Development of Ag–In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices
Abstract
:1. Introduction
2. Experimental
2.1. Ball-Milling Process for the Fabrication of Ag and Ag–In Alloy Pastes
2.2. Experimental Bonding Procedure
2.3. Reliability Tests
2.4. Phase Identification and Compositional Analysis
3. Results
3.1. Characterization of the Ag and Ag–In Alloy Powders after Ball-Milling
3.2. Microstructure of the Sintered Ag Joints during HTS at 300 °C
3.3. Microstructure and Phase Identification of the Sintered Ag–In Alloy Joints during HTS at 300 °C
3.4. Mechanical Properties of the Sintered Ag and Ag–In Alloy Joints during HTS at 300 °C
4. Discussion
4.1. Oxidation Mechanism of the Ag–In Alloy Joint Bonded at 10 MPa
4.2. Strategies to Overcome Oxidation and Enhance Mechanical Properties of Sintered Joints at High Temperatures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senecal, P.K.; Leach, F. Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results Eng. 2019, 4, 100060. [Google Scholar] [CrossRef]
- Woo, D.R.M.; Yuan, H.H.; Li, J.A.J.; Ling, H.S.; Bum, L.J.; Songbai, Z. High power SiC inverter module packaging solutions for junction temperature over 220C. In Proceedings of the 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, 3–5 December 2014; pp. 31–35. [Google Scholar]
- Buttay, C.; Planson, D.; Allard, B.; Bergogne, D.; Bevilacqua, P.; Joubert, C.; Lazar, M.; Martin, C.; Morel, H.; Tournier, D.; et al. State of the art of high temperature power electronics. Mater. Sci. Eng. B 2011, 176, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Millan, J.; Godignon, P.; Perpiñà, X.; Perez-Tomas, A.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Shenai, K.; Dudley, M.; Davis, R.F. Current status and emerging trends in wide bandgap (WBG) semiconductor power switching devices. ECS J. Solid State Sci. Technol. 2013, 2, N3055–N3063. [Google Scholar] [CrossRef]
- Matallana, A.; Ibarra, E.; López, I.; Andreu, J.; Garate, J.I.; Jordà, X.; Rebollo, J. Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects. Renew. Sustain. Energy Rev. 2019, 113, 109264. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Nigro, R.L.; Giannazzo, F.; Iucolano, F.; Saggio, M. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 2018, 187–188, 66–77. [Google Scholar] [CrossRef]
- Milligan, J.W.; Sheppard, S.; Pribble, W.; Wu, Y.-F.; Muller, G.; Palmour, J.W. SiC and gan wide bandgap device technology overview. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 960–964. [Google Scholar]
- Shen, Z.J.; Omura, I. Power semiconductor devices for hybrid, electric, and fuel cell vehicles. Proc. IEEE 2007, 95, 778–789. [Google Scholar] [CrossRef]
- Moon, K.-W.; Boettinger, W.J.; Kattner, U.R.; Biancaniello, F.S.; Handwerker, C.A. Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys. J. Electron. Mater. 2000, 29, 1122–1136. [Google Scholar] [CrossRef]
- Zeng, G.; Xue, S.; Zhang, L.; Gao, L.; Dai, W.; Luo, J. A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci. Mater. Electron. 2010, 21, 421–440. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Howes, P.D.; Mannan, S.H. A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 2014, 54, 1253–1273. [Google Scholar] [CrossRef]
- Chua, S.; Siow, K. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 °C. J. Alloys Compd. 2016, 687, 486–498. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, W.; Wu, W.; Ji, H.; Hang, C.; Li, M. Microstructural evolution and degradation mechanism of SiC–Cu chip attachment using sintered nano-Ag paste during high-temperature ageing. J. Alloys Compd. 2020, 846, 156442. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Yang, Y.; Zhang, H.; Kim, D.; Sugahara, T.; Nagao, S.; Suganuma, K. Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloys Compd. 2019, 780, 435–442. [Google Scholar] [CrossRef]
- Zhao, S.-Y.; Li, X.; Mei, Y.-H.; Lu, G.-Q. Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron. Reliab. 2015, 55, 2524–2531. [Google Scholar] [CrossRef]
- Zhang, H.; Nagao, S.; Suganuma, K.; Albrecht, H.-J.; Wilke, K. Thermostable Ag die-attach structure for high-temperature power devices. J. Mater. Sci. Mater. Electron. 2016, 27, 1337–1344. [Google Scholar] [CrossRef]
- Chuang, R.W.; Lee, C.C. Silver-indium joints produced at low temperature for high temperature devices. IEEE Trans. Compon. Packag. Technol. 2002, 25, 453–458. [Google Scholar] [CrossRef]
- Lee, C.C.; So, W.W. High temperature silver-indium joints manufactured at low temperature. Thin Solid Film 2000, 366, 196–201. [Google Scholar] [CrossRef]
- Yang, C.A.; Kao, C.R. Study of Sintered Nano-Silver Die Attachment Materials Doped with Indium. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 2468–2474. [Google Scholar]
- Yang, C.A.; Kao, C.R.; Nishikawa, H. Development of Die Attachment Technology for Power IC Module by Introducing Indium into Sintered Nano-Silver Joint. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1974–1980. [Google Scholar]
- Yang, C.A.; Kao, C.R.; Nishikawa, H.; Lee, C.C. High Reliability Sintered Silver-Indium Bonding with Anti-Oxidation Property for High Temperature Applications. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 1993–1999. [Google Scholar]
- Tsai, C.-H.; Huang, W.-C.; Kao, C.R.; Chew, L.M.; Schmitt, W.; Nishikawa, H. Sintered Micro-Silver Paste Doped with Indium for Die Attachment Applications of Power ICs. In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 1430–1435. [Google Scholar]
- Yang, C.A.; Yang, S.; Liu, X.; Nishikawa, H.; Kao, C.R. Enhancement of nano-silver chip attachment by using transient liquid phase reaction with indium. J. Alloys Compd. 2018, 762, 586–597. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Huang, W.-C.; Chew, L.M.; Schmitt, W.; Li, J.; Nishikawa, H.; Kao, C.R. Low-pressure micro-silver sintering with the addition of indium for high-temperature power chips attachment. J. Mater. Res. Technol. 2021, 15, 4541–4553. [Google Scholar] [CrossRef]
- Lagutkin, S.; Achelis, L.; Sheikhaliev, S.; Uhlenwinkel, V.; Srivastava, V. Atomization process for metal powder. Mater. Sci. Eng. A 2004, 383, 1–6. [Google Scholar] [CrossRef]
- Antony, L.V.M.; Reddy, R.G. Processes for production of high-purity metal powders. JOM 2003, 55, 14–18. [Google Scholar] [CrossRef]
- Canakci, A.; Varol, T. A novel method for the production of metal powders without conventional atomization process. J. Clean. Prod. 2015, 99, 312–319. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, S.; Li, S.; Guo, W.; Wu, C. Preparation of micro-size flake silver powder by planetary ball mill. J. Mater. Sci. Mater. Electron. 2016, 27, 452–457. [Google Scholar] [CrossRef]
- Kováčik, J. Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 1999, 18, 1007–1010. [Google Scholar] [CrossRef]
- Bertei, A.; Choi, H.-W.; Pharoah, J.G.; Nicolella, C. Percolating behavior of sintered random packings of spheres. Powder Technol. 2012, 231, 44–53. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kang, S.-J.L. Theoretical analysis of liquid-phase sintering: Pore filling theory. Acta Mater. 1998, 46, 3191–3202. [Google Scholar] [CrossRef]
- Drolet, J.P.; Galibois, A. The impurity-drag effect on grain growth. Acta Met. 1968, 16, 1387–1399. [Google Scholar] [CrossRef]
- Mendelev, M.I.; Srolovitz, D.J. Impurity effects on grain boundary migration. Model. Simul. Mater. Sci. Eng. 2002, 10, R79–R109. [Google Scholar] [CrossRef]
- Heo, T.W.; Bhattacharyya, S.; Chen, L.-Q. A phase field study of strain energy effects on solute–grain boundary interactions. Acta Mater. 2011, 59, 7800–7815. [Google Scholar] [CrossRef]
Position | Ag (at.%) | In (at.%) | Phase |
---|---|---|---|
A | 81.1 ± 0.26 | 18.9 ± 0.26 | (Ag)–In |
B | 81.2 ± 0.26 | 18.8 ± 0.26 | (Ag)–In |
C | 81.9 ± 0.26 | 18.1 ± 0.26 | (Ag)–In |
D | 81.8 ± 0.26 | 18.2 ± 0.26 | (Ag)–In |
E | 81.7 ± 0.26 | 18.3 ± 0.26 | (Ag)–In |
Position | Ag (at.%) | In (at.%) | Cu (at.%) | O (at.%) | Phase |
---|---|---|---|---|---|
A | 92.6 | 0 | 7.4 | 0 | (Ag)–Cu |
B | 7.8 | 2.9 | 58.2 | 30.1 | Cu2O |
C | 0.9 | 38.2 | 1.2 | 59.7 | In2O3 |
D | 86.7 | 9.4 | 2.7 | 1.2 | (Ag)–In |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-H.; Huang, W.-C.; Kao, C.R. Development of Ag–In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices. Materials 2022, 15, 1397. https://doi.org/10.3390/ma15041397
Tsai C-H, Huang W-C, Kao CR. Development of Ag–In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices. Materials. 2022; 15(4):1397. https://doi.org/10.3390/ma15041397
Chicago/Turabian StyleTsai, Chin-Hao, Wei-Chen Huang, and Chengheng Robert Kao. 2022. "Development of Ag–In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices" Materials 15, no. 4: 1397. https://doi.org/10.3390/ma15041397
APA StyleTsai, C.-H., Huang, W.-C., & Kao, C. R. (2022). Development of Ag–In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices. Materials, 15(4), 1397. https://doi.org/10.3390/ma15041397