Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = die angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7356 KiB  
Article
Study on Incremental Sheet Forming Performance of AA2024 Aluminum Alloy Based on Adaptive Fuzzy PID Temperature Control
by Zhengfang Li, Zhengyuan Gao, Kaiguo Qian, Lijia Liu, Jiangpeng Song, Shuang Wu, Li Liu and Xinhao Zhai
Metals 2025, 15(8), 852; https://doi.org/10.3390/met15080852 - 30 Jul 2025
Viewed by 29
Abstract
The development of technology has driven a rising need for high-accuracy and high-efficiency manufacturing of low-volume products. Incremental forming technology, characterized by die-free flexibility and low production costs, can effectively replace stamping processes for manufacturing customized small-batch products. However, high-performance aluminum alloys generally [...] Read more.
The development of technology has driven a rising need for high-accuracy and high-efficiency manufacturing of low-volume products. Incremental forming technology, characterized by die-free flexibility and low production costs, can effectively replace stamping processes for manufacturing customized small-batch products. However, high-performance aluminum alloys generally exhibit poor room-temperature plasticity but excellent high-temperature plasticity, necessitating the integration of thermal-assisted methods for manufacturing such products. However, the temperature of the forming region will excessively rise without temperature control, which will affect the forming performance of the material in hot incremental sheet forming of AA2024-T4 aluminum alloy. This study focuses on AA2024-T4 aluminum alloy and proposes a uniform temperature control method for the electric hot tube-assisted incremental sheet forming process, incorporating an adaptive fuzzy PID algorithm. The temperature difference of the forming region is lower than 6% under the various temperatures. On this basis, the forming limit angle and the microstructure state of the material are analyzed, and the grain feature of the material exhibits significantly refined grains and the uniform fine grain distribution under 180 °C with the temperature control of the adaptive fuzzy PID algorithm. Full article
(This article belongs to the Special Issue Advances in the Forming and Processing of Metallic Materials)
Show Figures

Figure 1

14 pages, 3997 KiB  
Article
Investigation of Die Design Influence on Required Forces in Near-Solidus Forging of Complex Components
by John Damilola Sunday, Alberto Murillo-Marrodán, Eduardo García and Carl Slater
J. Manuf. Mater. Process. 2025, 9(7), 245; https://doi.org/10.3390/jmmp9070245 - 21 Jul 2025
Viewed by 339
Abstract
This study investigates the influence of die design parameters on forging forces and thermomechanical responses during near-solidus forging (NSF) of complex steel components. Finite element simulations using Forge NxT analyzed six die configurations varying geometry orientation, gating system design (conical, cylindrical, curvilinear), and [...] Read more.
This study investigates the influence of die design parameters on forging forces and thermomechanical responses during near-solidus forging (NSF) of complex steel components. Finite element simulations using Forge NxT analyzed six die configurations varying geometry orientation, gating system design (conical, cylindrical, curvilinear), and draft angles (20° and 30°), with 42CrMo4E steel modeled at 1360 °C. Key responses including punch and lateral forces, temperature distribution, strain localization, and die stress were evaluated to assess design effects. Results showed that the gating system geometry critically controls material flow and load requirements. The conical gating design with a 30° draft angle yielded the lowest punch (141.54 t) and lateral (149.44 t) forces, alongside uniform temperature and strain distributions, which improve product quality by minimizing defects and incomplete filling. Lower lateral forces also reduce die opening risk, enhancing die life. In contrast, the base case with a 20° draft angle exhibited higher forces and uneven strain, increasing die stress and compromising part quality. These findings highlight the importance of selecting appropriate gating systems and draft angles to reduce forming loads, increase die life, and improve uniform material flow, contributing to better understanding of die design in NSF of complex steel components. Full article
Show Figures

Figure 1

15 pages, 5026 KiB  
Article
The Design and Evaluation of Twisted HDPE Grass-Cutting Lines: A Performance Comparison with Commercial Nylon
by Anothai Pholsuwan, Wichain Chailad, Athapon Simpraditpan, Ekkachai Martwong and Kawita Chattrakul
Polymers 2025, 17(13), 1804; https://doi.org/10.3390/polym17131804 - 28 Jun 2025
Viewed by 352
Abstract
This study presents the design and performance evaluation of a custom extrusion die for producing grass-cutting lines from high-density polyethylene (HDPE) with twist angles of 0°, 15°, 30°, and 45°. The mechanical properties, cutting efficiency, and energy consumption of the HDPE lines were [...] Read more.
This study presents the design and performance evaluation of a custom extrusion die for producing grass-cutting lines from high-density polyethylene (HDPE) with twist angles of 0°, 15°, 30°, and 45°. The mechanical properties, cutting efficiency, and energy consumption of the HDPE lines were compared with those of commercially available nylon lines with round and square profiles. The die successfully produced twisted HDPE lines with consistent geometry. Although the HDPE lines exhibited lower tensile strength than their nylon counterparts, due to inherent material differences and residual stress from twisting, they demonstrated comparable elastic modulus values. Importantly, HDPE lines require significantly less energy during processing, offering a cost-effective and environmentally friendly alternative. Cutting tests showed that the 45° twisted HDPE line achieved cutting performance comparable to the square-profile nylon line and surpassed the round-profile variant. These results highlight the potential of HDPE as a viable, energy-efficient material for grass-cutting applications, particularly when optimized through geometric design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 6638 KiB  
Article
Numerical Analysis of the Process of Drawing Thin-Walled CuSn8 Alloy Tubes on a Cylindrical Plug
by Maciej Suliga, Sebastian Mróz, Piotr Szota, Mateusz Wasilewski and Konrad Jaroszewski
Materials 2025, 18(12), 2754; https://doi.org/10.3390/ma18122754 - 12 Jun 2025
Viewed by 330
Abstract
The paper presents the results of FEM computer simulations of the drawing process on a cylindrical journal of thin-walled CuSn8 alloy tubes. This study demonstrates through FEM simulations that the drawing angle significantly affects the state of stress, strain and tool wear. Regardless [...] Read more.
The paper presents the results of FEM computer simulations of the drawing process on a cylindrical journal of thin-walled CuSn8 alloy tubes. This study demonstrates through FEM simulations that the drawing angle significantly affects the state of stress, strain and tool wear. Regardless of the geometry of the drawing die, greater wear was noted for the cylindrical plug. Increasing the angle of drawing die 2α from 6° to 38° contributed to a slight 5% increase in wear of the drawing dies and more than 80% increase in plug wear. Accelerated tool wear at high angles is to be associated with higher pipe pressures on the drawing die and plug. Inadequate selection of drawing geometry can cause additional material deformation effort and material fracture in the industrial drawing process of thin-walled tubes. After the drawing process, these tubes may also show non-uniform wall thickness. The optimum drawing angle for thin-walled tubes is 2α = 22°, for which about a 10% decrease in the drawing force was recorded. Full article
Show Figures

Figure 1

18 pages, 3900 KiB  
Article
Mechanism of Isotropic Behavior in Titanium Alloy Plates Formed by Axial Closed Die Rolling
by Jungang Nan, Dong Liu, Yonghao Zhang, Yu Zhang and Jianguo Wang
Materials 2025, 18(11), 2528; https://doi.org/10.3390/ma18112528 - 27 May 2025
Viewed by 362
Abstract
The torsional behavior during the deformation process of the axial closed die rolling the axial closed rolling (ACDR) forming is studied in this paper using a numerical simulation technique on TC11 titanium alloy. The axial and radial pinch angles, as well as the [...] Read more.
The torsional behavior during the deformation process of the axial closed die rolling the axial closed rolling (ACDR) forming is studied in this paper using a numerical simulation technique on TC11 titanium alloy. The axial and radial pinch angles, as well as the degree of specimen torsion, increased with the amount of deformation. The orientation distribution function (ODF) maps of the α-phase and β-phase were obtained by Electron Back Scatter Diffraction (EBSD) treatment of the TC11 titanium alloy. It can be noticed that there were different types of texture with different strengths in the ACDR samples, and in the xz and yz planes, textures in the direction of the column were predominantly of {0001} <21¯1¯0> and {011¯0} <21¯1¯0>; the weaker the texture was, the closer to the edge of the sample. In the xy plane, the texture structure was mainly distributed along the cone direction, and the textures were {1¯21¯0} <101¯0> and {011¯0} <21¯1¯0>. However, the closer to the edge position of the specimen, the higher the intensity of the texture, and the texture was {12¯12¯} <12¯16>. The β-phase is mainly distributed as {001} <100>, {110} <11¯0>, and {110} <001> textures within the specimen, and the texture strength is about 8.5 times. However, owing to the small proportion of the β-phase content in the specimen, the distribution pattern of its texture has a weak impact on the texture distribution of the overall specimen. A high degree of isotropy in the radial and tangential tensile properties, with a strength isotropy of over 99 percent and a plasticity isotropy of over 95 percent, resulted from the distribution of texture types with varying strengths and orientations within the ACDR specimens, which weakened the TC11 discs’ overall orientation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 3292 KiB  
Article
Contact-Angle-Guided Semi-Cured Slot-Die Coating Eliminates Air Entrapment in LED Multilayer Films
by Zikeng Fang, Jiaqi Wan, Chenghang Li, Henan Li and Ying Yan
Polymers 2025, 17(11), 1436; https://doi.org/10.3390/polym17111436 - 22 May 2025
Viewed by 480
Abstract
LED polymer multilayer films offer clear advantages over single-layer coatings, such as minimized particle settling, finer control over particle distribution, and more precise spectral tuning. However, the standard “coat–dry–coat” process for these multilayer systems often traps air bubbles, degrading film quality and uniformity. [...] Read more.
LED polymer multilayer films offer clear advantages over single-layer coatings, such as minimized particle settling, finer control over particle distribution, and more precise spectral tuning. However, the standard “coat–dry–coat” process for these multilayer systems often traps air bubbles, degrading film quality and uniformity. This study investigates the air entrainment mechanism in multilayer film formation. Bubbles form when the cured bottom layer exhibits a low contact angle, which destabilizes the advancing liquid front. High-speed microscopy captured these interfacial dynamics, and contact-angle measurements quantified the wetting behavior. Numerical simulations further demonstrated that reduced wettability and vortex formation drive air entrainment. To mitigate air entrainment, a semi-cured slot die coating approach was proposed to modify the surface wettability and suppress the flow instabilities. Incorporating temperature-dependent viscosity into the simulation model improved its predictive accuracy, cutting the error in predicted coating-gap limits from 11.49% to 4.99%. This combined strategy delivers reliable, bubble-free multilayer films and paves the way for more consistent, high-quality LED polymer applications. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Coatings)
Show Figures

Figure 1

18 pages, 3490 KiB  
Article
Controlling Product Properties in Forming Processes Using Reinforcement Learning—An Application to V-Die Bending
by Ciarán-Victor Veitenheimer, Dirk Alexander Molitor, Viktor Arne and Peter Groche
Appl. Sci. 2025, 15(10), 5483; https://doi.org/10.3390/app15105483 - 14 May 2025
Viewed by 499
Abstract
Uncertainty is unavoidable in forming processes due to fluctuating properties in the semi-finished product, the tool system and the environment. For this reason, numerous scientists have addressed this issue by developing control approaches like self-optimizing machine tools or the control of product properties. [...] Read more.
Uncertainty is unavoidable in forming processes due to fluctuating properties in the semi-finished product, the tool system and the environment. For this reason, numerous scientists have addressed this issue by developing control approaches like self-optimizing machine tools or the control of product properties. Machine learning algorithms, in particular reinforcement learning (RL) methods, show promising results for controlling production processes in this way. In this paper, the application of RL is demonstrated on an industrially commonly used process, V-die bending. For this purpose, first a flexible tool system is developed that allows the bending angle to be adjusted continuously between 80 and 110°. The developed tool is initially simulated through an FEM model in order to create a sufficient database for the training of an RL agent for springback compensation. The pre-trained agent is then used to control the springback in the real process. To close the resulting sim-to-real gap, it is then retrained on the experimentally generated data. It is shown that the springback can be significantly reduced compared to the uncontrolled case in both the simulative and the experimental process. Full article
(This article belongs to the Special Issue Advanced Digital Design and Intelligent Manufacturing)
Show Figures

Figure 1

18 pages, 3340 KiB  
Article
Interfacial Effects Between Dental Impression and Die Materials and Their Role in the Internal Fit of Indirect Resin-Based Composite Restorations
by Murillo Weissheimer, João Carlos S. N. Foly, Fabíola G. Carvalho and Eliseu A. Münchow
Dent. J. 2025, 13(4), 155; https://doi.org/10.3390/dj13040155 - 31 Mar 2025
Viewed by 470
Abstract
Background/Objectives: This study tested a method for evaluating the internal fit of indirect resin-based composite (RBC) restorations, as well as the influence of different combinations of impression and die materials on the reproducibility of the topography of teeth prepared for indirect RBC restoration. [...] Read more.
Background/Objectives: This study tested a method for evaluating the internal fit of indirect resin-based composite (RBC) restorations, as well as the influence of different combinations of impression and die materials on the reproducibility of the topography of teeth prepared for indirect RBC restoration. Methods: Bovine incisors received flattened and cavitated areas at the cervical and middle thirds of the buccal surface, respectively. The samples were randomly assigned to two groups according to the material used for impression taking (n = 5): irreversible hydrocolloid and polyvinyl siloxane (PVS). Die replicas were obtained with Type IV gypsum or elastomeric material. RBC restorations were fabricated through an indirect technique (test) and a direct-indirect technique as the control. The internal fit of restorations was assessed by measuring the cementation line thickness with a digital caliper (simulated cementation protocol with ultra-light PVS) and validated using scanning electron microscopy (SEM). Surface topography (Sa, Sq, and Sz) was analyzed via optical profilometry, and wettability was assessed through the water contact angle method. The data were analyzed using t-test, ANOVA, and Pearson correlation tests (α = 5%). Results: The simulated cementation resulted in internal gap values positively correlated to the values from SEM (R2 = 0.958; p = 0.0102). The internal gap of restorations was not significantly correlated with the discrepancies between the topography of the die and tooth substrate (p ≥ 0.067). The combination of irreversible hydrocolloid and gypsum resulted in restorations with the lowest cementation line thickness, although in terms of roughness, this combination was the only one that resulted in significant differences from the control (p ≤ 0.028). The internal mean gap values of restorations were significantly correlated to the cumulative wettability difference of materials used during impression taking, fabrication of die replica, and restoration build-up (R2 = 0.981; p = 0.003). Conclusions: The reproducibility of topographical characteristics of the tooth in the die replica did not affect the internal adaptation of indirect RBC restorations, whereas surface wettability of materials presented a more relevant effect on the overall gap formation. The simulated cementation technique tested in the study shows potential as a simpler, cost-effective, and non-destructive method for evaluating the adaptation of indirect RBC restorations. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

15 pages, 7217 KiB  
Article
Defect Analysis and Improvement Method of Eccentric Camshaft Forging by Vertical Upsetting Extrusion Forming
by Tao Wang, Hongxing Sun, Nan Hu, Dan Liu, Zhen Wang, Guanghui Liu, Chao Zhang and Hua Liu
Materials 2025, 18(7), 1468; https://doi.org/10.3390/ma18071468 - 26 Mar 2025
Viewed by 477
Abstract
Eccentric camshaft components serve as critical elements in emergency pump systems for commercial vehicle steering mechanisms. To optimize material utilization efficiency, reduce production costs, and enhance manufacturing throughput, this investigation implemented a vertical upsetting extrusion forming methodology for camshaft forging production. Initial trials [...] Read more.
Eccentric camshaft components serve as critical elements in emergency pump systems for commercial vehicle steering mechanisms. To optimize material utilization efficiency, reduce production costs, and enhance manufacturing throughput, this investigation implemented a vertical upsetting extrusion forming methodology for camshaft forging production. Initial trials revealed defect formation in forged components. By analyzing the causes of the defects, an improved process method was developed to eliminate them. The chemical composition, macroscopic and microscopic morphologies of defects, forging process, and metal streamlines were analyzed and studied by means of a direct reading spectrometer, high-resolution camera, metallographic microscope, DEFORM finite element analysis software, and chemical etching. Findings indicate that the observed defects constitute forging-induced cracks, with subsequent normalizing heat treatment exacerbating decarburization phenomena in defect-adjacent microstructures. During the forging process of the forgings, the metal continuously extruded into the die cavity, and the inflowing metal pulled the dead zone metal downward, causing the flow lines aligned with the contour to bend into S-shaped metal streamlines. Cracks formed when the tensile stress in the dead zone metal exceeded the material’s critical tensile stress. An improved process was proposed: adopting a vertical upsetting extrusion forming method with a 40° diversion angle at the junction between the first step and the thin rod in the die cavity. Numerical simulations confirmed complete elimination of deformation dead zones in the optimized process. Experimental verification demonstrated crack-free forgings. Therefore, the eccentric camshafts formed by the initial process exhibited forging cracks, and the proposed improved method of vertical upsetting extrusion forming with a diversion angle effectively eliminated the forging cracks. Full article
(This article belongs to the Special Issue Fracture and Fatigue in Metals and Alloys)
Show Figures

Graphical abstract

12 pages, 27680 KiB  
Article
Effect of Ultrasonic Vibration and Average Grain Size on the Deformability of T2 Copper in T-Shaped Micro-Upsetting
by Liangsong Jia, Yang Liu, Rengui Bi and Jian Li
Crystals 2025, 15(4), 307; https://doi.org/10.3390/cryst15040307 - 26 Mar 2025
Viewed by 328
Abstract
Ultrasonic vibration (UV)-assisted forming technology has emerged as a significant advancement in the field of bulk micro-forming. This study presents a comprehensive experimental investigation into the micro-scale deformation behavior of metallic materials and its influence on size effects under UV, with a specific [...] Read more.
Ultrasonic vibration (UV)-assisted forming technology has emerged as a significant advancement in the field of bulk micro-forming. This study presents a comprehensive experimental investigation into the micro-scale deformation behavior of metallic materials and its influence on size effects under UV, with a specific focus on the UV-assisted T-shaped micro-upsetting of T2 copper. Utilizing a custom-designed UV-assisted micro-upsetting apparatus, the flow stress, filling height, and microstructural evolution of T2 copper are systematically examined, considering various grain sizes, die opening angles, and ultrasonic amplitudes. The findings demonstrate that UV significantly mitigates the influence of grain size effects. Notably, the softening effect induced by UV becomes more pronounced with decreasing grain size, concomitantly leading to increased filling height. As the die opening angle expands, the required forming load increases. The enhancement of ultrasonic amplitude not only increases the V-groove filling height but also improves the surface quality. The optimal V-groove filling performance is achieved at an ultrasonic amplitude of 8.01 μm. It is crucial to note that increased ultrasonic amplitude generally improves forming performance, while excessive ultrasonic amplitude may lead to micro-crack formation within the material, thereby decreasing the formability of T2 copper. These results provide valuable insights into the complex interplay between ultrasonic parameters and material response in micro-forming processes, offering significant implications for the optimization of UV-assisted forming technologies in precision manufacturing applications. Full article
Show Figures

Figure 1

20 pages, 3841 KiB  
Article
The Effects of Pass Number and Die Channel Angle of Equal Channel Angular Pressing on Innovative Magnesium Composite Material
by Xin Zhang, Jian Han, Jing Tian, Lisong Zhu, Peng Zhang, Yue Wang and Zhengyi Jiang
Metals 2025, 15(4), 349; https://doi.org/10.3390/met15040349 - 23 Mar 2025
Viewed by 341
Abstract
The effects of the designed equal channel angular pressing (ECAP) procedures on microstructures, mechanical properties and corrosion resistances of newly developed nano-MgO/Mg–Zn–Ca composite materials have been investigated in this study. The die channel angles selected by the ECAP processes are 90°and 120°, and [...] Read more.
The effects of the designed equal channel angular pressing (ECAP) procedures on microstructures, mechanical properties and corrosion resistances of newly developed nano-MgO/Mg–Zn–Ca composite materials have been investigated in this study. The die channel angles selected by the ECAP processes are 90°and 120°, and the corresponding composite materials are kept for 15 min in the ECAP mold at 300 °C before 1, 4, and 8 passes through route BC. It can be understood that the sizes of grains and second phases were significantly reduced because of continuous dynamic recrystallization (C-DRX) and mechanical shearing, and the ECAP process with the die angle of 90° shows more evidence of grain refinement owing to the higher shear stress. The obtained mechanical properties stipulated that both the yield and ultimate strength were improved after ECAP, which is related to the interaction of grain and texture evolution, while the elongation increases drastically from 14% (as-extruded state) to 34% (ECAP-ed state). Meanwhile, the improvement of corrosion resistance by microstructural evolution is more significant than adverse effects originating from the internal defects of the material itself as well as the defects originating from the number of passes. Ultimately, the conclusions were made based on the results regarding performance improvement by the optimized parameters designed and utilized in ECAP for this novel Mg composite material. Full article
Show Figures

Figure 1

20 pages, 9766 KiB  
Article
Precision Hotspot Mitigation in Wafer-Level Electroplating with Novel Auxiliary Electrode Design for Advanced Large-Scale Chip Packaging
by Tao Jiang, Huiyong Hu, He Wang, Qiongling Yin, Pengpeng Lin, Yongyan Wei, Yanan Xu, Yitian Wang and Feng Hong
Electronics 2025, 14(5), 944; https://doi.org/10.3390/electronics14050944 - 27 Feb 2025
Viewed by 833
Abstract
This study introduces a novel, non-rotationally symmetrical auxiliary electrode design aimed at mitigating localized hotspots and enhancing the deposition uniformity in wafer-level electroplating for advanced large-scale chip packaging. The formation of hotspots and deposition non-uniformity, particularly at the wafer edge and in regions [...] Read more.
This study introduces a novel, non-rotationally symmetrical auxiliary electrode design aimed at mitigating localized hotspots and enhancing the deposition uniformity in wafer-level electroplating for advanced large-scale chip packaging. The formation of hotspots and deposition non-uniformity, particularly at the wafer edge and in regions with complex die layouts, presents significant challenges in electroplating processes. To address these issues, the proposed auxiliary electrode incorporates a dynamic angle control mechanism, which facilitates the precise, localized modulation of the current density. This innovative design improves the regulation of current distribution in hotspot-prone regions, without compromising the overall stability and uniformity of the wafer-level electroplating process. Extensive numerical simulations were conducted to assess the electrode’s effectiveness in redistributing current density, resulting in a marked reduction in current density at the wafer edge, thereby mitigating over-deposition and enhancing overall uniformity. The simulation results also demonstrated the electrode’s capability for dynamic current flow regulation, enabling localized adjustments only when necessary and minimizing disruptions to the electroplating process. Experimental validation further corroborated the simulation findings, with repeated trials confirming the electrode’s consistent performance in reducing localized over-deposition in hotspot regions while maintaining uniform plating in unaffected areas. These findings underscore the potential of the auxiliary electrode as a robust solution for addressing hotspot formation and deposition uniformity challenges in electroplating, providing a solid foundation for its industrial implementation in advanced chip packaging and related fields. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

16 pages, 4554 KiB  
Article
Design of Tool Shape and Evaluation of Deformation Behavior by Digital Image Correlation Method in V-Bending of Sheet Metal Using Plastic Tools Manufactured by 3D Printer
by Naotaka Nakamura, Yuri Hata, Witthaya Daodon, Daiki Ikeda, Nozomu Adachi, Yoshikazu Todaka and Yohei Abe
Materials 2025, 18(3), 608; https://doi.org/10.3390/ma18030608 - 29 Jan 2025
Viewed by 1645
Abstract
In the V-bending of sheet metals using a pair of plastic punch and die manufactured by a 3D printer, the effects of two different dimensions designed with the same tool geometry on the deformation behaviors of the punch, die, and sheet were evaluated. [...] Read more.
In the V-bending of sheet metals using a pair of plastic punch and die manufactured by a 3D printer, the effects of two different dimensions designed with the same tool geometry on the deformation behaviors of the punch, die, and sheet were evaluated. The deformation behavior and strain distribution of the punch, die, and sheet were analyzed using a digital image correlation method. Sheets from pure aluminum to ultra-high-strength steel were bent using the two tools with different spans; one was designed on the assumption of tool steel material, and the other was designed on the assumption of plastic material. In both tools, the large compressive strain appeared around the center of the punch tip and on the corners of the die. The tools with a long span for the plastic material gave a lower bending force and small deformation of the plastic tools. The angle difference between a bent sheet at the bottom dead center and a tool was smaller for the tools with the long span, although the springback in the bent sheet appeared. It was found that the design method on the assumption of the plastic material is effective for the V-bending plastic tools. Full article
(This article belongs to the Special Issue State of the Art in Materials for Additive Manufacturing)
Show Figures

Graphical abstract

12 pages, 1962 KiB  
Article
Lattice Structure for Improving Cooling Uniformity in HPDC Mould Corners
by Essam Abo-Serie and Samuel K. Koranteng-Agyarko
Appl. Sci. 2025, 15(1), 427; https://doi.org/10.3390/app15010427 - 5 Jan 2025
Viewed by 1236
Abstract
Conformal cooling channels have demonstrated significant advantages for cast parts and 3D-printed moulds in the high-pressure die casting (HPDC) process. However, the complex geometry of moulds, characterised by small intrusions, sharp corners, and fins, often results in nonuniform cooling in certain regions, leading [...] Read more.
Conformal cooling channels have demonstrated significant advantages for cast parts and 3D-printed moulds in the high-pressure die casting (HPDC) process. However, the complex geometry of moulds, characterised by small intrusions, sharp corners, and fins, often results in nonuniform cooling in certain regions, leading to overcooling or overheating. This study proposes integrating lattice structures within specific regions of 3D-printed moulds or inserts as an additional control parameter to enhance cooling uniformity by increasing thermal resistance in targeted areas. A validated three-dimensional Computational Fluid Dynamics (CFD) model was employed to incorporate three types of lattice structures, aiming to limit local heat flux in overcooled areas. The model specifically addresses the cooling of an aluminium alloy profile with 90-degree-angled corners, using H13 steel mould properties. The results indicate that implementing a lattice structure as a sleeve around the cooling pipe at the corner two sides improved temperature uniformity by over 42%. However, this increased thermal resistance also led to a 16 °C rise in corner temperature. These findings suggest that implementing lattice structures in the mould can improve cooling uniformity. However, they should be positioned away from the thickest regions of the mould to avoid increasing the modelling time. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

19 pages, 10254 KiB  
Article
Humidity Resistant Biodegradable Starch Foams Reinforced with Polyvinyl Butyral (PVB) and Chitosan
by Apoorva Kulkarni, Jakob Emrich and Ramani Narayan
Polymers 2024, 16(23), 3402; https://doi.org/10.3390/polym16233402 - 3 Dec 2024
Viewed by 2068
Abstract
In this study, water-insoluble, moisture-resistant starch foams were prepared using an optimized one-step extrusion-foaming process in a ZSK-30 twin screw extruder. The extrusion parameters, including temperature, screw configuration, die diameter, water content, and feeding rates, were optimized to achieve foams with the lowest [...] Read more.
In this study, water-insoluble, moisture-resistant starch foams were prepared using an optimized one-step extrusion-foaming process in a ZSK-30 twin screw extruder. The extrusion parameters, including temperature, screw configuration, die diameter, water content, and feeding rates, were optimized to achieve foams with the lowest density and controlled expansion. A screw configuration made up of three kneading sections was found to be the most effective for better mixing and foaming. Polyvinyl butyral (PVB) acted as a plasticizer, resulting in foams with a density of 21 kg/m3 and an expansion ratio of 38.7, while chitosan served as a nucleating agent, reducing cell size and promoting a uniform cell size distribution. The addition of PVB and chitosan reduced the moisture sensitivity of the foams, rendering them hydrophobic and water-insoluble. The contact angle increased from 0° for control foams to 101.5° for foams containing 10% chitosan and 10% PVB. Confocal laser scanning microscopy (CLSM) confirmed the migration of chitosan to the foam surface, enhancing hydrophobicity. Aqueous biodegradation tests, conducted at 30 °C in accordance with ISO 14852 standards, demonstrated that despite enhanced moisture resistance, the foams remained readily biodegradable, achieving approximately 80% biodegradation within 80 days. These modified starch foams present a sustainable solution for packaging and insulation applications that demand long-term humidity resistance. Full article
(This article belongs to the Collection Polymeric Foams)
Show Figures

Graphical abstract

Back to TopTop