the oscillator output spectrum at the fundamental and third
harmonics and a significant suppression at the second harmonic, as shown in Figure 5.
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In a practical quantum computer system, the cooling device of the quantum computer
has a cooling power limit. So, the lower the power of the controller, the more controllers and
quantum processors can be integrated within the same quantum computer to achieve higher
computational performance. The VCO also contributes most of the power consumption in
the phase-locked loop, so it is crucial to reduce the oscillator power as much as possible.
Therefore, in the circuit design, the tail current source is replaced with a resistor in this
paper, and the oscillator power consumption is reduced from 3040 mW to 3-4 mW.

In order to support the operation of as many quantum bits as possible, the quantum
computer uses Frequency Division Multiple Access (FDMA) to control different qubits
by means of different frequencies output from one controller, and there is usually a large
frequency interval between each frequency of FDMA. Also, because the frequency of the
VCO increases significantly at low temperatures, the VCO needs a large tuning range in
order to balance the inaccuracy of the frequency at low temperatures with the bandwidth
requirements of multiple qubits. To meet the requirement of frequency, the VCO in this
paper uses multiple tuning capacitor arrays to expand the tuning range. The tuning range
of the VCO is shown in Figure 6.
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Figure 6. The tuning range of the VCO.
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4.1.2. Analysis of the Reasons Why This Circuit Can Reduce Noise

Since Hajimiri proposed the Impulse Sensitivity Function (ISF), the ISF has become
a powerful tool for analyzing oscillator noise. The meaning of ISF is the response of the
oscillator phase to an external injection pulse. So, if we analyze the noise as an external
injection signal, the ISF can accurately describe the noise behavior of the oscillator.

According to [34,35], the phase noise contributed by the flicker noise can be written as
in (9), where hps(t) is the unnormalized ISF, Iy /1, .,s(t) is the flicker noise, and Aw and Ty
are constants. According to the equation, we can conclude that, in addition to the flicker
noise itself, the shape of the ISF significantly affects the phase noise contributed by the
flicker noise. The phase noise is proportional to the integration of the product of ISF and
flicker noise re-squared, so if you want to keep the oscillator phase noise as low as possible,
a straightforward idea is to keep the ISF at zero as much as possible, so that the phase noise
obtained from the integration will be as small as possible.

1 2 T
€170 (80) = (3 o [ hos(0) b s ()00 ®

According to [31], in addition to the fundamental wave, the second and third harmon-
ics are critical to the ISF. So, in order to analyze the effect of the circuit structure on the
noise performance and to demonstrate that the structure proposed in this paper reduces
the flicker noise, this paper firstly needs to investigate the effect of the higher harmonics on
the circuit.

Firstly, we build a model for the resonant cavity of the oscillator to describe its behavior
under the fundamental, second, and third harmonics, as shown in Figure 7.

” Current direction S
/ of the third harmonic \

] » » ~ Cd o »
’ Current direction % ;/  Current direction \

of the second harmonic + + of the second harmonic

______________

~
P Current direction ~
e of the first harmonic AN

- o o
%
e e 5 S kS eV P

D ——

Figure 7. Model for the resonant cavity of the oscillator.

Where the fundamental wave wy passes through the resistive path of the resonant
cavity, the second and third harmonics pass through the capacitive path of the resonant
cavity. According to the model, the voltage expression of the current generated by the
second harmonic after flowing through the capacitive path can be written as

) Ton )
Vi (1) | p|sin (2w0t + - — E) = wp A1sin(2wot) (10)

1
- C'Za)o 2

where C is the capacitance on the second harmonic path, Iy, is the second harmonic
current, wy is the fundamental frequency, +7t/2 is the phase overrun brought about by the
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harmonics, and —71/2 is the phase lag brought about by the capacitive path. Therefore, the
output signal of the oscillator at this point can be expressed as

Vra(t) = Vi (t) + Via(t) = Aqlsin(wot) + agsin(2wot)] (11)

An analysis of (5) shows that the effect of the second harmonic makes the synthesized
signals of the fundamental and the second harmonic have different slopes on the falling
and the rising edges, which leads to a significant increase in the ISF of the oscillator, as
shown in Figure 8a. This, in turn, increases the effect of the conversion of the flicker noise
to the phase noise of the oscillator and increases the oscillator noise.

If only the fundamental and third harmonic cases are considered, the voltage signal of
the third harmonic can be represented as

) T ) s
Vi (t) = |IH3|sm (3w0t — E) = w3 A;sin (3w0t — E) (12)

1
C-3wy
where C is the capacitance on the second harmonic path, Iy3 is the third harmonic current,
wy is the fundamental frequency, and —7t/2 is the phase lag due to the capacitive path.
Therefore, the output signal of the oscillator at this point can be expressed as

Vrs(t) = Vin () + Vis () = Ay [sin(wot) + assin (3th _ g)] (13)

Analyzing (7), it can be concluded that the effect of the third harmonic does not cause
the synthesized signals of the fundamental and the third harmonic to have different slopes
at the falling and rising edges, so that the ISF has been kept small and a portion of it has
been zero, as shown in Figure 8b. Such an ISF significantly suppresses the conversion of
the flicker noise to the phase noise and reduces the oscillator noise.

Waveform of the / Waveform of the /
first harmonic / first harmonic /

Waveform of
the sum of
the first and
second harmonics

ISF of
the sum of
the first and
second harmonics

Waveform of
the sum of /
the first and

third harmonics

o, w/ <A Z\
the sum of
/s 7 (=
the first and - 2 __--.\_ T O Gy L--- P

Il\\l:-]h.ﬂ\l);nl\h.\ /\I W--- < \/ i
(a) (b)

Figure 8. (a) Fundamental waveforms, fundamental and second harmonic synthesized waveforms,
ISF of synthesized waveforms. (b) Fundamental waveforms, fundamental and third harmonic
synthesized waveforms, ISF of synthesized waveforms.

Based on the above analysis, it can be concluded that the second harmonic is harmful
to the oscillator, while the third harmonic is beneficial to the oscillator. Therefore, the
on-chip transformer-based F-CLASS VCO designed in this paper suppresses the second
harmonic by exciting the third harmonic of the oscillator to keep the oscillator ISF as much
as possible in a state that suppresses the conversion of flicker noise to phase noise.

However, the analysis of the second harmonic on the oscillator ISF can be expanded.
Assuming that we introduce a resonant cavity into the common mode path of the oscillator
so that the capacitive path becomes a resistive path, the voltage expression for the second
harmonic can be expressed as

. 7T . 7T
VHz(t) = Rp2-|IH2‘SZI’Z (ZCUOt + E) = OCZIRAlslTl (2&)01’ + E) (14)



Electronics 2023, 12, 3237 10 of 16

The output signal of the oscillator at this point can be expressed as
Via(t) = Vin (£) + Vina () = Aa[sin (wof) + aa sin (2wt + 2 )] (15)

The analysis of (9) shows that since the resistive path does not bring phase lag, the
synthesis of the fundamental and the second harmonic does not bring the asymmetry of
the slopes of the rising and falling edges, as shown in Figure 9, and, accordingly, it does
not increase the conversion of the flicker noise to the phase noise. The resonant cavity that
changes the common-mode path is the power filter used in this paper, which changes the
nature of the common-mode path so that the second harmonic in the oscillator designed in
this paper no longer enhances the conversion of flicker noise to phase noise.

Waveform of the /
first harmonic /

Waveform of

the sum of the first harmonic / % KJ Kl
and the phase-shifted 4/ /
second harmonic
ISF of \
the sum of
the firstand 0 Tam n N

. ISF 0
second harmonics

Figure 9. Fundamental waveforms, fundamental and phase-shifted second harmonic synthesized
waveforms, ISF of synthesized waveforms.

Through the derivation and analysis above, this paper explains the fundamentals of
the designed oscillator to improve the phase noise by two methods: enhancing the third
harmonic by F-CLASS VCO and changing the common-mode path by power supply filter.
The ISF of the oscillator is also simulated in this paper, as shown in Figure 10. It can be
seen that a relatively large portion of the ISF in the figure is 0, which does not enhance the
flicker noise to phase noise. The corner frequency of the oscillator in this paper is shown
in Figure 11a. It can be seen that the optimized corner frequency in this paper is about
200 KHz, which is significantly lower compared with the two unoptimized VCO structures
in the paper [36], and the comparison of the corner frequencies of the three VCOs is shown
in Table 1. In this paper, we have also simulated the oscillator with and without the power
filter in the same oscillator structure. The phase noise of the oscillator with and without
the power filter in the same oscillator structure is also simulated in this paper, as shown in
Figure 11b. It can be seen that the phase noise of the oscillator with the power filter has a
decrease of about 3 db. The above evidence shows that both the F-CLASS VCO structure
and the power supply filter used in this paper can improve the noise performance of the
oscillator very well.

Table 1. Comparison of the corner frequency of the three VCO structures.

VCO in This Paper VCO in [36] VCO in [36]

Structure FCLASS VCO nMOS only complementary
Corner frequency 200 KHz 3 MHz 3 MHz
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Figure 11. (a) ISF; (b) VCO phase noise and corner frequency.

4.2. Fully Differential Charge Pump
4.2.1. Design of the Fully Differential CP

The CP receives the output signal from the PFD and converts the phase error infor-
mation into a current signal, which is then fed to the next stage of the filter. The classical
charge pump structure is shown in Figure 12c. For charge pumps, device mismatches can
have a significant impact on their performance. For a charge pump of the classic structure
of Figure 12c, CMOS device mismatch will bring about a mismatch in the charge pump
current, which in turn affects the performance of the phase-locked loop. And according to
the analysis of the device mismatch under low temperature above, the device mismatch
will be more serious under a low-temperature environment. In order to ameliorate the
effects of device mismatch, a fully differential structure is used in this paper to mitigate the
current mismatch.

The specific circuit is shown in Figure 12d. The charge pump is controlled by two
pairs of switches (M9, M10, M11, M12), and the output of the switches suppresses the
clock feedthrough through M5, M6, M7, M8. The charge pump is driven by four current
sources, M3, M4, M14, M15. VCM_P, VCM_N are common mode voltage signals extracted
from the filter and used to adjust the common mode point of the filter. When the common
mode point of the filter deviates from the midpoint of the power supply and ground, the
feedback loop adjusts the charge pump current to re-fix the common mode point at the
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midpoint of the power supply. In addition, the large size of M17 and M18 can reduce the
high-frequency noise in the negative feedback loop.
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Figure 12. (a) Simplified model of a classical structural charge pump. (b) Simplified model of
a charge pump with fully differential structure. (c) Circuit structure of a classical charge pump.
(d) Circuit structure of a fully differential charge pump.

4.2.2. Analysis of Device Mismatch

For a charge pump, its output current is the drain current of the MOS device that
serves as the power supply. In order to analyze the effect of device mismatch on the current
mismatch of the charge pump, we need to simplify the circuit of the charge pump to a logic
structure that is only affected by the drain current. Figure 12c shows the differential charge
pump composed of the classical charge pump structure, and Figure 12d shows the full
differential charge pump structure proposed in this paper. In Figure 12a,b, Ip1, Ip2, Ipa, Ips
correspond to the drain current of the MOS device which plays the role of current source in
the circuit, and SW1, SW,, SW3, SW, correspond to the four control switches of the charge
pump, respectively. And Iy, Ip correspond to the differential currents output from the
charge pump. Each output current of the charge pump has three states, namely, pump-in
current, pump-out current, and neither pump-in nor pump-out current. The charge pump
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dynamically pumps in or out current to adjust the control voltage of the VCO when the
phase-locked loop is not locked. Its current mismatch is not significant in this process.
When the phase-locked loop is locked, the discriminator no longer controls the charge
pump; the charge pump at this time, in the ideal state, is neither pumped in nor pumped
out current. But at this time, the charge pump current mismatch will cause continuous
leakage, seriously affecting the stable state of the phase-locked loop. We can write out
the classical charge pump structure and the full differential charge pump structure in the
phase-locked loop locked when the charge pump is neither pumped in nor pumped out of
the current mismatch.

From Table 2, it can be seen that for the classical charge pump, the current mismatch
between the N and P paths is the mismatch between the two MOS devices corresponding to
Ip1, Ips and the two MOS devices corresponding to Ipy, Ips. According to the Croon model
and Pelgrom’s law in the third part of this paper, the mismatches of the two MOS devices
corresponding to Ipj, Ipz and the mismatches of the two MOS devices corresponding to
Ipy, Ips are independently and identically distributed and can be described by the same
one standard deviation operator o.

Table 2. Expressions for current mismatch of charge pumps with two structures.

In Ip

Mismatch of classical charge pumps Ip1 —Ip3 Ipp —Ipa
Mismatch of fully differential charge pumps  Ipp — IpzorIpy —Ips  Ip; —IpzorIp; — Ips

However, for the fully differential charge pump, there are two possibilities in the state
where it neither pumps in nor pumps out current. Taking the current in the N path as an
example, half of its current mismatches are possible between Ipy, Ips, and the other half are
possible between Ipy, Ips. Therefore, the current mismatch here should be the average of
the mismatch between Ipy, Ip3 and the mismatch between Ipy, Ipy4. Because the mismatch
between Ip;, Ips and the mismatch between Ipy, Ips also satisfy the independent and
identical distribution, according to the Croon model and Pelgrom’s law, the total mismatch
of the P-path current should be ¢/+/2. Therefore, we can conclude that the fully differential
charge pump proposed in this paper can make the standard deviation operator describing
the current mismatch decrease significantly and improve the mismatch phenomenon of
the charge pump effectively. And this method is not affected by temperature; even if o
increases at low temperature, we can still reduce its mismatch by means of full differential
charge pumping.

In this paper, the accuracy of the above proof is verified by Monte Carlo simulation, as
shown in Figure 13. The mismatch simulation results of the classical charge pump are fitted
as in Figure 13a. The mismatch simulation results of the fully differential charge pump are
fitted as shown in Figure 13b. It can be seen very clearly that the fitted plot of the mismatch
for the fully differential charge pump is much narrower than the fitted plot of the mismatch
for the classical charge pump. It means that o has been significantly reduced.
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Figure 13. (a) Simulation results of the classical charge pump. (b) Simulation results of the fully
differential charge pump.

5. Discussion

The design of complete phase-locked loops for cryogenic environments is relatively
rare [25], and usually separate cryogenic oscillators are more common [8,37,38]; the oscil-
lator in this paper has been improved in different parameters compared to the existing
published work, as shown in Table 3. The main thrust of the work in this paper is to design
a signal source for a quantum computer that can be used as close as possible to a quantum
processor, and therefore not only performance but also other factors such as area, power
consumption, etc., are considered, and therefore many performance considerations are
weighed. The circuit structure proposed in this paper has not yet reached the stage of
production and testing, because the production and testing of chips is a very long process.
And in order to verify the correctness of the arguments in this paper, this paper modifies
the parameters of the circuit simulator and electromagnetic simulator and the simulation
method so that the simulation environment can simulate the circuit operating state as
low as 4.2 Kelvin, in order to ensure that the circuit will not be unable to work at low
temperatures after the circuit is produced.

Table 3. Comparison of the performance of cryogenic oscillators proposed in different works.

This Work ISSCC 2021 [37] JSSC2018[8] ISSCC 2022 [38]
PN [dBc/Hz]@1 MHz —122 —114.5 —120 —119.9
Power [mW] 4 4.38 12 3.08
Flicker corner [KHz] 200 800 5700 165497

6. Conclusions

In this paper, in order to meet the demand of quantum computers for high-performance
clock sources, the performance requirements of quantum computers for clock sources under
low-temperature conditions are analyzed, and a low-power VCO for flicker noise sup-
pression and a fully differential charge pump for mismatch suppression are introduced
for this demand. Through theoretical analysis and simulation verification, this paper
demonstrates that the structure of the phase-locked loop can meet the requirements of
quantum computers under low-temperature conditions. In the future, we will continue to
optimize the phase-locked loop structure to achieve a lower-power and higher-performance
phase-locked loop structure to meet the needs of larger-scale quantum computers.
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