Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (498)

Search Parameters:
Keywords = dicarboxylic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4660 KiB  
Article
Coordination Polymers Bearing Angular 4,4′-Oxybis[N-(pyridin-3-ylmethyl)benzamide] and Isomeric Dicarboxylate Ligands: Synthesis, Structures and Properties
by Yung-Hao Huang, Yi-Ju Hsieh, Yen-Hsin Chen, Shih-Miao Liu and Jhy-Der Chen
Molecules 2025, 30(15), 3283; https://doi.org/10.3390/molecules30153283 (registering DOI) - 5 Aug 2025
Abstract
Reactions of the angular 4,4′-oxybis[N-(pyridin-3-ylmethyl)benzamide] (L) with dicarboxylic acids and transition metal salts afforded non-entangled {[Cd(L)(1,3-BDC)(H2O)]∙2H2O}n (1,3-BDC = 1,3-benzenedicarboxylic acid), 1; {[Cd(L)(1,4-HBDC)(1,4-BDC)0.5]∙2H2O}n (1,4-BDC = [...] Read more.
Reactions of the angular 4,4′-oxybis[N-(pyridin-3-ylmethyl)benzamide] (L) with dicarboxylic acids and transition metal salts afforded non-entangled {[Cd(L)(1,3-BDC)(H2O)]∙2H2O}n (1,3-BDC = 1,3-benzenedicarboxylic acid), 1; {[Cd(L)(1,4-HBDC)(1,4-BDC)0.5]∙2H2O}n (1,4-BDC = 1,4-benzenedicarboxylic acid), 2; {[Cu2(L)2(1,3-BDC)2]∙1.5H2O}n, 3; {[Ni(L)(1,3-BDC)(H2O)]∙2H2O}n, 4; {[Zn(L)(1,3-BDC)]∙4H2O}n, 5; {[Zn(L)(1,4-BDC)]∙2H2O}n, 6; and [Cd3(L)2(1,4-BDC)3]n, 7, which have been structurally characterized by using single-crystal X-ray diffraction. Complexes 15 and 7 are 2D layers, giving (64·8·10)(6)-2,4L3, (42·82·102)(42·84)2(4)2, (4·5·6)(4·55·63·7)-3,5L66, (64·8·10)(6)-2,4L3, interdigitated (84·122)(8)2-2,4L2 and (36·46·53)-hxl topologies, respectively, and 6 is a 1D chain with the (43·62·8)(4)-2,4C3 topology. The factors that govern the structures of 17 are discussed and the thermal properties of 17 and the luminescent properties of complexes 1, 2, 5 and 6 are investigated. The stabilities of complexes 1 and 5 toward the detection of Fe3+ ions are also evaluated. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

25 pages, 7432 KiB  
Article
Integration of mRNA and miRNA Analysis Reveals the Regulation of Salt Stress Response in Rapeseed (Brassica napus L.)
by Yaqian Liu, Danni Li, Yutong Qiao, Niannian Fan, Ruolin Gong, Hua Zhong, Yunfei Zhang, Linfen Lei, Jihong Hu and Jungang Dong
Plants 2025, 14(15), 2418; https://doi.org/10.3390/plants14152418 - 4 Aug 2025
Viewed by 154
Abstract
Soil salinization is a major constraint to global crop productivity, highlighting the need to identify salt tolerance genes and their molecular mechanisms. Here, we integrated mRNA and miRNA profile analyses to investigate the molecular basis of salt tolerance of an elite Brassica napus [...] Read more.
Soil salinization is a major constraint to global crop productivity, highlighting the need to identify salt tolerance genes and their molecular mechanisms. Here, we integrated mRNA and miRNA profile analyses to investigate the molecular basis of salt tolerance of an elite Brassica napus cultivar S268. Time-course RNA-seq analysis revealed dynamic transcriptional reprogramming under 215 mM NaCl stress, with 212 core genes significantly enriched in organic acid degradation and glyoxylate/dicarboxylate metabolism pathways. Combined with weighted gene co-expression network analysis (WGCNA) and RT-qPCR validation, five candidate genes (WRKY6, WRKY70, NHX1, AVP1, and NAC072) were identified as the regulators of salt tolerance in rapeseed. Haplotype analysis based on association mapping showed that NAC072, ABI5, and NHX1 exhibited two major haplotypes that were significantly associated with salt tolerance variation under salt stress in rapeseed. Integrated miRNA-mRNA analysis and RT-qPCR identified three regulatory miRNA-mRNA pairs (bna-miR160a/BnaA03.BAG1, novel-miR-126/BnaA08.TPS9, and novel-miR-70/BnaA07.AHA1) that might be involved in S268 salt tolerance. These results provide novel insights into the post-transcriptional regulation of salt tolerance in B. napus, offering potential targets for genetic improvement. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Viewed by 333
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

16 pages, 2260 KiB  
Article
From Shale to Value: Dual Oxidative Route for Kukersite Conversion
by Kristiina Kaldas, Kati Muldma, Aia Simm, Birgit Mets, Tiina Kontson, Estelle Silm, Mariliis Kimm, Villem Ödner Koern, Jaan Mihkel Uustalu and Margus Lopp
Processes 2025, 13(8), 2421; https://doi.org/10.3390/pr13082421 - 30 Jul 2025
Viewed by 292
Abstract
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a [...] Read more.
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a locally based source of aliphatic dicarboxylic acids (DCAs). The method combines air oxidation with subsequent nitric acid treatment to enable selective breakdown of the organic structure under milder conditions. Air oxidation was conducted at 165–175 °C using 1% KOH as an alkaline promoter and 40 bar oxygen pressure (or alternatively 185 °C at 30 bar), targeting 30–40% carbon conversion. The resulting material was then subjected to nitric acid oxidation using an 8% HNO3 solution. This approach yielded up to 23% DCAs, with pre-oxidation allowing a twofold reduction in acid dosage while maintaining efficiency. However, two-step oxidation was still accompanied by substantial degradation of the structure, resulting in elevated CO2 formation, highlighting the need to balance conversion and carbon retention. The process offers a possible route for transforming solid fossil residues into useful chemical precursors and supports the advancement of regionally sourced, sustainable DCA production from unconventional raw materials. Full article
Show Figures

Graphical abstract

18 pages, 5002 KiB  
Article
Differential Metabolomic Signatures in Boar Sperm with Varying Liquid Preservation Capacities at 17 °C
by Serge L. Kameni, Notsile H. Dlamini and Jean M. Feugang
Animals 2025, 15(15), 2163; https://doi.org/10.3390/ani15152163 - 22 Jul 2025
Viewed by 460
Abstract
In the swine industry, artificial insemination (AI) primarily uses chill-stored semen, making sperm preservation crucial for reproductive success. However, sperm quality declines at varying rates during chilled storage at 17 °C, distinguishing high-survival semen from low-survival semen. This study investigates the metabolomic profiles [...] Read more.
In the swine industry, artificial insemination (AI) primarily uses chill-stored semen, making sperm preservation crucial for reproductive success. However, sperm quality declines at varying rates during chilled storage at 17 °C, distinguishing high-survival semen from low-survival semen. This study investigates the metabolomic profiles of boar sperm with different abilities to survive liquid storage. We analyzed sperm motility, kinematics, and morphology in freshly extended (Day 0) and 7-day stored AI semen doses. The AI semen doses were classified as high-motile (HM) or low-motile (LM) based on sperm motility after 7 days of storage (Day 7). Metabolomic data were collected in positive (ESI+) and negative (ESI−) ion modes using a Vanquish Flex UPLC coupled with a Q Extractive Plus. We consistently detected 442 metabolites (251 in ESI+, 167 in ESI−, and 24 in both) across samples and storage durations. In freshly extended and 7-day stored AI doses, we identified 42 and 56 differentially expressed metabolites (DEMs), respectively. A clustering analysis showed significant changes in DEMs between the HM and LM samples. These DEMs were mainly enriched in amino acid metabolism, the pentose phosphate pathway, glycerolipid metabolism, glyoxylate and dicarboxylate metabolism, terpenoid backbone biosynthesis, etc. In summary, this study highlights the metabolomic differences between semen doses with varying abilities to survive liquid storage. Glyceric acid and lysoPC(20:3) emerged as potential markers for sperm preservation. Full article
(This article belongs to the Special Issue Current Status and Advances in Semen Preservation—Second Edition)
Show Figures

Figure 1

11 pages, 846 KiB  
Article
Application of the Precolumn Derivatization Reagent CIM-C2-NH2 for Labeling Carboxyl Groups in LC-MS/MS Analysis of Primary Organic Acids in Japanese Sake
by Mayu Onozato, Haruna Uchida, Misaki Ono, Mikoto Koishi, Maya Oi, Maho Umino, Tatsuya Sakamoto and Takeshi Fukushima
Separations 2025, 12(7), 186; https://doi.org/10.3390/separations12070186 - 16 Jul 2025
Viewed by 274
Abstract
Japanese sake, a traditional alcoholic beverage, contains several organic acids that may contribute to its sour taste. To identify these, a precolumn derivatization reagent, benzyl 5-(2-aminoethyl)-3-methyl-4-oxoimidazolidine-1-carboxylate (CIM-C2-NH2), developed for labeling carboxyl groups, was synthesized and applied to liquid chromatography–tandem [...] Read more.
Japanese sake, a traditional alcoholic beverage, contains several organic acids that may contribute to its sour taste. To identify these, a precolumn derivatization reagent, benzyl 5-(2-aminoethyl)-3-methyl-4-oxoimidazolidine-1-carboxylate (CIM-C2-NH2), developed for labeling carboxyl groups, was synthesized and applied to liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis of organic acids in six commercial sake samples. The majority primarily contained lactic acid (LA), and dicarboxylic acids, such as succinic acid (SA), malic acid (MA), and citramalic acid (CMA). The organic acid concentrations and compositions in the sake differed among brands. Notably, both l- and d-forms of LA were detected in all samples, while only d-CMA was present. To estimate the total acidic content, neutralization titration with sodium hydroxide was performed. In four of the six samples, titration results closely matched LC-MS/MS data, suggesting that l-LA, d-LA, SA, MA, and d-CMA were the primary contributors for the sour taste in these sakes. The discrepancy between titration and LC-MS/MS data for the other samples was attributed to the presence of other organic acids, which will be investigated in future studies. Full article
(This article belongs to the Section Analysis of Food and Beverages)
Show Figures

Figure 1

12 pages, 1535 KiB  
Article
Highly Efficient Adsorption of Uranium(VI) Ions in Aqueous Solution by Imidazole-4,5-Dicarboxylic Acid-Functionalized UiO-66
by Tian Lan, Xiechun Liu, Haifeng Cong, Xiaofan Ding, Jing Zhao and Songtao Xiao
Molecules 2025, 30(14), 2966; https://doi.org/10.3390/molecules30142966 - 15 Jul 2025
Viewed by 327
Abstract
In this study, a novel adsorbent, UiO-66-H3IMDC, was successfully prepared by functionalizing UiO-66 with imidazole-4,5-dicarboxylic acid (H3IMDC). The effective functionalization of H3IMDC on UiO-66 was confirmed by powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR). The relationships [...] Read more.
In this study, a novel adsorbent, UiO-66-H3IMDC, was successfully prepared by functionalizing UiO-66 with imidazole-4,5-dicarboxylic acid (H3IMDC). The effective functionalization of H3IMDC on UiO-66 was confirmed by powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR). The relationships between the adsorption of U(VI) on UiO-66-H3IMDC and the contact time, the pH of the solution, as well as the initial concentration of U(VI) were investigated. Additionally, the selective adsorption of U(VI) by UiO-66-H3IMDC and its cyclic regeneration performance were also studied. The results demonstrate that the UiO-66-H3IMDC adsorbent exhibits excellent adsorption performance for uranium in aqueous solutions. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

21 pages, 1433 KiB  
Review
Itaconic Acid: A Regulator of Immune Responses and Inflammatory Metabolism
by Kai Ma, Pei Zhou, Wei Zhang, Liwu Zeng, Kaixiong Tao and Peng Zhang
Curr. Issues Mol. Biol. 2025, 47(7), 534; https://doi.org/10.3390/cimb47070534 - 9 Jul 2025
Viewed by 746
Abstract
This article reviews the multifaceted roles of itaconate in immune regulation and inflammatory metabolism. Itaconic acid is a dicarboxylic acid with anti-inflammatory, antioxidant, and anti-tumor properties. It is initially produced by the heating decomposition of citric acid and is closely related to the [...] Read more.
This article reviews the multifaceted roles of itaconate in immune regulation and inflammatory metabolism. Itaconic acid is a dicarboxylic acid with anti-inflammatory, antioxidant, and anti-tumor properties. It is initially produced by the heating decomposition of citric acid and is closely related to the tricarboxylic acid cycle. In immune regulation, itaconate regulates macrophage function through a variety of mechanisms, including metabolic reprogramming, polarization regulation, inhibition of cytokine production, and regulation of oxidative stress. It can also affect the function of T cells and B cells. In terms of inflammatory metabolism, itaconate can regulate the production of inflammatory factors, inhibit the activity of succinate dehydrogenase, and affect cellular energy metabolism and lipid metabolism. Its mechanism of action involves the inhibition of succinate dehydrogenase, covalent modification of proteins, influence on epigenetic modification, and playing a role through the G protein-coupled receptor OXGR1 (Oxoglutarate Receptor 1). Itaconic acid derivatives have shown good effects in anti-inflammation and anti-oxidation and have broad application prospects in clinical treatment, including the treatment of inflammatory diseases, anti-tumor and anti-microbial infection. However, the long-term safety and side effects of itaconic acid as a therapeutic agent still need to be further studied. Future studies will further explore the synthesis and function of itaconic acid in different cell types, its physiological effects in non-inflammatory conditions, and its potential application in clinical treatment in order to develop new therapeutic strategies and improve the treatment effect of chronic inflammatory and metabolism-related diseases. Full article
Show Figures

Graphical abstract

15 pages, 2226 KiB  
Article
Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces
by Guorong Zhou, Faeze Hashemi, Changzeng Ding, Xin Luo, Lianping Zhang, Esmaeil Sheibani, Qun Luo, Askhat N. Jumabekov, Ronald Österbacka, Bo Xu and Changqi Ma
Nanomaterials 2025, 15(13), 1014; https://doi.org/10.3390/nano15131014 - 1 Jul 2025
Viewed by 610
Abstract
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried [...] Read more.
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried interface significantly influences the crystal growth quality of perovskite, but it is difficult to effectively control, leading to relatively slow research progress. To address the issue of poor interfacial contact between the hole transport-layer nickel oxide (NiOX) and the perovskite, we introduced a conjugated self-assembled monolayer (SAM), 4,4′-[(4-(3,6-dimethoxy-9H-carbazole)triphenylamine)]diphenylacetic acid (XS21), which features triphenylamine dicarboxylate groups. For comparison, we also employed the widely studied phosphonic acid-based SAM, [2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl] phosphonic acid (MeO-2PACz). A systematic investigation was carried out to evaluate the influence of these SAMs on the performance and stability of inverted PSCs. The results show that both XS21 and MeO-2PACz significantly enhanced the crystallinity of the perovskite layer, reduced defect densities, and suppressed non-radiative recombination. These improvements led to more efficient hole extraction and transport at the buried interface. Consequently, inverted PSCs incorporating XS21 and MeO-2PACz achieved impressive power-conversion efficiencies (PCEs) of 21.43% and 22.43%, respectively, along with marked enhancements in operational stability. Full article
Show Figures

Figure 1

13 pages, 1100 KiB  
Article
Easy ROMP of Quinine Derivatives Toward Novel Chiral Polymers That Discriminate Mandelic Acid Enantiomers
by Mariusz Majchrzak, Karol Kacprzak, Marta Piętka, Jerzy Garbarek and Katarzyna Taras-Goślińska
Polymers 2025, 17(12), 1661; https://doi.org/10.3390/polym17121661 - 15 Jun 2025
Viewed by 545
Abstract
A novel and general approach to the practical ROMP polymerization of cinchona alkaloid derivatives providing novel hybrid materials having quinine attached on a poly(norbornene-5,6-dicarboxyimide) matrix is presented. The concept involves an easy modification of quinine (in general, any cinchona alkaloid) toward clickable 9-azide [...] Read more.
A novel and general approach to the practical ROMP polymerization of cinchona alkaloid derivatives providing novel hybrid materials having quinine attached on a poly(norbornene-5,6-dicarboxyimide) matrix is presented. The concept involves an easy modification of quinine (in general, any cinchona alkaloid) toward clickable 9-azide that reacts with N-propargyl-cis-5-norbornene-exo-2,3-dicarboxylic imide in Cu(I)-catalyzed Huisgen cycloaddition (click chemistry). The resulting monomers undergo a controllable ROMP reaction that leads to novel polymers of a desired length and solubility. This sequence allows for the facile preparation of a regularly decorated polymeric material having one quinine moiety per single mer of the polymer chain inaccessible using typical immobilization methods. A poly(norbornene-5,6-dicarboxyimide) type of polymeric matrix was selected due to the high reactivity of the exo-norbornene motif in Ru(II)-catalyzed ROMP and its chemical and thermal stability as well as convenient, scalable access from inexpensive cis-5-norbornene-exo-2,3-dicarboxylic anhydride (‘one-pot’ Diels–Alder reaction of dicyclopentadiene and maleic anhydride). An appropriate combination of a Grubbs catalyst, Ru(II) (G1, G2), and ROMP conditions allowed for the efficient synthesis of well-defined soluble polymers with mass parameters in the range Mn = 2.24 × 104 – 2.26 × 104 g/mol and Mw = 2.90 × 104–3.05 × 104 g/mol with good polydispersity, ĐM = 1.32–1.35, and excellent thermal stability (up to 309°C Td10). Spectroscopic studies (NMR and electronic circular dichroism (ECD)) of these products revealed a linear structure with the slight advantage of a trans-configuration of an olefinic double bond. The resulting short-chain polymer discriminates mandelic acid enantiomers with a preference for the (R)-stereoisomer in spectrofluorimetric assays. This concept seems to be rather general with respect to other molecules dedicated to incorporation into the poly(norbornene-5,6-dicarboxyimide) chain. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

18 pages, 1570 KiB  
Article
Effects of Two Culture Modes on Muscular Nutrition Content and Volatile Flavor in Chinese Longsnout Catfish (Leiocassis longirostris)
by Luo Zhou, Yingbing Su, Daiqin Yang, Qiong Shi, Tilin Yi and Zhengyong Wen
Biology 2025, 14(6), 694; https://doi.org/10.3390/biology14060694 - 13 Jun 2025
Viewed by 548
Abstract
Thus far, various aquaculture modes have been developed to facilitate the rapid growth of the aquaculture industry and thus meet the heavy demand for aquatic products for human consumption. However, the effects of different culture modes on fish muscular nutritional content and volatile [...] Read more.
Thus far, various aquaculture modes have been developed to facilitate the rapid growth of the aquaculture industry and thus meet the heavy demand for aquatic products for human consumption. However, the effects of different culture modes on fish muscular nutritional content and volatile flavor are rarely reported. In the present study, we evaluated the differences in muscular nutrition content and dietary flavor between Chinese longsnout catfish (Leiocassis longirostris) groups cultured in two different modes, i.e., flow-through water tanks (CWWL) and traditional ponds (CWWC). Our statistical results showed that a significantly higher crude protein content and lower crude fat levels were observed in the CWWL group than in the CWWC group (p < 0.05). Similarly, the contents of total aromatic amino acids (Total ∑TAA) and total dicarboxylic amino acids (Total ∑DAA) were also significantly higher in the CWWL group. Among the fatty acids, long-chain polyunsaturated fatty acids (LC-PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (ARA), were recorded at 1.44%, 2.5%, and 9.09%, respectively, in the CWWL group, which were dramatically higher than in the CWWC group. Conversely, the contents of volatile compounds, including 2-tridecanone, dimethyl trisulfide, and isophorone, in the CWWC group were also significant higher, which, however, may contribute to an unpleasant sensory experience. Conversely, other compounds like 2-methylbutanal and 2,3-butanedione were prevalent in the CWWL group, which can induce rich nutty and buttery flavors and thus enhance the freshness of flavor profiles. In conclusion, Chinese longsnout catfish cultured in flow-through tanks show higher nutritional value and better sensory flavor in comparison with those raised in ponds. These findings not only provide novel insights into the potential effects of aquaculture modes on muscular nutrition content and dietary flavor for Chinese longsnout catfish but also lay a solid foundation for optimizing practical culture modes to improve the global aquaculture industry. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

15 pages, 6302 KiB  
Article
Fluorescent–Electrochemical–Colorimetric Triple-Model Immunoassays with Multifunctional Metal–Organic Frameworks for Signal Amplification
by Ning Xia, Chuye Zheng and Gang Liu
Biosensors 2025, 15(6), 376; https://doi.org/10.3390/bios15060376 - 11 Jun 2025
Viewed by 598
Abstract
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and [...] Read more.
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and the incompatibility of signal transduction methods in different detection modes. In this work, a fluorescent–electrochemical–colorimetric triple-mode immunoassay platform was proposed with Cu-based metal–organic frameworks (MOFs) as the signal labels. The captured Cu-MOFs were successfully decomposed under an acidic condition, leading to the release of numerous Cu2+ ions and 2-aminobenzene-1,4-dicarboxylic acid (NH2-BDC) ligands. The released NH2-BDC were determined by fluorescence titration. Meanwhile, the released Cu2+ were readily quantified by differential pulse voltammetry (DPV) and simply detected through the catalytic oxidation of chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB). Taking alpha-fetoprotein (AFP) as a model analyte, the designed triple-mode immunoassays showed good performances with the linear range of 10–200 pg/mL, 10–200 pg/mL, and 1–100 pg/mL for the fluorescent, electrochemical, and colorimetric modes, respectively. The proposed triple-mode biosensing platforms show great potential for the applications in disease diagnosis, since they can be easily extended to other bioassays by changing the targets and recognition elements. Full article
(This article belongs to the Special Issue Signal Amplification in Biosensing)
Show Figures

Figure 1

16 pages, 1831 KiB  
Article
Finely Designing Dicarboxylic Acid-Based Protic Ionic Liquids System for Tailoring Lignin Structure via Demethylation Strategy
by Cheng Li, Xinyu Xiao, Qizhen Luo, Wanting Zhao, Wenzhe Xiao, Ling-Ping Xiao, Yao Tong, Shangru Zhai and Jian Sun
Molecules 2025, 30(11), 2445; https://doi.org/10.3390/molecules30112445 - 3 Jun 2025
Viewed by 578
Abstract
As one kind of renewable aromatic polymer, lignin is severely underused due to its chemical recalcitrance. Lignin can endure demethylation modification to improve its activation by releasing more active functional groups. However, the process suffers from expensive, corrosive, and toxic issues by employing [...] Read more.
As one kind of renewable aromatic polymer, lignin is severely underused due to its chemical recalcitrance. Lignin can endure demethylation modification to improve its activation by releasing more active functional groups. However, the process suffers from expensive, corrosive, and toxic issues by employing halogen-containing reagents, which has become an obstacle to industrial applications. Herein, a series of dicarboxylic acid-based protic ionic liquids (DAPILs) systems composed of ethanolamine and dibasic organic acids (e.g., aspartic acid (Asp), glutamic acid (Glu), succinic acid (SA), and glutaric acid (GA)) with 1~2:1 stoichiometric ratio, have been finely designed for the demethylation of industrial lignin. With [EOA][GA] treatment, the polyphenol content in lignin was favorably increased beyond 1.58 times. The structural tailoring and variation were fully characterized by 2D HSQC and 1H NMR. The analysis results indicated that, with the increase of phenolic hydroxyl content in lignin, the β-O-4′ bond was broken and the content of structural units (S, G) and the S/G ratio of lignin decreased accordingly. After the treatment, the used IL and tailored lignin can be recovered over 95%. This novel, halogen-free and environmentally friendly lignin-cutting strategy not only opens avenues for high-value utilization of lignin but also expands the field of application of dicarboxylic acid-based protic ionic liquids. Full article
Show Figures

Graphical abstract

15 pages, 1989 KiB  
Article
Dynamic Crosslinking of LDPE by Nitroxide Radical Coupling of a Dicyclopentadiene Dicarboxylic Acid and Its Dynamic Properties
by Alojz Anžlovar, Mohor Mihelčič, Iztok Švab, David Pahovnik and Ema Žagar
Polymers 2025, 17(11), 1536; https://doi.org/10.3390/polym17111536 - 31 May 2025
Viewed by 510
Abstract
LDPE was crosslinked with novel dynamic or conventional crosslinking agents during melt processing. Both crosslinkers were synthesized by the esterification of Thiele’s acid or adipic acid with 4-hydroxy-TEMPO. 1H-NMR showed that a temperature of 170 °C and a reaction time of 24 [...] Read more.
LDPE was crosslinked with novel dynamic or conventional crosslinking agents during melt processing. Both crosslinkers were synthesized by the esterification of Thiele’s acid or adipic acid with 4-hydroxy-TEMPO. 1H-NMR showed that a temperature of 170 °C and a reaction time of 24 min are required for a successful crosslinking. The concentrations of crosslinking agents were 1.45, 2.9, and 5.8 mol%. Conventionally crosslinked LDPEs show a decrease in soluble content in hot xylene with increased crosslinker concentrations, while dynamically crosslinked LDPEs show no change after thermal treatment, indicating the scission of dynamic crosslinks. The rheology of both crosslinked LDPEs at 130 °C shows that the stress release is slower than that of neat LDPE, confirming crosslinking, while at 170 °C a shift in the stress release and also a shift in the flow properties of dynamically crosslinked LDPE towards those of neat LDPE are observed, both indicating the cleavage of dynamic crosslinks. Compared to neat LDPE, the mechanical properties of both crosslinked LDPEs show an increase in Young’s modulus and tensile strength and a decrease in elongation and creep when the concentration of both crosslinkers is increased. By increasing the processing temperature to 170 °C, the crystallinity index decreases, leading to a rather small improvement in the mechanical properties. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

31 pages, 5141 KiB  
Article
Acidic Oxidative Depolymerization Towards Functionalized Low-Molecular-Weight Lignin and High-Value-Added Aliphatic Monomers: Operating Conditions, Scale-Up, and Crosslinking
by Marta C. Lourenço, Talita Nascimento, Pedro José Sanches Filho, Ana C. Marques and Marta Ramos-Andrés
Int. J. Mol. Sci. 2025, 26(10), 4872; https://doi.org/10.3390/ijms26104872 - 19 May 2025
Viewed by 577
Abstract
Lignin, a complex aromatic biopolymer abundant as waste in biorefineries and the pulp and paper industry, holds significant potential for valorization. This study presents the oxidative depolymerization of Lignoboost lignin (LB) using H2O2 under mild, solvent- and catalyst-free, inherently acidic [...] Read more.
Lignin, a complex aromatic biopolymer abundant as waste in biorefineries and the pulp and paper industry, holds significant potential for valorization. This study presents the oxidative depolymerization of Lignoboost lignin (LB) using H2O2 under mild, solvent- and catalyst-free, inherently acidic conditions at 50–70 °C. The process aimed to produce functionalized low-molecular-weight oligomers, retaining aromaticity, and aliphatic dicarboxylic acids, rather than complete monomerization. The depolymerized LB was rich in aromatic dimers-trimers (68.6 wt.%) with high functionalization (2.75 mmol/g OHphen, 3.58 mmol/g OHcarb, 19.5 wt.% of H in -CH=CH-), and aliphatic dicarboxylic acids (53.4 wt.% of monomers). Acidic conditions provided higher depolymerization and functionalization than alkaline, alongside simplified product recovery. The process was also successfully applied to Kraft lignin, demonstrating versatility and robustness even with higher polymeric content feedstocks. The optimized conditions were scaled up (×25), improving efficiency and yielding Mw 464 g/mol and Đ 1.3. As proof of concept, the scaled-up product underwent radical crosslinking, resulting in a new biopolymer with higher thermal stability than LB (54.2 wt.% residual mass at 600 °C versus 36.1 wt.%). This green, scalable process enhances lignin valorization by producing functionalized low-molecular-weight lignin oligomers and dicarboxylic acids that can be used independently or together to form crosslinked networks. Full article
(This article belongs to the Special Issue Valorization of Lignocellulosic Biomass)
Show Figures

Graphical abstract

Back to TopTop