Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = die-attach reliability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 19993 KiB  
Review
Mechanical Characterization of Sintered Silver Materials for Power Device Packaging: A Review
by Keisuke Wakamoto and Takahiro Namazu
Energies 2024, 17(16), 4105; https://doi.org/10.3390/en17164105 - 18 Aug 2024
Cited by 17 | Viewed by 3842
Abstract
This paper reviews sintered silver (s-Ag) die-attach materials for wide band gap (WBG) semiconductor packaging. WBG devices that die-attach with s-Ag have attracted a lot of attention owing to their low energy loss and high temperature operation capabilities. For their practical operation, a [...] Read more.
This paper reviews sintered silver (s-Ag) die-attach materials for wide band gap (WBG) semiconductor packaging. WBG devices that die-attach with s-Ag have attracted a lot of attention owing to their low energy loss and high temperature operation capabilities. For their practical operation, a reliability design should be established based on the failure of physics of the s-Ag die layer. This paper first focuses on the material characteristics of the s-Ag and tensile mechanical properties. Then, the s-Ag die-attach reliability is assessed with high-temperature storage, power cycling, and thermal shock tests. Each fracture mode was discussed by considering both the fracture surface analysis results and its mechanical properties. Finally, the effective reliability design parameters of the s-Ag die layer are introduced. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 6229 KiB  
Article
Interface Contact Thermal Resistance of Die Attach in High-Power Laser Diode Packages
by Liting Deng, Te Li, Zhenfu Wang, Pu Zhang, Shunhua Wu, Jiachen Liu, Junyue Zhang, Lang Chen, Jiachen Zhang, Weizhou Huang and Rui Zhang
Electronics 2024, 13(1), 203; https://doi.org/10.3390/electronics13010203 - 2 Jan 2024
Cited by 4 | Viewed by 3312
Abstract
The reliability of packaged laser diodes is heavily dependent on the quality of the die attach. Even a small void or delamination may result in a sudden increase in junction temperature, eventually leading to failure of the operation. The contact thermal resistance at [...] Read more.
The reliability of packaged laser diodes is heavily dependent on the quality of the die attach. Even a small void or delamination may result in a sudden increase in junction temperature, eventually leading to failure of the operation. The contact thermal resistance at the interface between the die attach and the heat sink plays a critical role in thermal management of high-power laser diode packages. This paper focuses on the investigation of interface contact thermal resistance of the die attach using thermal transient analysis. The structure function of the heat flow path in the T3ster thermal resistance testing experiment is utilized. By analyzing the structure function of the transient thermal characteristics, it was determined that interface thermal resistance between the chip and solder was 0.38 K/W, while the resistance between solder and heat sink was 0.36 K/W. The simulation and measurement results showed excellent agreement, indicating that it is possible to accurately predict the interface contact area of the die attach in the F-mount packaged single emitter laser diode. Additionally, the proportion of interface contact thermal resistance in the total package thermal resistance can be used to evaluate the quality of the die attach. Full article
(This article belongs to the Special Issue Advanced Thermal Management of Integrated Electronic Devices)
Show Figures

Figure 1

12 pages, 5360 KiB  
Article
Thermomechanical Properties of Zeta (Ag3In) Phase
by Xunda Liu, Hiroaki Tatsumi, Zhi Jin, Zhong Chen and Hiroshi Nishikawa
Materials 2023, 16(22), 7115; https://doi.org/10.3390/ma16227115 - 10 Nov 2023
Cited by 3 | Viewed by 1420
Abstract
The thermomechanical properties of materials within die-attach joints play an essential role in assessing the reliability of high-power modules. Ag-In transient liquid phase (TLP) bonding serves as an alternative method for die attachment. However, relevant material data for the ζ (Ag3In) [...] Read more.
The thermomechanical properties of materials within die-attach joints play an essential role in assessing the reliability of high-power modules. Ag-In transient liquid phase (TLP) bonding serves as an alternative method for die attachment. However, relevant material data for the ζ (Ag3In) phase, one of the Ag-In intermetallic compound (IMC) products of TLP bonding, are limited. This paper proposes an approach to fabricate a densified and pure bulk sample of the ζ (Ag3In) phase. The thermomechanical properties of the ζ (Ag3In) phase were subsequently investigated at elevated temperatures and compared to those of other IMCs frequently observed in die-attach joints. As the temperature increased from 30 °C to 200 °C, the hardness of the ζ (Ag3In) phase decreased linearly from 1.78 GPa to 1.46 GPa. Similarly, the Young’s modulus also decreased linearly from 82.3 GPa to 66.5 GPa. These properties rank among the lowest levels compared to those of other IMCs. The average coefficient of thermal expansion within the temperature range of 70 °C to 250 °C was approximately 18.63 ± 0.61 μm/m/°C, placing the ζ (Ag3In) phase at a moderate level. When considering its potential for mitigating thermal stress, these combined properties render the ζ (Ag3In) phase an appropriate material choice for die-attach joints compared to other IMCs. Full article
(This article belongs to the Special Issue Electronic Packaging Materials and Technology Applications)
Show Figures

Figure 1

24 pages, 14119 KiB  
Article
Inductive Sintering of Silver Micro Particles for Bonding of Microelectronic Components
by Patrick Rochala, Christian Hofmann, Martin Kroll, Sushant Panhale, Rezan Javed and Karla Hiller
Electronics 2023, 12(15), 3247; https://doi.org/10.3390/electronics12153247 - 27 Jul 2023
Cited by 4 | Viewed by 2422
Abstract
In this article, an efficient die-bonding technology based on silver sintering due to induction heating is presented. By using this technology, the heat for the sintering reaction is locally limited to the bonding area and heating of the entire power module is avoided. [...] Read more.
In this article, an efficient die-bonding technology based on silver sintering due to induction heating is presented. By using this technology, the heat for the sintering reaction is locally limited to the bonding area and heating of the entire power module is avoided. Furthermore, the sintering reaction is promoted due to current flow between the silver particles, and the sintering time is drastically reduced. Next to the experimental trials presented in this paper, finite element (FE) simulation methods were applied to develop a suitable induction coil geometry for the bonding of a diode to a direct bonded copper (DBC) substrate. Additional heating and sintering tests verified the reliability of the simulation model as well as the technological approach. Diodes were successfully bonded during the experiments and were analyzed by means of scanning electron microscopy (SEM) and function tests to qualify the inductive bonding technology. The results presented in this paper demonstrate that induction heating has high potential for cost-effective production in the field of die attach and can drastically increase the output in power-electronics production. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

23 pages, 17245 KiB  
Article
Development of Ag–In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices
by Chin-Hao Tsai, Wei-Chen Huang and Chengheng Robert Kao
Materials 2022, 15(4), 1397; https://doi.org/10.3390/ma15041397 - 14 Feb 2022
Cited by 10 | Viewed by 2492
Abstract
Sintered silver paste is widely used as the die-attachment material for power semiconductors. However, sintered silver joints encounter problems, such as severe coarsening of sintered pores and oxidation issues, in harsh high-temperature environments. These lead to the deterioration of the die-attachment joints. In [...] Read more.
Sintered silver paste is widely used as the die-attachment material for power semiconductors. However, sintered silver joints encounter problems, such as severe coarsening of sintered pores and oxidation issues, in harsh high-temperature environments. These lead to the deterioration of the die-attachment joints. In this paper, a novel method of sintering silver joints is demonstrated, where silver–indium alloy paste is used to improve the reliability of sintered Ag joints. The silver–indium (Ag–In) alloy paste was fabricated through mechanical alloying using the ball-milling technique. The well-bonded sintered Ag–In alloy joints inhibited pore coarsening better than pure sintered Ag joints and significantly enhanced the mechanical properties at high operating temperatures. Lastly, an oxidation mechanism for the sintered joint was proposed, and strategies to prevent such high-temperature oxidation were discussed. Full article
(This article belongs to the Special Issue Simulation and Reliability Assessment of Advanced Packaging)
Show Figures

Figure 1

7 pages, 2086 KiB  
Article
Microstructure of Ag Nano Paste Joint and Its Influence on Reliability
by Dongsheng Yang, Yilong Huang and Yanhong Tian
Crystals 2021, 11(12), 1537; https://doi.org/10.3390/cryst11121537 - 9 Dec 2021
Cited by 12 | Viewed by 2800
Abstract
In this paper, the microstructure of Ag nano paste joint was investigated in pressure-less sintering conditions, and the influence of the microstructure on the joint’s reliability was studied. Firstly, silver nanoparticles (Ag NPs) were synthesized using the redox reaction method. To tightly stack [...] Read more.
In this paper, the microstructure of Ag nano paste joint was investigated in pressure-less sintering conditions, and the influence of the microstructure on the joint’s reliability was studied. Firstly, silver nanoparticles (Ag NPs) were synthesized using the redox reaction method. To tightly stack the Ag NPs in nano paste, Ag NPs with sizes of 30~50 nm and submicron-sized Ag particles were mixed. It was found that increasing the sintering temperature or sintering time can reduce the porosity of the bonding layer and the interfacial crack simultaneously, resulting in higher shear strength. When sintering at a temperature of 250 °C, a complete bonding interface was formed, with a 0.68 μm interdiffusion layer. At a higher temperature (300 °C), the bonding interface reached 1.5 μm, providing 35.9 ± 1.7 MPa of shear strength. The reliability of the die attachment was analyzed under thermal shocking from −65 °C to 150 °C for 50 cycles. As the crack could quickly grow through the interfacial defects, the separation ratio was 85% and 67% when sintered at 150 °C and 200 °C, respectively. Because of the reliable bonding interface between the die and the substrate, the Ag nano paste joint formed a slight crack on the edge of the die when sintering at 250 °C. When the joint was sintered at 300 °C, the small voids became large voids, which featured lower resistance to crack growth. Thus, instead of further improved reliability, the separation ratio increased to 37%. Full article
Show Figures

Graphical abstract

15 pages, 5504 KiB  
Review
Polymer-Based Biocompatible Packaging for Implantable Devices: Packaging Method, Materials, and Reliability Simulation
by Seonho Seok
Micromachines 2021, 12(9), 1020; https://doi.org/10.3390/mi12091020 - 27 Aug 2021
Cited by 26 | Viewed by 5947
Abstract
Polymer materials attract more and more interests for a biocompatible package of novel implantable medical devices. Medical implants need to be packaged in a biocompatible way to minimize FBR (Foreign Body Reaction) of the implant. One of the most advanced implantable devices is [...] Read more.
Polymer materials attract more and more interests for a biocompatible package of novel implantable medical devices. Medical implants need to be packaged in a biocompatible way to minimize FBR (Foreign Body Reaction) of the implant. One of the most advanced implantable devices is neural prosthesis device, which consists of polymeric neural electrode and silicon neural signal processing integrated circuit (IC). The overall neural interface system should be packaged in a biocompatible way to be implanted in a patient. The biocompatible packaging is being mainly achieved in two approaches; (1) polymer encapsulation of conventional package based on die attach, wire bond, solder bump, etc. (2) chip-level integrated interconnect, which integrates Si chip with metal thin film deposition through sacrificial release technique. The polymer encapsulation must cover different materials, creating a multitude of interface, which is of much importance in long-term reliability of the implanted biocompatible package. Another failure mode is bio-fluid penetration through the polymer encapsulation layer. To prevent bio-fluid leakage, a diffusion barrier is frequently added to the polymer packaging layer. Such a diffusion barrier is also used in polymer-based neural electrodes. This review paper presents the summary of biocompatible packaging techniques, packaging materials focusing on encapsulation polymer materials and diffusion barrier, and a FEM-based modeling and simulation to study the biocompatible package reliability. Full article
(This article belongs to the Special Issue MEMS Packaging Technologies and 3D Integration)
Show Figures

Figure 1

12 pages, 7611 KiB  
Article
Silver Sintering for Silicon Carbide Die Attach: Process Optimization and Structural Modeling
by Michele Calabretta, Alessandro Sitta, Salvatore Massimo Oliveri and Gaetano Sequenzia
Appl. Sci. 2021, 11(15), 7012; https://doi.org/10.3390/app11157012 - 29 Jul 2021
Cited by 31 | Viewed by 10715
Abstract
The increasing demand in automotive markets is leading the semiconductor industries to develop high-performance and highly reliable power devices. Silicon carbide MOSFET chips are replacing silicon-based solutions through their improved electric and thermal capabilities. In order to support the development of these novel [...] Read more.
The increasing demand in automotive markets is leading the semiconductor industries to develop high-performance and highly reliable power devices. Silicon carbide MOSFET chips are replacing silicon-based solutions through their improved electric and thermal capabilities. In order to support the development of these novel semiconductors, packaging technologies are evolving to provide enough reliable products. Silver sintering is one of the most promising technologies for die attach. Due to their superior reliability properties with respect to conventional soft solder compounds, dedicated reliability flow and physical analyses should be designed and employed for sintering process optimization and durability assessment. This paper proposes an experimental methodology to optimize the pressure value applied during the silver sintering manufacturing of a silicon carbide power MOSFET molded package. The evaluation of the best pressure value is based on scanning electron microscopy performed after a liquid-to-liquid thermal shock reliability test. Furthermore, the sintering layer degradation is monitored during durability stress by scanning the acoustic microscopy and electric measurement of a temperature sensitive electric parameter. Moreover, mechanical elastoplastic behavior is characterized by uniaxial tensile test for a bulk sample and finite element analysis is developed to predict the mechanical behavior as a function of void fraction inside sintering layer. Full article
(This article belongs to the Special Issue New Trends in Design Engineering)
Show Figures

Figure 1

13 pages, 5787 KiB  
Article
Semiconductor Chip Electrical Interconnection and Bonding by Nano-Locking with Ultra-Fine Bond-Line Thickness
by Jielin Guo, Yu-Chou Shih, Roozbeh Sheikhi, Jiun-Pyng You and Frank G. Shi
Nanomaterials 2021, 11(8), 1901; https://doi.org/10.3390/nano11081901 - 24 Jul 2021
Cited by 4 | Viewed by 2804
Abstract
The potential of an innovation for establishing a simultaneous mechanical, thermal, and electrical connection between two metallic surfaces without requiring a prior time-consuming and expensive surface nanoscopic planarization and without requiring any intermediate conductive material has been explored. The method takes advantage of [...] Read more.
The potential of an innovation for establishing a simultaneous mechanical, thermal, and electrical connection between two metallic surfaces without requiring a prior time-consuming and expensive surface nanoscopic planarization and without requiring any intermediate conductive material has been explored. The method takes advantage of the intrinsic nanoscopic surface roughness on the interconnecting surfaces: the two surfaces are locked together for electrical interconnection and bonding with a conventional die bonder, and the connection is stabilized by a dielectric adhesive filled into nanoscale valleys on the interconnecting surfaces. This “nano-locking” (NL) method for chip interconnection and bonding is demonstrated by its application for the attachment of high-power GaN-based semiconductor dies to its device substrate. The bond-line thickness of the present NL method achieved is under 100 nm and several hundred times thinner than those achieved using mainstream bonding methods, resulting in a lower overall device thermal resistance and reduced electrical resistance, and thus an improved overall device performance and reliability. Different bond-line thickness strongly influences the overall contact area between the bonding surfaces, and in turn results in different contact resistance of the packaged devices enabled by the NL method and therefore changes the device performance and reliability. The present work opens a new direction for scalable, reliable, and simple nanoscale off-chip electrical interconnection and bonding for nano- and micro-electrical devices. Besides, the present method applies to the bonding of any surfaces with intrinsic or engineered surface nanoscopic structures as well. Full article
(This article belongs to the Special Issue Nanomaterials for Electron Devices)
Show Figures

Figure 1

17 pages, 22891 KiB  
Article
Thermo-Mechanical Stress Comparison of a GaN and SiC MOSFET for Photovoltaic Applications
by Wieland Van De Sande, Omid Alavi, Philippe Nivelle, Jan D’Haen and Michaël Daenen
Energies 2020, 13(22), 5900; https://doi.org/10.3390/en13225900 - 12 Nov 2020
Cited by 5 | Viewed by 3415
Abstract
Integrating photovoltaic applications within urban environments creates the need for more compact and efficient power electronics that can guarantee long lifetimes. The upcoming wide-bandgap semiconductor devices show great promise in providing the first two properties, but their packaging requires further testing in order [...] Read more.
Integrating photovoltaic applications within urban environments creates the need for more compact and efficient power electronics that can guarantee long lifetimes. The upcoming wide-bandgap semiconductor devices show great promise in providing the first two properties, but their packaging requires further testing in order to optimize their reliability. This paper demonstrates one iteration of the design for reliability methodology used in order to compare the generated thermo-mechanical stress in the die attach and the bond wires of a GaN and SiC MOSFET. An electro-thermal model of a photovoltaic string inverter is used in order to translate a cloudy and a clear one-hour mission profile from Arizona into a junction losses profile. Subsequently, the finite element method models of both devices are constructed through reverse engineering in order to analyze the plastic energy. The results show that the plastic energy in the die attach caused by a cloudy mission-profile is much higher than that caused by a clear mission-profile. The GaN MOSFET, in spite of its reduced losses, endures around 5 times more plastic energy dissipation density in its die attach than the SiC MOSFET while the reverse is true for the bond wires. Potential design adaptations for both devices have been suggested to initiate a new iteration in the design for reliability methodology, which will ultimately lead to a more reliable design. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 15823 KiB  
Article
The Sensitivity of an Electro-Thermal Photovoltaic DC–DC Converter Model to the Temperature Dependence of the Electrical Variables for Reliability Analyses
by Wieland Van De Sande, Simon Ravyts, Omid Alavi, Philippe Nivelle, Johan Driesen and Michaël Daenen
Energies 2020, 13(11), 2865; https://doi.org/10.3390/en13112865 - 4 Jun 2020
Cited by 8 | Viewed by 2865
Abstract
The operational expenditures of solar energy are gaining attention because of the continuous decrease of the capital expenditures. This creates a demand for more reliable systems to further decrease the costs. Increased reliability is often ensured by iterative use of design for reliability. [...] Read more.
The operational expenditures of solar energy are gaining attention because of the continuous decrease of the capital expenditures. This creates a demand for more reliable systems to further decrease the costs. Increased reliability is often ensured by iterative use of design for reliability. The number of iterations that can take place strongly depends on the computational efficiency of this methodology. The main research objective is to quantify the influence of the temperature dependence of the electrical variables used in the electro-thermal model on the reliability and the computation time. The influence on the reliability is evaluated by using a 2-D finite elements method model of the MOSFET and calculating the plastic energy dissipation density in the die-attach and the bond wire. The trade-off between computation time of the electro-thermal model in PLECS (4.3, Plexim, Zurich, Switzerland) and generated plastic energy accuracy obtained in COMSOL (5.3, COMSOL Inc., Burlington, MA, USA) is reported when excluding a certain temperature dependence. The results indicate that the temperature dependence of the input and output capacitors causes no change in the plastic energy dissipated in the MOSFET but does introduce the largest increase in computation time. However, not including the temperature dependence of the MOSFET itself generates the largest difference in plastic energy of 10% as the losses in the die are underestimated. Full article
Show Figures

Figure 1

14 pages, 2876 KiB  
Article
Expression of Matrix Metalloproteinases and Their Inhibitors in Endometrium: High Levels in Endometriotic Lesions
by Alice Luddi, Camilla Marrocco, Laura Governini, Bianca Semplici, Valentina Pavone, Stefano Luisi, Felice Petraglia and Paola Piomboni
Int. J. Mol. Sci. 2020, 21(8), 2840; https://doi.org/10.3390/ijms21082840 - 18 Apr 2020
Cited by 33 | Viewed by 3700
Abstract
Endometriosis is a condition defined as presence of endometrium outside of the uterine cavity. These endometrial cells are able to attach and invade the peritoneum or ovary, thus forming respectively the deep infiltrating endometriosis (DIE) and the ovarian endometrioma (OMA), the ectopic lesions [...] Read more.
Endometriosis is a condition defined as presence of endometrium outside of the uterine cavity. These endometrial cells are able to attach and invade the peritoneum or ovary, thus forming respectively the deep infiltrating endometriosis (DIE) and the ovarian endometrioma (OMA), the ectopic lesions feature of this pathology. Endometriotic cells display high invasiveness and share some features of malignancy with cancer cells. Indeed, the tissue remodeling underlining lesion formation is achieved by matrix metalloproteinases (MMPs) and their inhibitors. Therefore, these molecules are believed to play a key role in development and pathogenesis of endometriosis. This study investigated the molecular profile of metalloproteinases and their inhibitors in healthy (n = 15) and eutopic endometrium (n = 19) in OMA (n = 10) and DIE (n = 9); moreover, we firstly validated the most reliable housekeeping genes allowing accurate gene expression analysis in these tissues. Gene expression, Western blot, and immunofluorescence analysis of MMP2, MMP3, and MMP10 and their tissue inhibitors TIMP1 and TIMP2 demonstrated that these enzymes are finely tuned in these tissues. In OMA lesions, all the investigated MMPs and their inhibitors were significantly increased, while DIE expressed high levels of MMP3. Finally, in vitro TNFα treatment induced a significant upregulation of MMP3, MMP10, and TIMP2 in both healthy and eutopic endometrial stromal cells. This study, shedding light on MMP and TIMP expression in endometriosis, confirms that these molecules are altered both in eutopic endometrium and endometriotic lesions. Although further studies are needed, these data may help in understanding the molecular mechanisms involved in the extracellular matrix remodeling, a crucial process for the endometrial physiology. Full article
Show Figures

Figure 1

15 pages, 7750 KiB  
Article
Deformation Behavior of Transient Liquid-Phase Sintered Cu-Solder-Resin Microstructure for Die-Attach
by Hiroaki Tatsumi, Hiroshi Yamaguchi, Tomoki Matsuda, Tomokazu Sano, Yoshihiro Kashiba and Akio Hirose
Appl. Sci. 2019, 9(17), 3476; https://doi.org/10.3390/app9173476 - 23 Aug 2019
Cited by 10 | Viewed by 4222
Abstract
We have proposed a low-temperature bonding technology utilizing the sintering of Cu particles with transient liquid-phase of Sn-based solder, called transient liquid-phase sintering (TLPS), as a die-attach solution for high-temperature power modules. A copper-intermetallic compound-resin (Cu-IMC-resin) microstructure, which consists of Cu particles connected [...] Read more.
We have proposed a low-temperature bonding technology utilizing the sintering of Cu particles with transient liquid-phase of Sn-based solder, called transient liquid-phase sintering (TLPS), as a die-attach solution for high-temperature power modules. A copper-intermetallic compound-resin (Cu-IMC-resin) microstructure, which consists of Cu particles connected with Cu–Sn intermetallic compounds (IMCs) partially filled with polyimide resin, is obtained by the pressureless TLPS process at 250 °C for 1 min using a novel Cu-solder-resin composite as the bonding material in a nitrogen atmosphere. Macro- and micro-deformation properties of the unique microstructure of the TLPS Cu-IMC-resin are evaluated by finite element analysis using a three-dimensional image reconstruction model. The macroscopic computational uniaxial tensile tests of the Cu-IMC-resin model reveal that the utilization of the IMCs and the addition of the easily-deformable resin facilitates the temperature-stability and low-stiffness of the mechanical properties. The microstructure exhibits a significantly low homogenized Young’s modulus (11 GPa). Microscopic investigations show that the local stresses are broadly distributed on the IMC regions under uniaxial macroscopic tensile displacement, indicating highly reliable performance of the joint within a specific macroscopic strain condition. Numerical and experimental investigations demonstrate the excellent thermal cyclic reliability of die-attached joints between silicon carbide chips and directly bonded copper substrate. Full article
(This article belongs to the Special Issue Nanotechnology for Novel Nanojoining and Microjoining)
Show Figures

Figure 1

12 pages, 8119 KiB  
Article
Evolution of Transient Liquid-Phase Sintered Cu–Sn Skeleton Microstructure During Thermal Aging
by Hiroaki Tatsumi, Adrian Lis, Hiroshi Yamaguchi, Tomoki Matsuda, Tomokazu Sano, Yoshihiro Kashiba and Akio Hirose
Appl. Sci. 2019, 9(1), 157; https://doi.org/10.3390/app9010157 - 4 Jan 2019
Cited by 34 | Viewed by 5405
Abstract
The evolution of the transient liquid-phase sintered (TLPS) Cu–Sn skeleton microstructure during thermal aging was evaluated to clarify the thermal reliability for die-attach applications. The Cu–Sn skeleton microstructure, which consists of Cu particles connected with Cu–Sn intermetallic compounds partially filled with polyimide resin, [...] Read more.
The evolution of the transient liquid-phase sintered (TLPS) Cu–Sn skeleton microstructure during thermal aging was evaluated to clarify the thermal reliability for die-attach applications. The Cu–Sn skeleton microstructure, which consists of Cu particles connected with Cu–Sn intermetallic compounds partially filled with polyimide resin, was obtained by the pressure-less TLP sintering process at 250 °C for 1 min using a novel Cu-solder-resin composite as a bonding material in a nitrogen atmosphere. Experimental results indicate that the TLPS joints were mainly composed of Cu, Cu6Sn5, and Cu3Sn in the as-bonded state, where submicron voids were observed at the interface between Cu3Sn and Cu particles. After thermal aging at 150, 175, and 200 °C for 1000 h, the Cu6Sn5 phase fully transformed into Cu3Sn except at the chip-side interface, where the number of the submicron voids appeared to increase. The averaged shear strengths were found to be 22.1 (reference), 22.8 (+3%), 24.0 (+9%), and 19.0 MPa (−14%) for the as-bonded state and specimens aged at 150, 175, and 200 °C for 1000 h, respectively. The TLPS joints maintained a shear strength over 19 MPa after thermal aging at 200 °C for 1000 h because of both the positive and negative impacts of the thermal aging, which include the transformation of Cu6Sn5 into Cu3Sn and the formation of submicron voids at the interface, respectively. These results indicate an excellent thermal reliability of the TLPS Cu–Sn skeleton microstructure. Full article
(This article belongs to the Special Issue Selected Papers from the NMJ2018)
Show Figures

Figure 1

10 pages, 9452 KiB  
Article
Heat-Resistant Microporous Ag Die-Attach Structure for Wide Band-Gap Power Semiconductors
by Seungjun Noh, Hao Zhang and Katsuaki Suganuma
Materials 2018, 11(12), 2531; https://doi.org/10.3390/ma11122531 - 12 Dec 2018
Cited by 16 | Viewed by 8271
Abstract
In this work, efforts were made to prepare a thermostable die-attach structure which includes stable sintered microporous Ag and multi-layer surface metallization. Silicon carbide particles (SiCp) were added into the Ag sinter joining paste to improve the high-temperature reliability of the [...] Read more.
In this work, efforts were made to prepare a thermostable die-attach structure which includes stable sintered microporous Ag and multi-layer surface metallization. Silicon carbide particles (SiCp) were added into the Ag sinter joining paste to improve the high-temperature reliability of the sintered Ag joints. The use of SiCp in the bonding structures prevented the morphological evolution of the microporous structure and maintained a stable structure after high temperature storage (HTS) tests, which reduces the risk of void formation and metallization dewetting. In addition to the Ag paste, on the side of direct bonded copper (DBC) substrates, the thermal reliability of various surface metallizations such as Ni, Ti, and Pt were also evaluated by cross-section morphology and on-resistance tests. The results indicated that Ti and Pt diffusion barrier layers played a key role in preventing interfacial degradations between sintered Ag and Cu at high temperatures. At the same time, a Ni barrier layer showed a relatively weak barrier effect due to the generation of a thin Ni oxide layer at the interface with a Ag plating layer. The changes of on-resistance indicated that Pt metallization has relatively better electrical properties compared to that of Ti and Ni. Ag metallization, which lacks barrier capability, showed severe growth in an oxide layer between Ag and Cu, however, the on-resistance showed fewer changes. Full article
(This article belongs to the Special Issue Material Interconnections and Microstructure Control-Related)
Show Figures

Figure 1

Back to TopTop