Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages
Abstract
1. Introduction
2. Results
2.1. Identification of the Trends in the Growth and Development Patterns of Fruit
2.2. Overview of Transcriptome Analysis of Bitter Gourd Fruits in Different Growth and Development Stages
2.3. Overview of Metabolomic Analysis of Bitter Melon Fruits in Different Growth and Development Stages
2.4. Joint Transcriptome and Metabolome Analysis
2.5. The Expression of Important DEGs and DEMs in the Co-Enriched Pathway
2.6. Relative Expression Trend of Important DEGs
2.7. Correlation Analysis and Heat Network of DEGs, DEMs and Fruit Traits
3. Discussion
3.1. Growth and Development Pattern of Bitter Gourds
3.2. Analysis of Major Metabolic Pathways and Related Regulatory Genes in Bitter Gourd Fruits During Different Growth and Development Stages
3.3. Analysis of Relative Expression Levels of Key DEGs and Their Correlation with Fruit Traits
4. Materials and Methods
4.1. Plant Materials and Fruit Trait Observation
4.2. Transcriptome Analysis
4.3. Metabolome Analysis
4.4. Joint Analysis of the Transcriptome and Metabolome
4.5. Gene Expression Analysis via RT-qPCR
4.6. Data Statistics and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, P.C.; Tsai, C.C.; Chou, C.H.; Chiang, Y.C. Introgression between Cultivars and Wild Populations of Momordica charantia L. (Cucurbitaceae) in Taiwan. Int. J. Mol. Sci. 2012, 13, 6469–6491. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.L.; Jayaprakasha, G.K.; Crosby, K.; Patil, B.S. Evaluation of Bitter Melon (Momordica charantia) Cultivars Grown in Texas and Levels of Various Phytonutrients. J. Sci. Food Agric. 2019, 99, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.P.; Kha, T.C.; Parks, S.E. Bitter Melon (Momordica charantia L.) Bioactive Composition and Health Benefifits: A Review. Food Res. Int. 2016, 32, 181–202. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Yang, G.; Ho, C.T.; Li, S. Momordica charantia: A Popular Health-Promoting Vegetable with Multifunctionality. Food Funct. 2017, 8, 1749–1762. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Navarrete, M.; Méndez-Del Villar, M.; Ramos-González, E.J.; Pérez-Rubio, K.G. Momordica charantia: A Review of its Effects on Metabolic Diseases and Mechanisms of Action. J. Med. Food. 2021, 24, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Huang, S.; Yang, Z.; Zhu, Y.; Zhu, L.; Zhao, Y.; Bai, J.; Kim, K.H. Momordica charantia Bioactive Components: Hypoglycemic and Hypolipidemic Benefits Through Gut Health Modulation. J. Med. Food. 2024, 27, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liang, X.; Gao, M.; Liu, H.; Meng, H.; Weng, Y.; Cheng, Z. Round Fruit Shape in Wi7239 Cucumber is Controlled by Two Interacting Quantitative Trait Loci with One Putatively Encoding a Tomato SUN Homolog. Theor. Appl. Genet. 2017, 130, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Xin, T.; Zhang, Z.; Li, S.; Zhang, S.; Li, Q.; Zhang, Z.; Huang, S.; Yang, X. Genetic Regulation of Ethylene Dosage for Cucumber Fruit Elongation. Plant Cell 2019, 31, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, B.; Wang, S.; Lin, T.; Yang, L.; Zhao, Z.; Zhang, Z.; Huang, S.; Yang, X. Genome-Wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. Plant Physiol. 2020, 82, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jiang, L.; Che, G.; Pan, Y.; Li, Y.; Hou, Y.; Zhao, W.; Zhong, Y.; Ding, L.; Yan, S.; et al. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and inhibiting Auxin Transport in Cucumber. Plant Cell 2019, 31, 1289–1307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, H.; Liu, J.; Chen, K.; Wang, Y.; Zhang, G.; Li, L.; Yue, H.; Weng, Y.; Li, Y.; et al. The Mutation of CsSUN, an IQD Family Protein, is Responsible for the Short and Fat Fruit (sff) in Cucumber (Cucumis sativus L.). Plant Sci. 2024, 346, 112177. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lu, L.; Zhu, B.; Xu, Q.; Qi, X.; Chen, X. QTL Mapping of Cucumber Fruit Flesh Thickness by SLAF-Seq. Sci. Rep. 2015, 5, 15829. [Google Scholar] [CrossRef] [PubMed]
- Bo, K.; Wei, S.; Wang, W.; Miao, H.; Dong, S.; Zhang, S.; Gu, X. QTL Mapping and Genome-Wide Association Study Reveal Two Novel Loci Associated with Green Flesh Color in Cucumber. BMC Plant Biol. 2019, 19, 243. [Google Scholar] [CrossRef] [PubMed]
- Monforte, A.J.; Eduardo, I.; Abad, S.; Arus, P. Inheritance Mode of Fruit Traits in Melon: Heterosis for Fruit Shape and Its Correlation with Genetic Distance. Euphytica 2005, 144, 31–38. [Google Scholar] [CrossRef]
- Diaz, A.; Fergany, M.; Formisano, G.; Ziarsolo, P.; Blanca, J.; Fei, Z.; Staub, J.E.; Zalapa, J.E.; Cuevas, H.E.; Dace, G.; et al. A Consensus Linkage Map for Molecular Markers and Quantitative Trait Loci Associated with Economically Important Traits in Melon (Cucumis melo L.). BMC Plant Biol. 2011, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Zarouri, B.; Fergany, M.; Eduardo, I.; Alvarez, J.M.; Picó, B.; Monforte, A.J. Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel De Sapo’ Melon (Cucumis melo L.). PLoS ONE 2014, 9, e104188. [Google Scholar] [CrossRef] [PubMed]
- Obando, J.; Fernandez-Trujillo, J.P.; Martinez, J.A.; Alarcon, A.L.; Eduardo, I.; Arus, P.; Monforte, A.J. Identification of melon fruit quality quantitative trait loci using near-isogenic lines. J. Am. Soc. Hortic. Sci. 2008, 133, 139–151. [Google Scholar] [CrossRef]
- Tomason, Y.; Nimmakayala, P.; Levi, A.; Reddy, U.K. Map-Based Molecular Diversity, Linkage Disequilibrium and Association Mapping of Fruit Traits in Melon. Mol. Breed. 2013, 31, 829–841. [Google Scholar] [CrossRef]
- Monforte, A.J.; Diaz, A.; Caño-Delgado, A.; van der Knaap, E. The Genetic Basis of Fruit Morphology in Horticultural Crops: Lessons from Tomato and Melon. J. Exp. Bot. 2013, 65, 4625–4637. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xie, Y.; Liu, B.; Huang, Y.; Cheng, Z.; Zhao, Z.; Tian, D.; Geng, Y.; Guo, J.; Li, C.; et al. Single Nucleotide Polymorphisms in SEPALLATA 2 Underlie Fruit Length Variation in Cucurbits. Plant Cell 2024, 36, 4607–4621. [Google Scholar] [CrossRef] [PubMed]
- Tzuri, G.; Zhou, X.; Chayut, N.; Yuan, H.; Portnoy, V.; Meir, A.; Sa’ar, U.; Baumkoler, F.; Mazourek, M.; Lewinsohn, E.; et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 2015, 82, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Feder, A.; Chayut, N.; Gur, A.; Freiman, Z.; Tzuri, G.; Meir, A.; Saar, U.; Ohali, S.; Baumkoler, F.; Gal-On, A.; et al. The Role of Carotenogenic Metabolic Flux in Carotenoid Accumulation and Chromoplast Differentiation: Lessons From the Melon Fruit. Front. Plant Sci. 2019, 10, 1250. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.W.; Gao, L.W.; Zhang, Y.D.; Zhang, F.R.; Yang, X.; Huang, D.F. Genome-Wide Investigation of The NAC Transcription Factor Family in Melon (Cucumis melo L.) and Their Expression Analysis Under Salt Stress. Plant Cell Rep. 2016, 35, 1827–1839. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, M.; Nakano, T.; Shima, Y.; Ito, Y. A Large-Scale Identification of Direct Targets of the tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening. Plant Cell 2013, 25, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Santo, D.M.; Mayobre, C.; Martín, H.; Pujol, M.; Garcia, M.J. Knock-out of CmNAC-NOR Affects Melon Climacteric Fruit Ripening. Front. Plant Sci. 2022, 13, 878037. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jing, X.; Wang, S.; Wang, J.; Zhang, S.; Shi, Q. Genomewide Analysis of WRKY Transcription Factor Family in Melon (Cucumis melo L.) and Their Response to Powdery Mildew. Plant Mol. Biol. Rep. 2021, 39, 686–699. [Google Scholar] [CrossRef]
- Diao, Q.; Tian, S.; Cao, Y.; Yao, D.; Fan, H.; Jiang, X.; Zhang, W.; Zhang, Y. Physiological, Transcriptomic, and Metabolomic Analyses of the Chilling Stress Response in Two Melon (Cucumis melo L.) Genotypes. BMC Plant Biol. 2024, 24, 1074. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, Y.; He, K.; Singh, J.; Metrani, R.; Crosby, K.M.; Jifon, J.; Jayaprakasha, G.K.; Patil, B.; Qian, X.; Koiwa, H. Transition of Aromatic Volatile and Transcriptome Profiles During Melon Fruit Ripening. Plant Sci. 2021, 304, 110809. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhong, K.; Li, Y.; Bai, C.; Xue, Z.; Wu, Y. Evolutionary Analysis of the Melon (Cucumis melo L.) GH3 Gene Family and Identification of GH3 Genes Related to Fruit Growth and Development. Plants 2023, 12, 1382. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Liu, Z.; Xu, Y.; Ma, L.; Chen, J.; Gou, J.; Su, L.; Wu, W.; Chen, Y.; Yu, W.; et al. Fine Mapping and Identification of The Candidate Gene BFS for Fruit Shape in Wax Gourd (Benincasa hispida). Theor. Appl. Genet. 2021, 134, 3983–3995. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Yan, J.; He, C.; Liu, W.; Xie, D.; Jiang, B. Genome-Wide Identification of The SAUR Gene Family in Wax Gourd (Benincasa hispida) and Functional Characterization of BhSAUR60 During Fruit Development. Int. J. Mol. Sci. 2022, 23, 14021. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, Z.; Cheng, Z.; Gou, J.; Chen, J.; Yu, W.; Wang, P. Identification and Application of BhAPRR2 Controlling Peel Colour in Wax Gourd (Benincasa hispida). Front. Plant Sci. 2021, 12, 716772. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, J.; Liu, F.; Zhou, H.; Chen, Y.; Pan, L.; Xiao, W.; Luo, Y.; Mi, B.; Sun, X.; et al. Integrated Analysis of Multi-Omics and Fine-Mapping Reveals a Candidate Gene Regulating Pericarp Color and Flavonoids Accumulation in Wax Gourd (Benincasa hispida). Front. Plant Sci. 2022, 13, 1019787. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, C.; Dong, W.; Jiang, Q.; Wang, D.; Li, S.; Chen, M.; Liu, C.; Sun, C.; Chen, K. Transcriptome and Metabolome Analyses of Sugar and Organic Acid Metabolism in Ponkan (Citrus reticulata) Fruit during Fruit Maturation. Gene 2015, 554, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Lin, T.; Qin, M.; Peng, M.; Yang, C.; et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 2018, 172, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.-P.; Lutts, S. Tomato Fruit Development and Metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Zhang, Q.; Zhu, H.; Li, J.; Wen, Q. Transcriptome and Metabolome Provide Insights into Fruit Ripening of Cherry Tomato (Solanum lycopersicum var. cerasiforme). Plants 2023, 12, 3505. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Zhang, J.; Qi, X.; Ye, W.; Wang, X.; Xiang, X. Integrated Metabolite Profiling and Transcriptome Analysis Reveals a Dynamic Metabolic Exchange Between Pollen Tubes and The Style During Fertilization of Brassica napus. Plant Mol. Biol. 2018, 97, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Zhou, L.; You, S.; Deng, H.; Chen, Y.; Alseekh, S.; Yuan, Y.; Fu, R.; Zhang, Z.; et al. MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle. Mol. Plant 2020, 13, 1203–1218. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Shu, P.; Zhang, C.; Zhang, J.; Chen, Y.; Zhang, Y.; Du, K.; Xie, Y.; Li, M.; Ma, T.; et al. Integrative Analyses of Metabolome and Genome-wide Transcriptome Reveal the Regulatory Network Governing Flavor Formation in Kiwifruit (Actinidia chinensis). New Phytol. 2022, 233, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Qi, Y.; Chen, X.; Yan, Q.; Chen, J.; Liu, H.; Shi, F.; Wen, Y.; Cai, C.; Ou, L. Combined Metabolome and Transcriptome Analyses Unveil the Molecular Mechanisms of Fruit Acidity Variation in Litchi (Litchi chinensis Sonn.). Int. J. Mol. Sci. 2023, 24, 1871. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Zheng, Y.; Guo, J.; Grierson, D.; Zhao, X.; Wen, C.; Liu, Y.; Li, J.; Zhang, X.; Yu, Y.; et al. Telomere-to-telomere Genome Assembly of Bitter Melon (Momordica charantia L. var. Abbreviata Ser.) Reveals Fruit Development, Composition and Ripening Genetic Characteristics. Hortic. Res. 2022, 10, uhac228. [Google Scholar] [PubMed]
- Bertin, N.; Genard, M.; Fishman, S. A Model for an Early Stage of Tomato Fruit Development: Cell Multiplication and Cessation of the Cell Proliferative Activity. Ann. Bot. 2003, 92, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Colle, M.; Wang, Y.; Yang, L.; Rubinstein, M.; Sherman, A.; Ophir, R.; Grumet, R. QTL Mapping in Multiple Populations and Development Stages Reveals Dynamic Quantitative Trait Loci for Fruit Size in Cucumbers of Different Market Classes. Theor. Appl. Genet. 2015, 128, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, Y.; Liu, C.; Ding, Y.; Wang, X.; Cheng, Z.; Meng, H. Cucumber Fruit Size and Shape Variations Explored from the Aspects of Morphology, Histology, and Endogenous Hormones. Plants 2020, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.M.K.; Huang, H.X.; Wang, A.J.; Wu, T.Q.; Xue, S.D.; Ahmad, A.; Xie, D.S.; Li, J.X.; Zhong, Y.J. Metabolic and Transcriptomic Analysis of Two Cucurbita moschata Germplasms Throughout Fruit Development. BMC Genom. 2020, 21, 365. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Huang, Z.; Chakrabarti, M.; Illa-Berenguer, E.; Liu, X.; Wang, Y.; Ramos, A.; van der Knaap, E. Fruit Weight is Controlled by Cell Size Regulator Encoding a Novel Protein That is Expressed in Maturing Tomato Fruits. PLoS Genet. 2017, 13, e1006930. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cheng, J.; He, Y.; Yang, B.; Cheng, Y.; Yang, C.; Zhang, H.; Wang, Z. Influence of Isopropylmalate Synthase Osipms1 on Seed Vigour Associated With Amino Acid and Energy Metabolism in Rice. Plant Biotechnol. J. 2019, 17, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wang, Q.; Zhao, J.; Zhang, X.; Guo, Z.; Hu, D.; Meng, S.; Lin, Y.; Qiu, X.; Mu, L.; et al. Gene Expression Variation Explains Maize Seed Germination Heterosis. BMC Plant Biol. 2022, 22, 301. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zou, H.; Jia, Y.; Pan, X.; Huang, D. Carrot (Daucus carota L.) Seed Germination was Promoted by Hydro-Electro Hybrid Priming Through Regulating the Accumulation of Proteins Involved in Carbohydrate and Protein Metabolism. Front. Plant Sci. 2022, 13, 824439. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, X.; Ge, S.; Zhang, H.; Che, X.; Liu, S.; Liu, D.; Li, H.; Gu, X.; He, L.; et al. Involvement of Phospholipase C in Photosynthesis and Growth of Maize Seedlings. Genes 2022, 13, 1011. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, A.; Song, T.; Jin, Y.; Xu, X.; Gao, Y.; Ye, X.; Qi, H. Transcriptome Analysis Reveals the Effects of Grafting on Sugar and α-Linolenic Acid Metabolisms in Fruits of Cucumber with Two Different Rootstocks. Plant Physiol. Biochem. 2018, 30, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Sun, M.; Hui, J.; Yang, J.; Zhang, J.; Li, P.; Lin, G. Combined Transcriptome and Metabolome Analyses Provide New Insights into the Changes in the Flesh Color of Anthocyanins in Strawberry (Fragaria × ananassa (Weston) Duchesne ex Rozier). Genes 2024, 15, 1391. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, H.; Huang, J.; Liu, X.; Hu, Z.; Liu, Y. Integrative Metabolome and Transcriptome Analyses Reveal the Effects of Plucking Flower on Polysaccharide Accumulation in the Rhizomes of Polygonatum cyrtonema Hua. Molecules 2025, 30, 670. [Google Scholar] [CrossRef] [PubMed]
- Usman, B.; Zhao, N.; Nawaz, G.; Qin, B.; Liu, F.; Liu, Y.; Li, R. CRISPR/Cas9 Guided Mutagenesis of Grain Size 3 Confers Increased Rice (Oryza sativa L.) Grain Length by Regulating Cysteine Proteinase Inhibitor and Ubiquitin-Related Proteins. Int. J. Mol. Sci. 2021, 22, 3225. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhu, J.; Zhu, Y.; Cao, J.; Zhang, J.; Zhang, Y.; Zhou, H.; Zhu, Y.; Ji, Y.; Ding, R.; et al. Transcriptome Analysis of The Coexpression Network of Genes Related to Antioxidant Characteristics After Grain Filling in Purple Rice. Sci. Rep. 2024, 14, 22612. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, Y.; Zhang, Y.; Fan, S.; Kong, L. Source-Sink Modifications Affect Leaf Senescence and Grain Mass in Wheat as Revealed by Proteomic Analysis. BMC Plant Biol. 2020, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liufu, Y.; Ren, Y.; Zhang, J.; Li, M.; Tian, S.; Wang, J.; Liao, S.; Gong, G.; Zhang, H.; et al. Comprehensive Profiling of Alternative Splicing and Alternative Polyadenylation during Fruit Ripening in Watermelon (Citrullus lanatus). Int. J. Mol. Sci. 2023, 24, 15333. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, W.; Lai, X.; Chen, H.; Wang, L.; Chen, W.; Li, X.; Zhu, X. MaC2H2-IDD Regulates Fruit Softening and Involved in Softening Disorder Induced by Cold Stress in Banana. Plant J. 2024, 118, 1937–1954. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wu, G.; Zhang, R.; Yin, Q.; Xu, B.; Zhou, L.; Chen, Z. Comparative Nutritional and Metabolic Analysis Reveals the Taste Variations during Yellow Rambutan Fruit Maturation. Food Chem. X 2023, 17, 100580. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wu, Y.; Huang, Z.; Guo, M.; Zhang, L.; Luo, X.; Xia, H.; Zhang, X.; Liang, D.; Lv, X.; et al. Mechanism of Induced Soluble Sugar Accumulation and Organic Acid Reduction in Plum Fruits by Application of Melatonin. BMC Plant Biol. 2024, 24, 1208. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, J.; Poppe, A.; Montag, J.; Szankowski, I. The Use of The Phosphomannose-Isomerase/Mannose Selection System to Recover Transgenic Apple Plants. Plant Cell Rep. 2006, 25, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Schoch, G.; Goepfert, S.; Morant, M.; Hehn, A.; Meyer, D.; Ullmann, P.; Werck-Reichhart, D. CYP98A3 from Arabidopsis thaliana is a 3′- Hydroxylase of Phenolic Esters, a Missing Link in the Phenylpropanoid Pathway. J. Biol. Chem. 2001, 276, 36566–36574. [Google Scholar] [CrossRef] [PubMed]
- Niggeweg, R.; Michael, A.J.; Martin, C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 2004, 22, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Valiñas, M.A.; Lanteri, M.L.; ten Have, A.; Andreu, A.B. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum). J. Agric. Food Chem. 2015, 63, 4902–4913. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cui, H.; Zhang, B.; Song, M.; Chen, S.; Xiao, C.; Tang, Y.; Liesche, J. Reduced Pectin Content of Cell Walls Prevents Stress-Induced Root Cell Elongation in Arabidopsis. J. Exp. Bot. 2021, 72, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Liu, X.; Zheng, J.; Zhao, C.; Wang, D.; Xu, Y.; Sun, C. A Multifunctional True Caffeoyl Coenzyme A O-Methyltransferase Enzyme Participates in The Biosynthesis of Polymethoxylated Flavones In Citrus. Plant Physiol. 2023, 19, 2049–2066. [Google Scholar] [CrossRef] [PubMed]
- Erez, A.; Lavee, S. Prunin Identification, Biological Activity and Quantitative Change in Comparison to Naringenin in Dormant Peach Buds. Plant Physiol. 1969, 44, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Gatt, M.K.; Hammett, K.R.W.; Markham, K.R.; Murray, B.G. Yellow Pinks: Interspecific Hybridization between Dianthus Plumarius and Related Species with Yellow Flowers. Sci. Hortic. 1998, 77, 207–218. [Google Scholar] [CrossRef]
- Wei, H.T.; Hou, D.; Ashraf, M.F.; Lu, H.W.; Zhuo, J.; Pei, J.L.; Qian, Q.X. Metabolic Profiling and Transcriptome Analysis Reveal the Key Role of Flavonoids in Internode Coloration of Phyllostachys violascens cv. Viridisulcata. Front. Plant Sci. 2022, 12, 788895. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yin, Q.; Wu, R.; Zheng, G.; Liu, J.; Dixon, R.A.; Pang, Y. Role of a Chalcone Isomerase-Like Protein in Flavonoid Biosynthesis in Arabidopsis Thaliana. J. Exp. Bot. 2015, 66, 7165–7179. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Lin, H.X. Contribution of Phenylpropanoid Metabolism to Plant Development and Plant-Environment Interactions. J. Integr. Plant Biol. 2020, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhao, W.; Li, R.; Guo, D.; Li, H.; Wang, Y.; Mei, W.; Peng, S. Identification and Characterization of Chalcone Isomerase Genes Involved in Flavonoid Production in Dracaena cambodiana. Front. Plant Sci. 2021, 12, 616396. [Google Scholar] [CrossRef] [PubMed]
- André, C.M.; Schafleitner, R.; Legay, S.; Lefèvre, I.; Aliaga, C.A.A.; Nomberto, G.; Hoffmann, L.; Hausman, J.F.; Larondelle, Y.; Evers, D. Gene Expression Changes Related to the Production of Phenolic Compounds in Potato Tubers Grown under Drought Stress. Phytochemistry. 2009, 70, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Payyavula, R.S.; Navarre, D.A.; Kuhl, J.C.; Pantoja, A.; Pillai, S.S. Differential Effects of Environment on Potato Phenylpropanoid and Carotenoid Expression. BMC Plant Biol. 2012, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Feucht, W.; Treutter, D.; Schmid, P. Inhibition of Growth and Xylogenesis and Promotion of Vacuolation in Prunus Callus by the Flavanone Prunin. Plant Cell Rep. 1988, 7, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, L.J.; Borradaile, N.M.; Huff, M.W. Antiatherogenic Properties of Naringenin, a Citrus Flavonoid. Cardiovasc. Drug. Rev. 1999, 17, 160–178. [Google Scholar] [CrossRef]
- Patel, K.; Singh, G.K.; Patel, D.K. A Review on Pharmacological and Analytical Aspects of Naringenin. Chin. J. Integr. Med. 2018, 24, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Mertens, E.; Marcellin, P.; Van Schaftingen, E.; Hers, H.G. Effect of Ethylene Treatment on the Concentration of Fructose-2,6-Bisphosphate and on the Activity of Phosphofructokinase 2/Fructose-2,6-Bisphosphatase in Banana. Eur. J. Biochem. 1987, 167, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, J.; Chen, Y.; Pan, H.; Ming, R. Identification and Genes Expression Analysis of ATP-Dependent Phosphofructokinase Family Members among Three Saccharum Species. Funct. Plant Biol. 2013, 40, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Zhang, Y.; Zhou, J.; Chen, Y.; Li, Y.; Ren, D. Identification of the Fructose 1,6-bisphosphate Aldolase (FBA) Family Genes in Maize and Analysis of the Phosphorylation Regulation of ZmFBA8. Plant Sci. 2025, 350, 112311. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Li, Q.; Xu, Y.; Yang, L.; Bi, H.; Ai, X. Genome-wide Analysis of the Fructose 1,6-bisphosphate Aldolase (FBA) Gene Family and Functional Characterization of FBA7 in Tomato. Plant Physiol. Biochem. 2016, 108, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Li, Q.; Liu, F.; Bi, H.; Ai, X. Decreasing Fructose-1,6-bisphosphate Aldolase Activity Reduces Plant Growth and Tolerance to Chilling Stress in Tomato Seedlings. Physiol. Plant. 2018, 163, 247–258. [Google Scholar] [CrossRef] [PubMed]
- López-Calcagno, P.E.; Fisk, S.; Brown, K.L.; Bull, S.E.; South, P.F.; Raines, C.A. Overexpressing the H-protein of the Glycine Cleavage System Increases Biomass Yield in Glasshouse and Field-Grown Transgenic Tobacco Plants. Plant Biotechnol. J. 2019, 17, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Yui, R.; Iketani, S.; Mikami, T.; Kubo, T. Antisense Inhibition of Mitochondrial Pyruvate Dehydrogenase E1alpha Subunit in Anther Tapetum Causes Male Sterility. Plant J. 2003, 34, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Bruemmer, J.H.; Roe, B. Pyruvate Dehydrogenase Activity during Ripening of ‘Hamlin’ Oranges. Phytochemistry 1985, 24, 2105–2106. [Google Scholar] [CrossRef]
- Chervin, C.; Truett, J.K. Alcohol Dehydrogenase Expression and Alcohol Production During Pear Ripening. J. Am. Soc. Hort. Sci. 1999, 124, 71–75. [Google Scholar] [CrossRef]
- Sugimoto, N.; Beaudry, R.; Jones, A.D. Changes in Free Amino Acid Content in ‘Jonagold’ Apple Fruit as Related to Branched-Chain Ester Production, Ripening, and Senescence. J. Am. Soc. Hortic. Sci. 2011, 136, 429–440. [Google Scholar] [CrossRef]
- Hormazábal-Abarza, F.; Bustos, D.; Rodríguez-Arriaza, F.; Sáez, D.; Urra, G.; Parra-Palma, C.; Méndez-Yáñez, Á.; Ramos, P.; Morales-Quintana, L. Structural and Transcriptional Characterization of Pyruvate Decarboxylase (PDC) Gene Family during Strawberry Fruit Ripening Process. Plant Physiol. Biochem. 2024, 207, 108417. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, L.; Boo, K.H.; Park, E.; Drakakaki, G.; Zakharov, F. PDC1, a Pyruvate/α-Ketoacid Decarboxylase, is Involved in Acetaldehyde, Propanal and Pentanal Biosynthesis in Melon (Cucumis melo L.) Fruit. Plant J. 2019, 98, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Nosarzewski, M.; Archbold, D.D. Tissue-specific Expression of Sorbitol Dehydrogenase in Apple Fruit during Early Development. J. Exp. Bot. 2007, 58, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, P.; Ma, F.; Dandekar, A.M.; Cheng, L. Sugar Metabolism and Accumulation in the Fruit of Transgenic Apple Trees with Decreased Sorbitol Synthesis. Hortic. Res. 2018, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Y.; Wang, W.Q.; Liu, J.H.; Zhu, C.Q.; Zhong, Y.P.; Zhang, H.Q.; Liu, X.F.; Yin, X.R. Transcription Factors AcERF74/75 Respond to Waterlogging Stress and Trigger Alcoholic Fermentation-Related Genes in Kiwifruit. Plant Sci. 2022, 314, 111115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Cheng, L.; Dandekar, A.M. Down-regulation of Sorbitol Dehydrogenase and Up-Regulation of Sucrose Synthase in Shoot Tips of Transgenic Apple Trees with Decreased Sorbitol Synthesis. J. Exp. Bot. 2006, 57, 3647–3657. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wong, D.C.; Sweetman, C.; Bruning, J.B.; Ford, C.M. New Insights into the Evolutionary History of Plant Sorbitol Dehydrogenase. BMC Plant Biol. 2015, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.P.; Ren, J.J.; Yu, Q.; Zhou, S.M.; Ren, Q.P.; Kong, L.J.; Wang, X.L. Overexpression of SDH Confers Tolerance to Salt and Osmotic Stress, but Decreases Aba Sensitivity in Arabidopsis. Plant Biol. 2018, 20, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Cao, H.; Yang, Q.; Zhang, M.; Borejsza-Wysocka, E.; Wang, H.; Dandekar, A.M.; Fei, Z.; Cheng, L. SnRK1 Kinase-Mediated Phosphorylation of Transcription Factor bZIP39 Regulates Sorbitol Metabolism in Apple. Plant Physiol. 2023, 192, 2123–2142. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Banik, M.; Bourgault, R.; Feurtado, J.A.; Toorop, P.; Hilhorst, H.W. Endo-b Mannanase Activity Increases in the Skin and Outer Pericarp of Tomato Fruits During Ripening. J. Exp. Bot. 2000, 51, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, C.; Feng, X.; Lai, R.; Gao, M.; Chen, W.; Wu, R. Integrated Analysis of lncRNA and mRNA Transcriptomes Reveals the Potential Regulatory Role of lncRNA in Kiwifruit Ripening and Softening. Sci. Rep. 2021, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant. 2010, 3, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Khatri, P.; Chen, L.; Rajcan, I.; Dhaubhadel, S. Functional Characterization of Cinnamate 4-Hydroxylase Gene Family in Soybean (Glycine Max). PLoS ONE 2023, 18, e0285698. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, B.; Li, D.; Zhang, Q.; Lin, H.; Li, Y.; Wen, Q.; Zhu, H. Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages. Plants 2025, 14, 2248. https://doi.org/10.3390/plants14142248
Qiu B, Li D, Zhang Q, Lin H, Li Y, Wen Q, Zhu H. Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages. Plants. 2025; 14(14):2248. https://doi.org/10.3390/plants14142248
Chicago/Turabian StyleQiu, Boyin, Dazhong Li, Qianrong Zhang, Hui Lin, Yongping Li, Qingfang Wen, and Haisheng Zhu. 2025. "Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages" Plants 14, no. 14: 2248. https://doi.org/10.3390/plants14142248
APA StyleQiu, B., Li, D., Zhang, Q., Lin, H., Li, Y., Wen, Q., & Zhu, H. (2025). Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages. Plants, 14(14), 2248. https://doi.org/10.3390/plants14142248