Highly Efficient Adsorption of Uranium(VI) Ions in Aqueous Solution by Imidazole-4,5-Dicarboxylic Acid-Functionalized UiO-66
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of MOFs
2.2. Effect of Initial pH
2.3. Adsorption Isotherm
2.4. Adsorption Kinetics
2.5. Effect of Co-Existing Ions
2.6. Regeneration and Stability Investigation
2.7. Removal Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of UiO-66(Zr)
3.3. Preparation of UiO-66-H3IMDC
3.4. Characterization Techniques
3.5. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Penalonga, L.; Soria, B.Y.M. A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies. Energies 2017, 10, 1235. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, L.; Yu, F.; Xiao, S.; Wang, C.; Yuan, D.; Liu, Y. Sulfonated heteroatom co-doped carbon materials with a porous structure boosting electrosorption capacity for uranium (VI) removal. J. Solid State Chem. 2023, 327, 124262. [Google Scholar] [CrossRef]
- Kadadou, D.; Said, E.A.; Ajaj, R.; Hasan, S.W. Research advances in nuclear wastewater treatment using conventional and hybrid technologies: Towards sustainable wastewater reuse and recovery. J. Water Process Eng. 2023, 52, 103604. [Google Scholar] [CrossRef]
- Srivastava, A.; Parida, V.K.; Majumder, A.; Gupta, B.; Gupta, A.K. Treatment of saline wastewater using physicochemical, biological, and hybrid processes: Insights into inhibition mechanisms, treatment efficiencies and performance enhancement. J. Environ. Chem. Eng. 2021, 9, 105775. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, W.; He, Y. Prediction of Uranium Adsorption Capacity in Radioactive Wastewater Treatment with Biochar. Toxics 2024, 12, 118. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, L.; Chen, H.; Mao, J.; Chen, H.; Ma, X.; Yang, L. Study on the evaporation performance of concentrated desulfurization wastewater and its products analysis. J. Water Process Eng. 2024, 58, 104862. [Google Scholar] [CrossRef]
- Kang, J.; Sun, W.; Hu, Y.; Gao, Z.; Liu, R.; Zhang, Q.; Liu, H.; Meng, X. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation. Water Res. 2017, 125, 318–324. [Google Scholar] [CrossRef]
- José, L.B.; Silva, G.C.; Ladeira, A.C.Q. Pre-concentration and partial fractionation of rare earth elements by ion exchange. Miner. Eng. 2024, 205, 108477. [Google Scholar] [CrossRef]
- Lin, T.; Chen, T.; Jiao, C.; Zhang, H.; Hou, K.; Jin, H.; Liu, Y.; Zhu, W.; He, R. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nat. Commun. 2024, 15, 4149. [Google Scholar] [CrossRef]
- Moghaddam, A.; Khayatan, D.; Barzegar, P.E.F.; Ranjbar, R.; Yazdanian, M.; Tahmasebi, E.; Alam, M.; Abbasi, K.; Ghaleh, H.E.G.; Tebyaniyan, H. Biodegradation of pharmaceutical compounds in industrial wastewater using biological treatment: A comprehensive overview. Int. J. Environ. Sci. Technol. 2023, 20, 5659–5696. [Google Scholar] [CrossRef]
- Mei, D.; Liu, L.; Yan, B. Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord. Chem. Rev. 2023, 475, 214917. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- De Decker, J.; Folens, K.; De Clercq, J.; Meledina, M.; Van Tendeloo, G.; Laing, G.D.; Van Der Voort, P. Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. J. Hazard. Mater. 2017, 335, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, Y.; Liu, L.; Ma, F.; Zhang, C.; Dong, H. MOF modified with copolymers containing carboxyl and amidoxime groups and high efficiency U (VI) extraction from seawater. Sep. Purif. Technol. 2022, 291, 120946. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Liu, Q.; Song, D.; Li, R.; Liu, P.; Wang, J. Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater. Chem. Eng. J. 2019, 368, 951–958. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Y.; Meng, Y.; Wang, X.; Ma, F.; Zhang, C.; Dong, H. Efficient adsorbent for recovering uranium from seawater prepared by grafting amidoxime groups on chloromethylated MIL-101(Cr) via diaminomaleonitrile intermediate. Desalination 2020, 478, 114300. [Google Scholar] [CrossRef]
- Bi, C.; Zhang, C.; Xu, W.; Ma, F.; Zhu, L.; Zhu, R.; Qi, Q.; Liu, L.; Bai, J.; Dong, H. Highly efficient antibacterial adsorbent for recovering uranium from seawater based on molecular structure design of PCN-222 post-engineering. Desalination 2023, 545, 116169. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Luo, B.-C.; Yuan, L.-Y.; Chai, Z.-F.; Shi, W.-Q.; Tang, Q. U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J. Radioanal. Nucl. Chem. 2016, 307, 269–276. [Google Scholar] [CrossRef]
- Rajaei, A.; Ghani, K.; Jafari, M. Modification of UiO-66 for removal of uranyl ion from aqueous solution by immobilization of tributyl phosphate. J. Chem. Sci. 2021, 133, 14. [Google Scholar] [CrossRef]
- Zhai, Q.-G.; Zeng, R.-R.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C. Alkyl substituents introduced into novel d10-metalimidazole-4,5-dicarboxylate frameworks: Synthesis, structure diversities and photoluminescence properties. CrystEngComm 2013, 15, 965–976. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, X.; Yang, Z.; Li, G. Metal-organic frameworks constructed from imidazole dicarboxylates bearing aromatic substituents at the 2-position. CrystEngComm 2012, 14, 7382–7397. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B. Construction of cobalt-imidazole-based dicarboxylate complexes with topological diversity: From metal-organic square to one-dimensional coordination polymer. Inorg. Chem. Commun. 2012, 22, 170–173. [Google Scholar] [CrossRef]
- Shi, L.; Bao, K.; Cao, J.; Qian, Y. Sunlight-assisted fabrication of a hierarchical ZnO nanorod array structure. CrystEngComm 2009, 11, 2009–2014. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, Q.; Zhang, H.; Liu, J.; Yu, J.; Wang, J. High efficiency biosorption of Uranium (VI) ions from solution by using hemp fibers functionalized with imidazole-4,5-dicarboxylic. J. Mol. Liq. 2020, 297, 111739. [Google Scholar] [CrossRef]
- Li, J.; Dai, C.; Cao, Y.; Sun, X.; Li, G.; Huo, Q.; Liu, Y. Lewis basic site (LBS)-functionalized zeolite-like supramolecular assemblies (ZSAs) with high CO2 uptake performance and highly selective CO2/CH4 separation. J. Mater. Chem. 2017, 5, 21429–21434. [Google Scholar] [CrossRef]
- Banerjee, D.; Mondal, B.C.; Das, D.; Das, A.K. Use of Imidazole 4,5-Dicarboxylic Acid Resin in Vanadium Speciation. Microchim. Acta 2003, 141, 107–113. [Google Scholar] [CrossRef]
- Ding, X.; Xiao, S.; Wang, T.; Zeng, Z.; Zhao, X.; Yang, Q. Stability of metal-organic frameworks towards β-ray irradiation: Role of organic groups. Microporous Mesoporous Mater. 2023, 354, 112533. [Google Scholar] [CrossRef]
- Lei, H.; Pan, N.; Wang, X.; Zou, H. Facile Synthesis of Phytic Acid Impregnated Polyaniline for Enhanced U(VI) Adsorption. J. Chem. Eng. Data 2018, 63, 3989–3997. [Google Scholar] [CrossRef]
- Sayari, A.; Hamoudi, S.; Yang, Y. Applications of Pore-Expanded Mesoporous Silica. 1. Removal of Heavy Metal Cations and Organic Pollutants from Wastewater. Chem. Mater. 2005, 17, 212–216. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Z.; Li, X.; Ma, K.; Jin, T.; Feng, Z.; Lan, T.; Zhao, J.; Xiao, S. Highly radiation-resistant Al-MOF selected based on the radiation stability rules of metal-organic frameworks with ultra-high thorium ion adsorption capacity. Environ. Sci. Nano 2024, 11, 2103–2111. [Google Scholar] [CrossRef]
- Khan, P.N.; Pahan, S.; Sengupta, A.; Dasgupta, K.; Bhattacharyya, K.; Tyagi, D.; Vincent, T. Diglycolic Acid Monoamide-Functionalized UiO-66-Based Metal Organic Framework (MOFDGAMA) for Selective Removal of UO22+ and Th4+. Ind. Eng. Chem. Res. 2024, 63, 10492–10497. [Google Scholar] [CrossRef]
- Xiong, Y.; Gao, Y.; Guo, X.; Wang, Y.; Su, X.; Sun, X. Water-Stable Metal-organic Framework Material with Uncoordinated Terpyridine Site for Selective Th(IV)/Ln(III) Separation. ACS Sustain. Chem. Eng. 2019, 7, 3120–3126. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Q.; Xin, Q.; Lei, Z.; Hu, E.; Li, L.; Liang, F.; Wang, H. Enhancement mechanism of chitosan/tannic acid curing and functional group modification on uranium adsorption in five types of wastewater by Cu-MOF. J. Hazard. Mater. 2025, 492, 138185. [Google Scholar] [CrossRef]
- Xin, Q.; Wang, H.; Hu, E.; Luo, K.; Lei, Z.; Hu, F.; Liu, X.; Hu, J.; Wang, Q. Investigation into highly selective uranium adsorption using a water-stable chitosan/ellagic acid/Cu-metal-organic framework material. Desalination 2025, 606, 118768. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.; Wu, F.; Xiao, W.; Hua, W.; Tang, Z.; Liu, W.; Chen, S.; Wang, Y.; Wu, W.; et al. Photoisomerization-mediated tunable pore size in metal organic frameworks for U(VI)/V(V) selective separation. Nat. Commun. 2025, 16, 2361. [Google Scholar] [CrossRef]
- Wang, W.; Ni, S.; Liu, Y.; Zhao, Y.; Meng, Y.; Yang, L. Structural and coordination microenvironment regulated MOF with phosphorylurea group to boost uranium adsorption. Sep. Purif. Technol. 2024, 346, 127409. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Xiao, S.; Li, X.; Zhao, S.; Zhao, Y.; Yu, C.; Feng, Z.; Ma, K.; Liu, X.; et al. Efficient capture of thorium ions by the hydroxyl-functionalized sp2c-COF through nitrogen-oxygen cooperative mechanism. Green Chem. Eng. 2024, in press. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Zhao, Y.; Chen, L.; Yu, C.; Liu, X.; Zhao, S.; Feng, Z.; Ma, K.; Ding, X.; et al. Efficient and rapid adsorption of thorium by sp2c-COF with one-dimensional regular micropores channels. J. Environ. Chem. Eng. 2024, 12, 114066. [Google Scholar] [CrossRef]
- Gumber, N.; Pai, R.V.; Bahadur, J.; Sengupta, S.; Das, D.; Goutam, U.K. γ-Resistant Microporous CAU-1 MOF for Selective Remediation of Thorium. ACS Omega 2023, 8, 12268–12282. [Google Scholar] [CrossRef]
- Song, A.-M.; Yang, M.-J.; Wu, Z.; Yang, Q.; Lin, B.; Liang, R.-P.; Qiu, J.-D. Rational Designed Metal-organic Framework with Nanocavity Traps for Selectively Recognizing and Separating of Radioactive Thorium in Rare Earth Wastewater. Adv. Funct. Mater. 2024, 34, 2406932. [Google Scholar] [CrossRef]
- Khan, P.N.; Pahan, S.; Sengupta, A.; Dasgupta, K.; Vincent, T. Post-Synthetically Modified Metal Organic Framework Functionalized with a 1,2-Dihydroxybenzene Chelating Unit for Efficient Removal of Thorium and Uranyl Ions from Radioactive Waste. ACS Sustain. Resour. Manag. 2024, 1, 2530–2538. [Google Scholar] [CrossRef]
- Su, S.; Che, R.; Liu, Q.; Liu, J.; Zhang, H.; Li, R.; Jing, X.; Wang, J. Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (VI) from seawater. Colloids Surf. A 2018, 547, 73–80. [Google Scholar] [CrossRef]
- Das, A.; Roy, D.; Erukula, K.; De, S. Synthesis of pH responsive malononitrile functionalized metal organic framework MIL-100(Fe) for efficient adsorption of uranium U(VI) from real-life alkaline leach liquor. Chemosphere 2024, 348, 140780. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y.; et al. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Yang, P.; Liu, Q.; Liu, J.; Zhang, H.; Li, Z.; Li, R.; Liu, L.; Wang, J. Interfacial growth of a metal-organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi). J. Mater. Chem. A 2017, 5, 17933–17942. [Google Scholar] [CrossRef]
- Zhao, B.; Yuan, L.; Wang, Y.; Duan, T.; Shi, W. Carboxylated UiO-66 Tailored for U(VI) and Eu(III) Trapping: From Batch Adsorption to Dynamic Column Separation. ACS Appl. Mater. Interfaces 2021, 13, 16300–16308. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, H.; Shan, T.; Yang, P.; Li, S.; Liu, Z.; Liu, C.; Shen, C. MOF-implanted poly (acrylamide-co-acrylic acid)/chitosan organic hydrogel for uranium extraction from seawater. Carbohydr. Polym. 2023, 302, 120377. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Zhang, H.; Liu, Q.; Liu, J.; Zhu, J.; Yu, J.; Chen, R. MOF-derived Co-Ni layered double hydroxides/polyethyleneimine modified chitosan micro-nanoreactor for high-efficiency capture of uranium from seawater. Carbohydr. Polym. 2024, 323, 121426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, T.; Liu, X.; Cong, H.; Ding, X.; Zhao, J.; Xiao, S. Highly Efficient Adsorption of Uranium(VI) Ions in Aqueous Solution by Imidazole-4,5-Dicarboxylic Acid-Functionalized UiO-66. Molecules 2025, 30, 2966. https://doi.org/10.3390/molecules30142966
Lan T, Liu X, Cong H, Ding X, Zhao J, Xiao S. Highly Efficient Adsorption of Uranium(VI) Ions in Aqueous Solution by Imidazole-4,5-Dicarboxylic Acid-Functionalized UiO-66. Molecules. 2025; 30(14):2966. https://doi.org/10.3390/molecules30142966
Chicago/Turabian StyleLan, Tian, Xiechun Liu, Haifeng Cong, Xiaofan Ding, Jing Zhao, and Songtao Xiao. 2025. "Highly Efficient Adsorption of Uranium(VI) Ions in Aqueous Solution by Imidazole-4,5-Dicarboxylic Acid-Functionalized UiO-66" Molecules 30, no. 14: 2966. https://doi.org/10.3390/molecules30142966
APA StyleLan, T., Liu, X., Cong, H., Ding, X., Zhao, J., & Xiao, S. (2025). Highly Efficient Adsorption of Uranium(VI) Ions in Aqueous Solution by Imidazole-4,5-Dicarboxylic Acid-Functionalized UiO-66. Molecules, 30(14), 2966. https://doi.org/10.3390/molecules30142966