Numerical Investigation of the Optimal Structure for Dynamic Plasmonic Colors Generated via Photothermal Deformation of Metal Semi-Shell Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Structure
2.2. Reflectance Spectrum
2.3. Calculation Condition
2.4. Color Gamut Area in Commission Internationale De L’éclairage (CIE) Luv Color Space
3. Results
3.1. Color Gamut Areas in the CIE Luv Chromaticity Diagram
3.2. Density of the Maximum Color Gamut Area for Each Core Diameter and Semi-Shell Thickness
4. Discussion
4.1. Validation of the Approximation Formula
4.2. Structure That Maximizes the Color Gamut Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ellenbogen, T.; Seo, K.; Crozier, K.B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 2012, 12, 1026–1031. [Google Scholar] [CrossRef]
- Song, M.; Li, X.; Pu, M.; Guo, Y.; Liu, K.; Yu, H.; Ma, X.; Luo, X. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics 2018, 7, 323–331. [Google Scholar] [CrossRef]
- Xiang, J.; Li, Y.; Li, Q.; Paterson, D.A.; Storey, J.M.-D.; Imrie, C.T.; Lavrentovich, O.D. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv. Mater. 2015, 27, 3014–3018. [Google Scholar] [CrossRef]
- Mirshafieyan, S.S.; Gregory, D.A. Electrically tunable perfect light absorbers as color filters and modulators. Sci. Rep. 2018, 8, 2635. [Google Scholar] [CrossRef]
- Shu, F.-Z.; Yu, F.-F.; Peng, R.-W.; Zhu, Y.-Y.; Xiong, B.; Fan, R.-H.; Wang, Z.-H.; Liu, Y.; Wang, M. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv. Opt. Mater. 2018, 6, 1700939. [Google Scholar] [CrossRef]
- Prezgot, D.; Tatarchuk, S.W.; Ianoul, A. Plasmonic color generation in silver nanocrystal-over-mirror films by thermal embedment into a polymer spacer. Nano Sel. 2022, 3, 1082–1090. [Google Scholar] [CrossRef]
- Duan, X.; Kamin, S.; Liu, N. Dynamic plasmonic colour display. Nat. Commun. 2017, 8, 14606. [Google Scholar] [CrossRef]
- Song, S.C.; Ma, X.L.; Pu, M.B.; Li, X.; Liu, K.P.; Gao, P.; Zhao, Z.Y.; Wang, Y.Q.; Wang, C.T.; Luo, X.G. Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 2017, 5, 1600829. [Google Scholar] [CrossRef]
- Geng, J.; Xu, L.; Yan, W.; Shi, L.; Qiu, M. High-speed laser writing of structural colors for full-color inkless printing. Nat. Commun. 2023, 14, 565. [Google Scholar] [CrossRef]
- Choi, S.; Zhao, Z.; Zuo, J.; Faruque, H.M.R.; Yao, Y.; Wang, C. Structural color printing via polymer-assisted photochemical deposition. Light. Sci. Appl. 2022, 11, 84. [Google Scholar] [CrossRef]
- Franklin, D.; He, Z.; Mastranzo Ortega, P.; Safaei, A.; Cencillo-Abad, P.; Wu, S.; Chanda, D. Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states. Proc. Natl. Acad. Sci. USA 2020, 117, 13350–13358. [Google Scholar] [CrossRef]
- Fujimura, R.; Zhang, R.; Kitamoto, Y.; Shimojo, M.; Kajikawa, K. Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties. Jpn. J. Appl. Phys. 2014, 53, 035201. [Google Scholar] [CrossRef]
- Magari, M.; Fujimura, R. Numerical investigation of dynamic plasmonic color generated via photothermal deformation of a metal semi-shell structure. Jpn. J. Appl. Phys 2024, 63, 082001. [Google Scholar] [CrossRef]
- Draine, B.T.; Flatau, J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499. [Google Scholar] [CrossRef]
- Fujimoto, K.; Nagao, D.; Konno, M. Effect of particle size on surface modification of silica nanoparticles with hexyltrimethoxysilane (C6S) and its influence on the dispersion stability of silica particles in methylethylketone (MEK). J. Colloid Interface Sci. 2007, 309, 394–401. [Google Scholar]
- Bigioni, T.P.; Lin, X.M.; Nguyen, T.T.; Corwin, E.I.; Witten, T.A.; Jaeger, H.M. Kinetically driven self-assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Polyanskiy, M.N. Refractiveindex.info database of optical constants. Sci. Data 2024, 11, 94. [Google Scholar] [CrossRef]
- Rakic, A.D.; Djurisic, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Wang, S.; Ding, T. Photothermal-Assisted Optical Stretching of Gold Nanoparticles. ACS Nano 2019, 13, 32–37. [Google Scholar] [CrossRef]
- Yao, J.; Li, Y.; Wang, S.; Ding, T. Thin-Film-Assisted Photothermal Deformation of Gold Nanoparticles. A Facile and In-Situ Strategy for Single-Plate-Based Devices. ACS Nano 2024, 18, 10618–10624. [Google Scholar] [CrossRef]
- Asato, N.; Fujimura, R. Tunable plasmonic resonance by photothermal deformation in Ag-SiO2 semi-shell nanostructure and enlargement of the controllable spectral region by UV-curable resin. Opt. Rev. 2024, 31, 488–495. [Google Scholar] [CrossRef]
- Chevalier, P.; Bouchon, P.; Jaeck, J.; Lauwick, D.; Bardou, N.; Kattnig, A.; Pardo, F.; Haïdar, R. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas. Appl. Phys. Lett. 2015, 107, 251108. [Google Scholar] [CrossRef]
- Smith, T.; Guild, J. The CIE colorimetric standards and their use. Trans. Opt. Soc. 1931, 33, 73. [Google Scholar] [CrossRef]
- Ohta, N.; Robertson, A.R. CIE Standard Colorimetric System. In Colorimetry; Kriss, M.A., Lowe, A.C., MacDonald, L.W., Miyake, Y., Eds.; Wiley: Chichester, UK, 2005. [Google Scholar]
- CIE. CIE 1931 Colour-Matching Functions, 2 Degree Observer (Data Table); International Commission on Illumination (CIE): Vienna, Austria, 2018. [Google Scholar]
- Carter, E.C.; Schanda, J.D.; Hirschler, R.; Jost, S.; Luo, M.R.; Melgosa, M.; Ohno, Y.; Pointer, M.R.; Rich, D.C.; Viénot, F.; et al. CIE 015:2018 Colorimetry, 4th ed.; Commission Internationale de l’Eclairage: Vienna, Austria, 2018. [Google Scholar]
- Braden, B. The surveyor’s area formula. College Math. J. 1986, 17, 326–337. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, W.; El-Sayed, M.A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007, 7, 2080–2088. [Google Scholar] [CrossRef]
- Chen, W.T.; Yang, K.Y.; Wang, C.M.; Huang, Y.W.; Sun, G.; Chiang, I.D.; Liao, C.Y.; Hsu, W.L.; Lin, H.T.; Sun, S.; et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nat. Commun. 2014, 5, 4802. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, K.; Huh, D.; Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 2020, 11, 2268. [Google Scholar] [CrossRef]
Diameter of Nanosphere [nm] | Density [µm−2] | Deposition Thickness [nm] | Average Number of Dipoles of All the Capping Angles |
---|---|---|---|
50 | 177.78 | 17.5 | 50,363.1 |
50 | 100.00 | 17.5 | 82,043.1 |
50 | 177.78 | 20 | 50,000.1 |
50 | 44.44 | 20 | 184,503.2 |
75 | 59.17 | 15 | 156,010.5 |
75 | 19.75 | 15 | 401,388.5 |
75 | 51.02 | 20 | 177,278.0 |
75 | 19.75 | 20 | 428,254.0 |
75 | 44.44 | 25 | 218,923.2 |
75 | 25.00 | 25 | 362,539.2 |
100 | 27.99 | 15 | 327,747.8 |
100 | 16.00 | 15 | 520,887.8 |
100 | 32.65 | 20 | 302,464.7 |
100 | 11.11 | 20 | 759,900.7 |
100 | 25.00 | 25 | 400,139.9 |
100 | 13.22 | 25 | 707,635.9 |
Core Diameter [nm] | Semi-Shell Thickness [nm] | Density [µm−2] | Center-to-Center Distance [nm] | |
---|---|---|---|---|
50 | 17.5 | 163.325 | ±2.064 | 78.2 |
50 | 20 | 101.986 | ±0.663 | 99.0 |
75 | 15 | 48.396 | ±0.173 | 143.7 |
75 | 20 | 39.089 | ±0.048 | 159.9 |
75 | 25 | 32.759 | ±0.160 | 174.7 |
100 | 15 | 24.141 | ±0.053 | 203.5 |
100 | 20 | 19.734 | ±0.198 | 225.1 |
100 | 25 | 15.838 | ±0.052 | 251.3 |
Core Diameter [nm] | Semi-Shell Thickness [nm] (a) | Center-to-Center Distance [nm] | Approximated Semi-Shell Thickness [nm] (b) | Difference Between Semi-Shell Thickness and the Approximated Semi-Shell Thickness [nm] (a)–(b) | |
---|---|---|---|---|---|
A | 50 | 17.5 | 78.2 | 16.473 | 1.027 |
50 | 20 | 99.0 | 21.222 | −1.222 | |
75 | 15 | 143.7 | 16.282 | −1.282 | |
75 | 20 | 159.9 | 19.980 | 0.020 | |
75 | 25 | 174.7 | 23.359 | 1.641 | |
100 | 15 | 203.5 | 14.789 | 0.211 | |
100 | 20 | 225.1 | 19.720 | 0.280 | |
100 | 25 | 251.3 | 25.702 | −0.702 | |
B | 75 | 17.5 | 149.0 | 17.492 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magari, M.; Fujimura, R. Numerical Investigation of the Optimal Structure for Dynamic Plasmonic Colors Generated via Photothermal Deformation of Metal Semi-Shell Structures. Photonics 2025, 12, 753. https://doi.org/10.3390/photonics12080753
Magari M, Fujimura R. Numerical Investigation of the Optimal Structure for Dynamic Plasmonic Colors Generated via Photothermal Deformation of Metal Semi-Shell Structures. Photonics. 2025; 12(8):753. https://doi.org/10.3390/photonics12080753
Chicago/Turabian StyleMagari, Masaaki, and Ryushi Fujimura. 2025. "Numerical Investigation of the Optimal Structure for Dynamic Plasmonic Colors Generated via Photothermal Deformation of Metal Semi-Shell Structures" Photonics 12, no. 8: 753. https://doi.org/10.3390/photonics12080753
APA StyleMagari, M., & Fujimura, R. (2025). Numerical Investigation of the Optimal Structure for Dynamic Plasmonic Colors Generated via Photothermal Deformation of Metal Semi-Shell Structures. Photonics, 12(8), 753. https://doi.org/10.3390/photonics12080753