Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,726)

Search Parameters:
Keywords = diameter-to-thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4436 KiB  
Article
Structure of the Secretory Compartments in Goblet Cells in the Colon and Small Intestine
by Alexander A. Mironov, Irina S. Sesorova, Pavel S. Vavilov, Roberto Longoni, Paola Briata, Roberto Gherzi and Galina V. Beznoussenko
Cells 2025, 14(15), 1185; https://doi.org/10.3390/cells14151185 (registering DOI) - 31 Jul 2025
Abstract
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and [...] Read more.
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and immune EM we analyzed the secretory pathway in goblet cells and revealed that COPII-coated buds on the endoplasmic reticulum (ER) are extremely rare. The ERES vesicles with dimensions typical for the COPII-dependent vesicles were not found. The Golgi is formed by a single cisterna organized in a spiral with characteristics of the cycloid surface. This ribbon has a shape of a cup with irregular perforations. The Golgi cup is filled with secretory granules (SGs) containing glycosylated mucins. Their diameter is close to 1 µm. The cup is connected with ER exit sites (ERESs) with temporal bead-like connections, which are observed mostly near the craters observed at the externally located cis surface of the cup. The craters represent conus-like cavities formed by aligned holes of gradually decreasing diameters through the first three Golgi cisternae. These craters are localized directly opposite the ERES. Clusters of the 52 nm vesicles are visible between Golgi cisternae and between SGs. The accumulation of mucin, started in the fourth cisternal layer, induces distensions of the cisternal lumen. The thickness of these distensions gradually increases in size through the next cisternal layers. The spherical distensions are observed at the edges of the Golgi cup, where they fuse with SGs and detach from the cisternae. After the fusion of SGs located just below the apical plasma membrane (APM) with APM, mucus is secreted. The content of this SG becomes less osmiophilic and the excessive surface area of the APM is formed. This membrane is eliminated through the detachment of bubbles filled with another SG and surrounded with a double membrane or by collapse of the empty SG and transformation of the double membrane lacking a visible lumen into multilayered organelles, which move to the cell basis and are secreted into the intercellular space where the processes of dendritic cells are localized. These data are evaluated from the point of view of existing models of intracellular transport. Full article
16 pages, 929 KiB  
Article
Galectin-3 Reflects Systemic Atherosclerosis in Patients with Coronary Artery Disease
by Horea-Laurentiu Onea, Calin Homorodean, Florin-Leontin Lazar, Mihai Octavian Negrea, Teodora Calin, Ioan Cornel Bitea, Minodora Teodoru, Vlad Ionut Nechita, Ariela Ligia Olteanu and Dan-Mircea Olinic
Medicina 2025, 61(8), 1388; https://doi.org/10.3390/medicina61081388 - 30 Jul 2025
Viewed by 150
Abstract
Background and Objectives: Galectin-3 (Gal-3), a pro-inflammatory cytokine, has been implicated in atherosclerosis and adverse cardiovascular outcomes. While its role in coronary artery disease (CAD) is increasingly recognized, its association with systemic atherosclerosis remains underexplored. Objective: To investigate serum Gal-3 levels in [...] Read more.
Background and Objectives: Galectin-3 (Gal-3), a pro-inflammatory cytokine, has been implicated in atherosclerosis and adverse cardiovascular outcomes. While its role in coronary artery disease (CAD) is increasingly recognized, its association with systemic atherosclerosis remains underexplored. Objective: To investigate serum Gal-3 levels in patients with CAD and evaluate correlations between CAD severity and extra-coronary atherosclerotic involvement (carotid, femoral, and radial territories). Materials and Methods: We prospectively enrolled 56 patients with CAD undergoing coronary angiography (42.8% with acute-ACS; 57.2% with chronic coronary syndromes-CCS). Gal-3 levels were measured within 24 h of admission. Atherosclerosis severity was assessed angiographically and through vascular ultrasound of the carotid, femoral, and radial arteries. Patients were stratified by median Gal-3 levels, and clinical follow-up was performed at 1 and 3 months. Results: Gal-3 levels were significantly higher in CAD vs. controls (20.7 vs. 10.1 ng/mL; p < 0.00001) and in ACS vs. CCS (22.18. vs. 17.93 ng/mL; p = 0.019). Gal-3 correlated positively with culprit lesion diameter stenosis (DS) (R = 0.30; p = 0.023) and maximum severity of additional treated lesions (R = 0.62; p = 0.006). Gal-3 also correlated positively with carotid plaque thickness (R = 0.32; p = 0.016), while patients with Gal-3 levels above the median showed increased median values for femoral plaque thickness (32.4 vs. 26.45 mm, p = 0.046). No correlation was found with radial artery calcification. Gal-3 showed moderate discrimination for ACS (AUC = 0.685; cut-off 20.18 ng/mL). On multivariate analysis age, DS, and ACS presentation were independent predictors of Gal-3 above 19.07 ng/mL. Conclusions: Gal-3 levels are elevated in ACS and correlate with atherosclerotic burden, particularly in coronary, carotid, and femoral territories. These findings support Gal-3 as a potential marker of lesion severity and systemic vascular involvement, highlighting its possible role in risk stratification and the monitoring of atherosclerotic disease progression. This study provides integrated insights into the impact of Gal-3 across multiple vascular beds by assessing them concurrently within the same patient cohort. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

19 pages, 30713 KiB  
Article
Modeling Biomass Conversion in Raceway Zone of Blast Furnace Using Resolved Lagrangian Particle Model
by Matthias Kiss, Christine Gruber, Michael Harasek and Markus Bösenhofer
Energies 2025, 18(15), 4038; https://doi.org/10.3390/en18154038 (registering DOI) - 29 Jul 2025
Viewed by 111
Abstract
This study numerically investigates the suitability of biomass particles of varying diameters as alternative reducing agents in the blast furnace raceway zone, where harsh conditions can create internal gradients affecting conversion. An internally resolved 1D Lagrangian particle model, fully integrated into the open-source [...] Read more.
This study numerically investigates the suitability of biomass particles of varying diameters as alternative reducing agents in the blast furnace raceway zone, where harsh conditions can create internal gradients affecting conversion. An internally resolved 1D Lagrangian particle model, fully integrated into the open-source CFD toolbox OpenFOAM®, is used to model temperature and species gradients within thermally thick particles. The particle model is coupled with the surrounding Eulerian phase and includes drying, pyrolysis, oxidation, and gasification submodels. Results show that only biomass particles smaller than 250 μm fully convert in the raceway, while larger particles carry unconverted material beyond, potentially reducing blast furnace efficiency. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

12 pages, 6639 KiB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 200
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

11 pages, 2169 KiB  
Article
Numerical Investigation of the Optimal Structure for Dynamic Plasmonic Colors Generated via Photothermal Deformation of Metal Semi-Shell Structures
by Masaaki Magari and Ryushi Fujimura
Photonics 2025, 12(8), 753; https://doi.org/10.3390/photonics12080753 - 26 Jul 2025
Viewed by 159
Abstract
Nanostructure-based coloration has been investigated extensively to overcome the limitations of conventional pigments and dyes. In this study, we focused on the dynamic coloration of plasmonic structures via the photothermal deformation of a metal semi-shell. However, identifying the optimal structure using this method [...] Read more.
Nanostructure-based coloration has been investigated extensively to overcome the limitations of conventional pigments and dyes. In this study, we focused on the dynamic coloration of plasmonic structures via the photothermal deformation of a metal semi-shell. However, identifying the optimal structure using this method typically requires considerable computational time. To address the high computational cost of structural optimization in dynamic plasmonic coloration, we propose an efficient method for estimating the optimal nanostructure geometry. The color gamut area was found to be influenced by both the nanosphere density and the thickness of the metal semi-shell. The optical response of deformed semi-shells, resulting from laser-induced local heating, was simulated across a range of semi-shell shapes. From these simulations, an empirical correlation was identified that links nanoparticle diameter, density, and semi-shell thickness. This correlation enables the rapid estimation of optimal parameters, thereby reducing computational demands and supporting the efficient fabrication of dynamic plasmonic color materials. Full article
Show Figures

Figure 1

18 pages, 2429 KiB  
Article
Conserved and Specific Root-Associated Microbiome Reveals Close Correlation Between Fungal Community and Growth Traits of Multiple Chinese Fir Genotypes
by Xuan Chen, Zhanling Wang, Wenjun Du, Junhao Zhang, Yuxin Liu, Liang Hong, Qingao Wang, Chuifan Zhou, Pengfei Wu, Xiangqing Ma and Kai Wang
Microorganisms 2025, 13(8), 1741; https://doi.org/10.3390/microorganisms13081741 - 25 Jul 2025
Viewed by 277
Abstract
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and [...] Read more.
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and how specific taxa enriched in different tree tissues are not yet well illustrated. Chinese fir (Cunninghamia lanceolata) is an important tree species for both economy and ecosystem in the subtropical regions of Asia. In this study, we investigated the tissue-specific fungal community structure and diversity of nine different Chinese fir genotypes (39 years) grown in the same field. With non-metric multidimensional scaling (NMDS) analysis, we revealed the divergence of the fungal community from rhizosphere soil (RS), fine roots (FRs), and thick roots (TRs). Through analysis with α-diversity metrics (Chao1, Shannon, Pielou, ACE, Good‘s coverage, PD-tree, Simpson, Sob), we confirmed the significant difference of the fungal community in RS, FR, and TR samples. Yet, the overall fungal community difference was not observed among nine genotypes for the same tissues (RS, FR, TR). The most abundant fungal genera were Russula in RS, Scytinostroma in FR, and Subulicystidium in TR. Functional prediction with FUNGuild analysis suggested that ectomycorrhizal fungi were commonly enriched in rhizosphere soil, while saprotroph–parasite and potentially pathogenic fungi were more abundant in root samples. Specifically, genotype N104 holds less ectomycorrhizal and pathogenic fungi in all tissues (RS, FR, TR) compared to other genotypes. Additionally, significant correlations of several endophytic fungal taxa (Scytinostroma, Neonothopanus, Lachnum) with the growth traits (tree height, diameter, stand volume) were observed. This addresses that the interaction between tree roots and the fungal community is a reflection of tree growth, supporting the “trade-off” hypothesis between growth and defense in forest trees. In summary, we revealed tissue-specific, as well as host genotype-specific and genotype-common characters of the structure and functions of their fungal communities. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 4th Edition)
Show Figures

Figure 1

35 pages, 10845 KiB  
Article
Study on Axial Compression Performance of CFRP-Aluminum Alloy Laminated Short Tubes
by Xiaoqun Luo, Yanheng Li, Li Wang and Xiaonong Guo
Materials 2025, 18(15), 3480; https://doi.org/10.3390/ma18153480 - 24 Jul 2025
Viewed by 214
Abstract
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the [...] Read more.
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the advantages of CFRP and aluminum alloy. Such composite components have broad application prospects in the field of spatial structures. The CFRP-AL tubes were studied by experimental, numerical, and theoretical research on their axial compression performance in this paper. Firstly, the standard tensile test was carried out on 6061-T6 aluminum alloy. Combining the test results and references, the Johnson–Cook hardening model parameters of aluminum alloy were determined. The tensile test of CFRP was conducted to determine its material parameters. Based on composite material mechanics and fracture mechanics, a composite progressive damage model for the CFRP-AL tube was established. Secondly, axial compression tests were carried out on 27 CFRP-AL tubes and 3 aluminum alloy tubes with a small slenderness ratio. The test results show that the typical failure mode of CFRP-AL tubes with small slenderness ratios is strength failure, and the ultimate bearing capacity rises by 11~31% compared to aluminum alloy tubes. Thirdly, a user material subroutine capable of simulating CFRP failure was developed. Based on the user material subroutine, the effect of the initial imperfection, the fiber layer angle, the fiber layer thickness, the slenderness ratio, the diameter-thickness ratio and the CFRP volume ratio were discussed. And the failure mechanism and response of the CFRP-AL tubes under the axial compression were obtained. Finally, based on the strength theory, the formula predicting the bearing capacity of the strength failure was established, and the results of the formula were in a good agreement with the experimental and numerical results. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

6 pages, 1433 KiB  
Proceeding Paper
Performance Analysis of Double-Layered Thin-Walled Hemispherical Shell Structures Under Quasi-Static Compression
by Nalla Mohamed Mohamed Ismail and Kavin Sudha Ramakrishnan
Eng. Proc. 2025, 93(1), 20; https://doi.org/10.3390/engproc2025093020 - 23 Jul 2025
Viewed by 125
Abstract
Thin-walled hemispherical shell structures are mainly used in the aerospace industry as energy absorbers. However, their thin walls frequently lead to stability problems. To create a stable structure, double-layered thin-walled hemispherical shell structures were developed. In this study, we investigated the deformation behaviors [...] Read more.
Thin-walled hemispherical shell structures are mainly used in the aerospace industry as energy absorbers. However, their thin walls frequently lead to stability problems. To create a stable structure, double-layered thin-walled hemispherical shell structures were developed. In this study, we investigated the deformation behaviors of these structures through both experimental and numerical methods. The shell span diameter is taken as 200 mm. Monolithic layers have thicknesses of 1.0 mm compared with double-layered shells which have thicknesses of 0.5 mm (inner)/0.5 mm (outer). We developed numerical models to simulate the structural responses of monolithic and double-layered spherical shell structures using ABAQUS/CAE® V6.14 software. These models were validated against experimental results. Our results show that double-layered shells absorb more energy compared to monolithic shells. These insights provide a foundation for improved designs of hemispherical structures, ultimately enhancing their energy absorption performance. Full article
Show Figures

Figure 1

23 pages, 3556 KiB  
Article
Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages
by Boyin Qiu, Dazhong Li, Qianrong Zhang, Hui Lin, Yongping Li, Qingfang Wen and Haisheng Zhu
Plants 2025, 14(14), 2248; https://doi.org/10.3390/plants14142248 - 21 Jul 2025
Viewed by 331
Abstract
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, [...] Read more.
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, metabolomic and transcriptomic analyses, and differential gene expression patterns, along with a correlation analysis, were conducted in different stages of fruit growth and development. The results revealed that the growth rate of fruit’s fresh weight, length, diameter, and flesh thickness during the first seven days was slow, and that it then rapidly increased after the seventh day, and finally slowed once more after 17 days, indicating that the overall process followed a “slow–fast–slow” pattern. Transcriptomic and metabolomic analyses identified several differentially expressed genes and metabolites, and joint analyses revealed that each of the glycolysis/gluconeogenesis, fructose and mannose metabolism and flavonoid biosynthesis pathways individually play significant roles in the dynamic regulation of fruit growth and development during the early, middle, and late stages. Among these, 53 differentially expressed genes (DEGs) and 12 differentially expressed metabolites (DEMs) were found in these pathways. A total of 12 randomly selected DEGs were analyzed using quantitative PCR, and the results showed that gene expression levels were generally consistent with transcriptomic sequencing results, exhibiting dynamic changes with varying expression levels. Correlation analysis revealed that 11 DEMs were positively correlated with four traits except for arbutin, while eight DEGs were related to all traits, including six significantly positive and two significantly negative correlations. These findings enhance our understanding of the regulatory network governing yield and quality and provide substantial evidence to support improvements in breeding programs. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 2201 KiB  
Article
Shading Effects on the Growth and Physiology of Endangered Hopea hainanensis Merr. & Chun Seedlings
by Chuanteng Huang, Ling Lin, Feifei Chen, Xuefeng Wang, Mengmeng Shi, Lin Chen, Xiaoli Yang, Xiaona Dong and Mengwen Zhang
Forests 2025, 16(7), 1193; https://doi.org/10.3390/f16071193 - 19 Jul 2025
Viewed by 250
Abstract
To determine optimal light conditions for Hopea hainanensis Merr. & Chun seedling growth, this study examined growth and physiological parameters under four shading treatments (0%, 30%, 60%, and 90% irradiance reduction) over 12 months. Shading significantly affected the growth adaptability of seedlings. As [...] Read more.
To determine optimal light conditions for Hopea hainanensis Merr. & Chun seedling growth, this study examined growth and physiological parameters under four shading treatments (0%, 30%, 60%, and 90% irradiance reduction) over 12 months. Shading significantly affected the growth adaptability of seedlings. As shading increased, height, leaf traits (area, length, width), and light saturation point all initially increased, peaked at 30% shading, and then decreased. Conversely, basal diameter, leaf thickness, the maximum net photosynthetic rate, net photosynthetic rate, photosynthetic quantum efficiency, transpiration rate, and stomatal conductance progressively declined as shading increased. Biomass accumulation (in stems and roots), dark respiration rate, and light compensation point exhibited a U-shaped response to shading, being minimized under low or moderate shading. All shading treatments significantly reduced biomass and photosynthetic performance compared to controls. Multivariate analysis identified 0%–30% shading as optimal for cultivation, with 30% shading enhancing photomorphogenic responses while maintaining photosynthetic efficiency. The study findings suggest a novel seedling cultivation protocol for nursery use, in which initial establishment occurs under 30% shading to maximize vertical elongation, followed by the progressive reduction in shading to stimulate radial growth and optimal biomass partitioning. This approach mimics natural canopy gap dynamics, effectively mimicking natural regeneration in tropical rainforest ecosystems. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

16 pages, 1665 KiB  
Article
Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil
by Brenda Rivas-Aratoma, Wendy E. Pérez, Luis Felipe Ortiz-Dongo, Yuri Arévalo-Aranda and Richard Solórzano-Acosta
Appl. Sci. 2025, 15(14), 8041; https://doi.org/10.3390/app15148041 - 19 Jul 2025
Viewed by 363
Abstract
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative [...] Read more.
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative effects of two organic amendments—vermicompost leachate and biochar—on the performance of popcorn maize (Zea mays L. var. everta) cultivated in saline soil conditions. Four treatments were evaluated: T0 (Control), T1 (Vermicompost leachate), T2 (Biochar), and T3 (Vermicompost leachate + Biochar), each with 10 replicates arranged in a Completely Randomized Design (CRD). Although various soil physicochemical, microbiological, and agronomic parameters displayed no significant differences compared to the control, the application of biochar resulted in considerable improvements in soil total organic carbon, the microbial community (mesophilic aerobic bacteria, molds, and yeasts), and increased seed length and diameter. In contrast, vermicompost leachate alone negatively impacted plant growth, leading to decreases in leaf area, stem thickness, and grain yield. Specifically, grain yield declined by 46% with leachate alone and by 31% when combined with biochar, compared to the control. These findings emphasize the superior effectiveness of biochar over vermicompost leachate as a soil amendment under saline conditions and highlight the potential risks of widely applying compost teas in stressed soils. It is recommended to conduct site-specific assessments and screenings for phytotoxins and phytopathogens prior to use. Additionally, the combined application of leachate and biochar may not be advisable given the tested soil characteristics. Full article
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 262
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 932 KiB  
Article
Determining Large Trees and Population Structures of Typical Tree Species in Northeast China
by Yutong Yang, Zhiyuan Jia, Shusen Ge, Yutang Li, Dongwei Kang and Junqing Li
Diversity 2025, 17(7), 491; https://doi.org/10.3390/d17070491 - 18 Jul 2025
Viewed by 200
Abstract
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in [...] Read more.
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in the community, as well as large individual standards in diameter at breast height (DBH) and population structures of typical tree species, were analyzed. By setting a DBH ≥ 50 cm as the threshold, 155 individuals across all the recorded trees were determined as large trees in the community, and 32.9% (51/155) of them were national second-class protected plant species in China. By setting the top 5% in DBH of a certain tree species as the threshold of large individuals of that tree species, the large individual criteria of six typical tree species were determined. The proportion of basal area of large trees to all trees was 30.4%, and the mean proportion of basal area of large individuals across the six typical tree species was 23.9% (±4.0%). As for the population characteristics, Abies nephrolepis and Picea jezoensis had large population sizes but relatively thin individuals, Tilia amurensis and Pinus koraiensis had small population sizes but relatively thick individuals, while Betula costata and Larix olgensis had medium population sizes and medium-sized individuals. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

30 pages, 22235 KiB  
Article
Structural Design and Mechanical Characteristics of a New Prefabricated Combined-Accident Oil Tank
by Xuan Lu, Cheng Zhao, Hui Xu, Jie Zhu, Yan Feng, Xinyang Shi and Pengyan Wang
Buildings 2025, 15(14), 2477; https://doi.org/10.3390/buildings15142477 - 15 Jul 2025
Viewed by 281
Abstract
To address the persistent challenges of substantial land occupation, intricate construction sequencing, and extended project timelines inherent to conventional substation accident oil sumps, this research introduces a novel integrally prefabricated circular cross-section oil containment structure. The study establishes a finite element representation of [...] Read more.
To address the persistent challenges of substantial land occupation, intricate construction sequencing, and extended project timelines inherent to conventional substation accident oil sumps, this research introduces a novel integrally prefabricated circular cross-section oil containment structure. The study establishes a finite element representation of this prefabricated system to systematically examine structural deformation mechanisms and failure patterns under combined hydrostatic and geostatic loading scenarios. Through parametric analysis of the oil tank structure, the influences of longitudinal reinforcement diameter, thickness–diameter ratio, height–diameter ratio, and concrete-strength grade on the mechanical characteristics of the structure are explored. Utilizing the response surface methodology for the parametric optimization in finite element analysis, a comprehensive optimization of critical geometric design variables is conducted. These results indicate that longitudinal reinforcement diameter and concrete-strength grade exert negligible influence on concrete stress except for stress increase under internal pressure, with higher concrete grades. The thickness-to-diameter ratio dominantly regulates structural responses: response surface optimization achieved 12% stress reduction and 14% displacement mitigation at 220 mm wall thickness under internal pressure, despite a 4% stress increase under external loading. Height-dependent effects require specific optimization, with 18% stress reduction beyond 3000 mm under external pressure but 20% stress increase at 3400 mm under top loads. Geometric refinements enable 34–50% displacement reduction in critical zones, providing validated references for prefabricated oil tanks. Full article
Show Figures

Figure 1

18 pages, 3006 KiB  
Article
Non-Linear Regression with Repeated Data—A New Approach to Bark Thickness Modelling
by Krzysztof Ukalski and Szymon Bijak
Forests 2025, 16(7), 1160; https://doi.org/10.3390/f16071160 - 14 Jul 2025
Viewed by 188
Abstract
Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, [...] Read more.
Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, not a specific one. The following four regression models were tested: marginal model (MM; reference), classical nonlinear regression with independent residuals (M1), nonlinear regression with residuals correlated within a single tree (M2), and nonlinear regression with the correlation of residuals and random components, taking into account random changes between the trees (M3). Empirical data consisted of larch (Larix sp. Mill.) BT measurements carried out at two sites in northern Poland. Relative root square mean error (RMSE%) and adjusted R-squared (R2adj) served to compare the fitted models. Model fit was tested for each tree separately, and all trees were combined. Of the analysed models, M3 turned out to be the best fit for both the individual tree and all tree levels. The fit of the regression function M3 for SITE1 (50-year-old, pure stand located in northern Poland) was 87.44% (R2adj), and for SITE2 (63-year-old, pure stand situated in the north of Poland) it was 80.6%. Taking into account the values of RMSE%, at the individual tree level the M3 model fit at location SITE1 was closest to the MM, while at SITE2 it was better than the MM. For the most comprehensive regression model, M3, it was checked how the error of the bark thickness estimate varied with stem diameter at different heights (from the base of the trees to the top). In general, the model’s accuracy increased with greater tree height. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

Back to TopTop