Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,715)

Search Parameters:
Keywords = diagnostic and prognostic biomarker

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 (registering DOI) - 1 Aug 2025
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

18 pages, 316 KiB  
Review
Pancreatic Stone Protein as a Versatile Biomarker: Current Evidence and Clinical Applications
by Federica Arturi, Gabriele Melegari, Riccardo Mancano, Fabio Gazzotti, Elisabetta Bertellini and Alberto Barbieri
Diseases 2025, 13(8), 240; https://doi.org/10.3390/diseases13080240 - 31 Jul 2025
Abstract
Background: The identification and clinical implementation of robust biomarkers are essential for improving diagnosis, prognosis, and treatment across a wide range of diseases. Pancreatic stone protein (PSP) has recently emerged as a promising candidate biomarker. Objective: This narrative review aims to provide an [...] Read more.
Background: The identification and clinical implementation of robust biomarkers are essential for improving diagnosis, prognosis, and treatment across a wide range of diseases. Pancreatic stone protein (PSP) has recently emerged as a promising candidate biomarker. Objective: This narrative review aims to provide an updated and comprehensive overview of the clinical applications of PSP in infectious, oncological, metabolic, and surgical contexts. Methods: We conducted a structured literature search using PubMed®, applying the SANRA framework for narrative reviews. Boolean operators were used to retrieve relevant studies on PSP in a wide range of clinical conditions, including sepsis, gastrointestinal cancers, diabetes, and ventilator-associated pneumonia. Results: PSP has shown strong diagnostic and prognostic potential in sepsis, where it may outperform traditional markers such as CRP and PCT. It has also demonstrated relevance in gastrointestinal cancers, type 1 and type 2 diabetes, and perioperative infections. PSP levels appear to rise earlier than other inflammatory markers and may be less affected by sterile inflammation. Conclusion: PSP represents a versatile and clinically valuable biomarker. Its integration into diagnostic protocols could enhance early detection and risk stratification in critical care and oncology settings. However, widespread adoption is currently limited by the availability of point-of-care assay platforms. Full article
13 pages, 1321 KiB  
Article
Lung Cancer with Isolated Pleural Dissemination as a Potential ctDNA Non-Shedding Tumor Type
by Huizhao Hong, Yingqian Zhang, Mengmeng Song, Xuan Gao, Wenfang Tang, Hongji Li, Shirong Cui, Song Dong, Yilong Wu, Wenzhao Zhong and Jiatao Zhang
Cancers 2025, 17(15), 2525; https://doi.org/10.3390/cancers17152525 - 30 Jul 2025
Abstract
Objectives: Circulating tumor DNA (ctDNA) has emerged as a reliable prognostic biomarker in both early- and late-stage non-small cell lung cancer (NSCLC) patients. However, its role in NSCLC with pleural dissemination (M1a), a subset of disease with indolent biology, remains to be elucidated. [...] Read more.
Objectives: Circulating tumor DNA (ctDNA) has emerged as a reliable prognostic biomarker in both early- and late-stage non-small cell lung cancer (NSCLC) patients. However, its role in NSCLC with pleural dissemination (M1a), a subset of disease with indolent biology, remains to be elucidated. Methods: We collected 41 M1a patients with serial ctDNA and CEA monitoring. Progression-free survival (PFS) was assessed between patients with different levels of ctDNA and CEA. An independent cohort of 61 M1a patients was included for validation. Results: At the diagnostic landmark, the detection rates for ctDNA and CEA were 22% and 55%, respectively. Among patients who experienced disease progression with pleural metastases, only ten had detectable ctDNA in longitudinal timepoints, resulting in a sensitivity of 50%. Moreover, there was no significant difference in PFS between patients with longitudinally detectable and undetectable ctDNA (HR: 0.86, 95% CI 0.33–2.23, p = 0.76). In contrast, patients with a decreasing CEA trend within 3 months after diagnosis were associated with an improved PFS (HR: 0.22; 95% CI, 0.03–1.48, p = 0.004). This finding is confirmed in an independent M1a patient cohort. Conclusions: Together, our findings suggest that M1a NSCLC with isolated pleural dissemination may represent a “non-shedding” tumor type, where ctDNA shows limited diagnostic and prognostic value. Monitoring early changes in CEA could be a more cost-effective predictor of disease progression. Full article
(This article belongs to the Special Issue Educating Recent Updates on Metastatic Non-small Cell Lung Cancer)
Show Figures

Figure 1

19 pages, 707 KiB  
Review
Salivary α-Amylase as a Metabolic Biomarker: Analytical Tools, Challenges, and Clinical Perspectives
by Gita Erta, Gita Gersone, Antra Jurka and Peteris Tretjakovs
Int. J. Mol. Sci. 2025, 26(15), 7365; https://doi.org/10.3390/ijms26157365 - 30 Jul 2025
Viewed by 33
Abstract
Salivary α-amylase, primarily encoded by the AMY1 gene, initiates the enzymatic digestion of dietary starch in the oral cavity and has recently emerged as a potential biomarker in metabolic research. Variability in salivary amylase activity (SAA), driven largely by copy number variation of [...] Read more.
Salivary α-amylase, primarily encoded by the AMY1 gene, initiates the enzymatic digestion of dietary starch in the oral cavity and has recently emerged as a potential biomarker in metabolic research. Variability in salivary amylase activity (SAA), driven largely by copy number variation of AMY1, has been associated with postprandial glycemic responses, insulin secretion dynamics, and susceptibility to obesity. This review critically examines current analytical approaches for quantifying SAA, including enzymatic assays, colorimetric techniques, immunoassays, and emerging biosensor technologies. The methodological limitations related to sample handling, intra-individual variability, assay standardization, and specificity are highlighted in the context of metabolic and clinical studies. Furthermore, the review explores the physiological relevance of SAA in energy homeostasis and its associations with visceral adiposity and insulin resistance. We discuss the potential integration of SAA measurements into obesity risk stratification and personalized dietary interventions, particularly in individuals with altered starch metabolism. Finally, the review identifies key research gaps and future directions necessary to validate SAA as a reliable metabolic biomarker in clinical practice. Understanding the diagnostic and prognostic value of salivary amylase may offer new insights into the prevention and management of obesity and related metabolic disorders. Full article
Show Figures

Figure 1

15 pages, 1343 KiB  
Article
Prognostic Value of Metabolic Tumor Volume and Heterogeneity Index in Diffuse Large B-Cell Lymphoma
by Ali Alper Solmaz, Ilhan Birsenogul, Aygul Polat Kelle, Pinar Peker, Burcu Arslan Benli, Serdar Ata, Mahmut Bakir Koyuncu, Mustafa Gurbuz, Ali Ogul, Berna Bozkurt Duman and Timucin Cil
Medicina 2025, 61(8), 1370; https://doi.org/10.3390/medicina61081370 - 29 Jul 2025
Viewed by 259
Abstract
Background and Objectives: Metabolic tumor volume (MTV) and inflammation-based indices have recently gained attention as potential prognostic markers of diffuse large B-cell lymphoma (DLBCL). We aimed to evaluate the prognostic significance of metabolic and systemic inflammatory parameters in predicting treatment response, relapse, [...] Read more.
Background and Objectives: Metabolic tumor volume (MTV) and inflammation-based indices have recently gained attention as potential prognostic markers of diffuse large B-cell lymphoma (DLBCL). We aimed to evaluate the prognostic significance of metabolic and systemic inflammatory parameters in predicting treatment response, relapse, and overall survival (OS) in patients with DLBCL. Materials and Methods: This retrospective cohort study included 70 patients with DLBCL. Clinical characteristics, laboratory values, and metabolic parameters, including maximum standardized uptake value (SUVmaxliver and SUVmax), heterogeneity indices HI1 and HI2, and MTV were analyzed. Survival outcomes were assessed using Kaplan–Meier and log-rank tests. Receiver operating characteristic analyses helped evaluate the diagnostic performance of the selected biomarkers in predicting relapse and mortality. Univariate and multivariate logistic regression analyses were conducted to identify the independent predictors. Results: The mean OS and mean relapse-free survival (RFS) were 71.6 ± 7.4 and 38.7 ± 2.9 months, respectively. SUVmaxliver ≤ 22 and HI2 > 62.3 were associated with a significantly shorter OS. High lactate dehydrogenase (LDH) levels and HI2 > 87.9 were significantly associated with a reduced RFS. LDH, SUVmaxliver, and HI2 had a significant predictive value for relapse. SUVmaxliver and HI2 levels were also predictive of mortality; SUVmaxliver ≤ 22 and HI2 > 62.3 independently predicted mortality, while HI2 > 87.9 independently predicted relapse. MTV was not significantly associated with survival. Conclusions: Metabolic tumor burden and inflammation-based markers, particularly SUVmaxliver and HI2, are significant prognostic indicators of DLBCL and may enhance risk stratification and aid in identifying patients with an increased risk of relapse or mortality, potentially guiding personalized therapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

16 pages, 1308 KiB  
Review
Multimodality Imaging in Aldosterone-Induced Cardiomyopathy: Early Detection and Prognostic Implications
by Francesca Zoccatelli, Gabriele Costa, Matteo Merlo, Francesca Pizzolo, Simonetta Friso and Luigi Marzano
Diagnostics 2025, 15(15), 1896; https://doi.org/10.3390/diagnostics15151896 - 29 Jul 2025
Viewed by 279
Abstract
Primary aldosteronism (PA), the most common cause of secondary hypertension, is increasingly recognized as an independent driver of adverse cardiac remodeling, mediated through mechanisms beyond elevated blood pressure alone. Chronic aldosterone excess leads to myocardial fibrosis, left ventricular hypertrophy, and diastolic dysfunction via [...] Read more.
Primary aldosteronism (PA), the most common cause of secondary hypertension, is increasingly recognized as an independent driver of adverse cardiac remodeling, mediated through mechanisms beyond elevated blood pressure alone. Chronic aldosterone excess leads to myocardial fibrosis, left ventricular hypertrophy, and diastolic dysfunction via mineralocorticoid receptor activation, oxidative stress, inflammation, and extracellular matrix dysregulation. These changes culminate in a distinct cardiomyopathy phenotype, often underrecognized in early stages. Multimodality cardiac imaging, led primarily by conventional and speckle-tracking echocardiography, and complemented by exploratory cardiac magnetic resonance (CMR) techniques such as T1 mapping and late gadolinium enhancement, enables non-invasive assessment of structural, functional, and tissue-level changes in aldosterone-mediated myocardial damage. While numerous studies have established the diagnostic and prognostic relevance of imaging in PA, several gaps remain. Specifically, the relative sensitivity of different modalities in detecting subclinical myocardial changes, the long-term prognostic significance of imaging biomarkers, and the differential impact of adrenalectomy versus medical therapy on cardiac reverse remodeling require further clarification. Moreover, the lack of standardized imaging-based criteria for defining and monitoring PA-related cardiomyopathy hinders widespread clinical implementation. This narrative review aims to synthesize current knowledge on the pathophysiological mechanisms of aldosterone-induced cardiac remodeling, delineate the strengths and limitations of existing imaging modalities, and critically evaluate the comparative effects of surgical and pharmacologic interventions. Emphasis is placed on early detection strategies, identification of imaging biomarkers with prognostic utility, and integration of multimodal imaging into clinical decision-making pathways. By outlining current evidence and highlighting key unmet needs, this review provides a framework for future research aimed at advancing personalized care and improving cardiovascular outcomes in patients with PA. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Graphical abstract

12 pages, 541 KiB  
Review
Presepsin in Hepatic Pathology: Bridging the Gap in Early Sepsis Detection
by Dana-Maria Bilous, Mihai Ciocîrlan, Cătălina Vlăduț and Carmen-Georgeta Fierbințeanu-Braticevici
Diagnostics 2025, 15(15), 1871; https://doi.org/10.3390/diagnostics15151871 - 25 Jul 2025
Viewed by 580
Abstract
Sepsis represents a major cause of mortality, especially among patients with liver cirrhosis, who are at increased risk due to immune dysfunction, gut-derived bacterial translocation, and altered hepatic metabolism. Traditional biomarkers such as C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) often have [...] Read more.
Sepsis represents a major cause of mortality, especially among patients with liver cirrhosis, who are at increased risk due to immune dysfunction, gut-derived bacterial translocation, and altered hepatic metabolism. Traditional biomarkers such as C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) often have reduced diagnostic reliability in this subgroup, due to impaired liver and renal function. Presepsin, a soluble fragment of CD14 released during phagocytic activation, has emerged as a promising biomarker for early sepsis detection. This systematic review explores the diagnostic and prognostic utility of presepsin in cirrhotic and non-cirrhotic patients with suspected infection. Data from multiple clinical studies indicate that presepsin levels correlate with infection severity and clinical scores such as SOFA and APACHE II. In cirrhotic patients, presepsin demonstrates superior sensitivity and specificity compared to conventional biomarkers, maintaining diagnostic value despite hepatic dysfunction. Its utility extends to differentiating bacterial infections from fungal infections and monitoring treatment response. While preliminary evidence is compelling, further prospective, multicenter studies are required to validate its integration into standard care algorithms. Presepsin may become a valuable addition to clinical decision-making tools, particularly in hepatology-focused sepsis management. Full article
(This article belongs to the Special Issue Recent Advances in Sepsis)
Show Figures

Figure 1

37 pages, 8221 KiB  
Review
Epigenetic Profiling of Cell-Free DNA in Cerebrospinal Fluid: A Novel Biomarker Approach for Metabolic Brain Diseases
by Kyle Sporn, Rahul Kumar, Kiran Marla, Puja Ravi, Swapna Vaja, Phani Paladugu, Nasif Zaman and Alireza Tavakkoli
Life 2025, 15(8), 1181; https://doi.org/10.3390/life15081181 - 25 Jul 2025
Viewed by 420
Abstract
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free [...] Read more.
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free DNA (cfDNA) derived from cerebrospinal fluid (CSF) epigenetic profiling as a dynamic, cell-type-specific, minimally invasive biomarker approach for MBD diagnosis and monitoring. We review important technological platforms and their use in identifying CNS-specific DNA methylation patterns indicative of neuronal injury, neuroinflammation, and metabolic reprogramming, including cfMeDIP-seq, enzymatic methyl sequencing (EM-seq), and targeted bisulfite sequencing. By synthesizing current findings across disorders such as MELAS, Niemann–Pick disease, Gaucher disease, GLUT1 deficiency syndrome, and diabetes-associated cognitive decline, we highlight the superior diagnostic and prognostic resolution offered by CSF cfDNA methylation signatures relative to conventional CSF markers or neuroimaging. We also address technical limitations, interpretive challenges, and translational barriers to clinical implementation. Ultimately, this review explores CSF cfDNA epigenetic analysis as a liquid biopsy modality. The central objective is to assess whether epigenetic profiling of CSF-derived cfDNA can serve as a reliable and clinically actionable biomarker for improving the diagnosis and longitudinal monitoring of metabolic brain diseases. Full article
(This article belongs to the Special Issue Cell-Free DNA as a Biomarker in Metabolic Diseases)
Show Figures

Figure 1

13 pages, 2372 KiB  
Article
PTEN and ERG Biomarkers as Predictors of Biochemical Recurrence Risk in Patients Undergoing Radical Prostatectomy
by Mihnea Bogdan Borz, Bogdan Fetica, Maximilian Cosma Gliga, Tamas-Csaba Sipos, Bogdan Adrian Buhas and Vlad Horia Schitcu
Diseases 2025, 13(8), 235; https://doi.org/10.3390/diseases13080235 - 24 Jul 2025
Viewed by 243
Abstract
Background/Objectives: Prostate cancer (PCa) remains a major global health issue, associated with significant mortality and morbidity. Despite advances in diagnosis and treatment, predicting biochemical recurrence (BCR) after radical prostatectomy remains challenging, highlighting the need for reliable biomarkers to guide prognosis and therapy. [...] Read more.
Background/Objectives: Prostate cancer (PCa) remains a major global health issue, associated with significant mortality and morbidity. Despite advances in diagnosis and treatment, predicting biochemical recurrence (BCR) after radical prostatectomy remains challenging, highlighting the need for reliable biomarkers to guide prognosis and therapy. The study aimed to evaluate the prognostic significance of the PTEN and ERG biomarkers in predicting BCR and tumor progression in PCa patients who underwent radical prostatectomy. Methods: This study consisted of a cohort of 91 patients with localized PCa who underwent radical prostatectomy between 2016 and 2022. From this cohort, 77 patients were selected for final analysis. Tissue microarrays (TMAs) were constructed from paraffin blocks, and immunohistochemical (IHC) staining for PTEN and ERG was performed using specific antibodies on the Ventana BenchMark ULTRA system (Roche Diagnostics, Indianapolis, IN, USA). Stained sections were evaluated and correlated with clinical and pathological data. Results: PTEN expression showed a significant negative correlation with BCR (r = −0.301, p = 0.014), indicating that reduced PTEN expression is associated with increased recurrence risk. PTEN was not significantly linked to PSA levels, tumor stage, or lymph node involvement. ERG expression correlated positively with advanced pathological tumor stage (r = 0.315, p = 0.005) but was not associated with BCR or other clinical parameters. Conclusions: PTEN appears to be a valuable prognostic marker for recurrence in PCa, while ERG may indicate tumor progression. These findings support the potential integration of PTEN and ERG into clinical practice to enhance risk stratification and personalized treatment, warranting further validation in larger patient cohorts. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

15 pages, 1585 KiB  
Article
Expression Analysis, Diagnostic Significance and Biological Functions of BAG4 in Acute Myeloid Leukemia
by Osman Akidan, Selçuk Yaman, Serap Ozer Yaman and Sema Misir
Medicina 2025, 61(8), 1333; https://doi.org/10.3390/medicina61081333 - 24 Jul 2025
Viewed by 247
Abstract
Background and Objectives: A thorough comprehension of the essential molecules and related processes underlying the carcinogenesis, proliferation, and recurrence of acute myeloid leukemia (AML) is crucial. This study aimed to investigate the expression levels, diagnostic and prognostic significance and biological roles of [...] Read more.
Background and Objectives: A thorough comprehension of the essential molecules and related processes underlying the carcinogenesis, proliferation, and recurrence of acute myeloid leukemia (AML) is crucial. This study aimed to investigate the expression levels, diagnostic and prognostic significance and biological roles of Bcl-2-associated athanogene 4 (BAG4) in AML carcinogenesis. Materials and Methods: Gene expression profiles were analyzed using publicly available datasets, particularly GSE9476 and TCGA, using tools such as GEO2R, GEPIA2, UALCAN and TIMER2.0. The immune infiltration correlation was examined using the GSCA platform, while the function of BAG4 at the single-cell level was analyzed via CancerSEA. Protein–protein and gene–gene interaction networks were constructed using STRING and GeneMANIA, and enrichment analyses were performed using GO, KEGG and DAVID. Expression validation was performed using RT-qPCR in HL-60 (AML) and HaCaT (normal) cells, and ROC curve analysis evaluated the diagnostic accuracy. Results: BAG4 was significantly overexpressed in AML tissues and cell lines compared with healthy controls. High BAG4 expression was associated with poor overall survival and strong diagnostic power (AUC = 0.944). BAG4 was positively associated with immune cell infiltration and negatively associated with CD4+/CD8+ T and NK cells. At the single-cell level, BAG4 was associated with proliferation, invasion, and DNA repair functions. Functional network analysis showed that BAG4 interacted with apoptosis and necroptosis-related genes such as BCL2, BAG3 and TNFRSF1A and was enriched in pathways such as NF-κB, TNF signaling and apoptosis. Conclusions: BAG4 is overexpressed in AML and is associated with adverse clinical outcomes and immune modulation. It may play an important role in leukemogenesis by affecting apoptotic resistance and immune evasion. BAG4 has potential as a diagnostic biomarker and treatment target in AML, but further in vivo and clinical validation is needed. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Graphical abstract

15 pages, 1949 KiB  
Article
Serum Trimethylamine N-Oxide as a Diagnostic and Prognostic Biomarker in Dogs with Chronic Kidney Disease: A Pilot Study
by Seung-Ju Kang, Wan-Gyu Kim, Keon Kim, Chang-Hyeon Choi, Jong-Hwan Park, Seog-Jin Kang, Chang-Min Lee, Yoon Jung Do and Woong-Bin Ro
Animals 2025, 15(15), 2170; https://doi.org/10.3390/ani15152170 - 23 Jul 2025
Viewed by 163
Abstract
Trimethylamine N-oxide (TMAO) is known to increase in human cardiovascular, metabolic, and renal diseases. In human medicine, TMAO has recently been utilized as a diagnostic and prognostic biomarker for renal dysfunction, and research is ongoing regarding its potential as a therapeutic target. This [...] Read more.
Trimethylamine N-oxide (TMAO) is known to increase in human cardiovascular, metabolic, and renal diseases. In human medicine, TMAO has recently been utilized as a diagnostic and prognostic biomarker for renal dysfunction, and research is ongoing regarding its potential as a therapeutic target. This study aimed to evaluate the diagnostic and prognostic potential of TMAO as a supportive biomarker in dogs with chronic kidney disease (CKD). To assess its diagnostic utility, TMAO concentrations were compared between a CKD group (n = 32) and a healthy control group (n = 32). In addition, patients with CKD were subdivided into stages 2 (n = 12), 3 (n = 11), and 4 (n = 9) and compared individually with the healthy controls. For prognostic evaluation, the CKD group was monitored over six months, and the TMAO levels were compared between survivors (n = 18) and non-survivors (n = 14). The TMAO concentrations showed a highly significant difference between patients with CKD and healthy controls (p < 0.0001). Patients with each different CKD stage exhibited statistically significant differences compared with the healthy controls (p < 0.05). Furthermore, the median TMAO levels tended to increase with advancing CKD stage; however, the differences among stages were not statistically significant. In addition, within the CKD group, TMAO concentrations were significantly higher in non-survivors than in survivors at the six-month follow-up (p = 0.0142). This pilot study highlights the potential of TMAO as a supportive renal biomarker for diagnostic and prognostic evaluation in canine CKD. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

12 pages, 770 KiB  
Article
How Does Left Ventricular Ejection Fraction Affect the Multimodal Assessment of Congestion in Patients with Acute Heart Failure? Results from a Prospective Study
by Laura Karla Esterellas-Sánchez, Amelia Campos-Sáenz de Santamaría, Zoila Stany Albines Fiestas, Silvia Crespo-Aznarez, Marta Sánchez-Marteles, Vanesa Garcés-Horna, Alejandro Alcaine-Otín, Ignacio Gimenez-Lopez and Jorge Rubio-Gracia
Appl. Sci. 2025, 15(15), 8157; https://doi.org/10.3390/app15158157 - 22 Jul 2025
Viewed by 153
Abstract
The assessment of systemic congestion in acute heart failure (AHF) remains clinically challenging, particularly across different left ventricular ejection fraction (LVEF) phenotypes. This study aimed to evaluate whether differences exist in the degree of congestion, assessed through a multimodal approach including physical examination, [...] Read more.
The assessment of systemic congestion in acute heart failure (AHF) remains clinically challenging, particularly across different left ventricular ejection fraction (LVEF) phenotypes. This study aimed to evaluate whether differences exist in the degree of congestion, assessed through a multimodal approach including physical examination, biomarkers (NT-proBNP, CA125), and point-of-care ultrasound using the Venous Excess Ultrasound (VExUS) protocol, between patients with preserved (HFpEF) and reduced ejection fraction (HFrEF). We conducted a prospective observational study involving 90 hospitalized AHF patients, 80 of whom underwent a complete VExUS assessment. Although patients with HFrEF exhibited higher levels of NT-proBNP and CA125, and more frequent signs of third-space fluid accumulation such as pleural effusion and ascites, no statistically significant differences were found in VExUS grades between the two groups. These findings suggest that the VExUS protocol provides consistent and reproducible information on systemic venous congestion, regardless of LVEF phenotype. Its integration into clinical practice may help refine congestion assessment and optimize diuretic therapy. Further multicenter studies with larger populations are warranted to validate its diagnostic and prognostic utility and to determine its potential role in guiding individualized treatment strategies in AHF. Full article
(This article belongs to the Special Issue Applications of Ultrasonic Technology in Biomedical Sciences)
Show Figures

Figure 1

28 pages, 1528 KiB  
Review
Is Human Chorionic Gonadotropin a Reliable Marker for Testicular Germ Cell Tumor? New Perspectives for a More Accurate Diagnosis
by Nunzio Marroncelli, Giulia Ambrosini, Andrea Errico, Sara Vinco, Elisa Dalla Pozza, Giulia Cogo, Ilaria Cristanini, Filippo Migliorini, Nicola Zampieri and Ilaria Dando
Cancers 2025, 17(14), 2409; https://doi.org/10.3390/cancers17142409 - 21 Jul 2025
Viewed by 297
Abstract
Testicular germ cell tumors (TGCTs) are the most common malignancies affecting young men between the ages of 14 and 44, accounting for about 95% of all testicular cancers. Despite being relatively rare compared to other cancers (~3.0 cases per 100,000 population, with high [...] Read more.
Testicular germ cell tumors (TGCTs) are the most common malignancies affecting young men between the ages of 14 and 44, accounting for about 95% of all testicular cancers. Despite being relatively rare compared to other cancers (~3.0 cases per 100,000 population, with high worldwide variability), TGCTs’ incidence is increasing, particularly in industrialized countries. The initial phase of TGCT diagnosis is performed by detecting in the blood the presence of three proteins, i.e., alpha-fetoprotein (AFP), lactate dehydrogenase (LDH), and human chorionic gonadotropin (hCG). Despite these proteins being defined as markers of TGCTs, they present limitations in specificity. Indeed, AFP is not elevated in pure seminomas; LDH serum levels can be elevated in other conditions, such as liver disease or tissue damage, and hCG can be elevated in both seminomas and non-seminomas, reducing its ability to differentiate between tumor types. However, the existence of hCG variants, characterized by distinct glycosylation profiles that are differentially expressed in TGCT types and subtypes, may increase the diagnostic and prognostic potential of this hormone. Furthermore, emerging molecular biomarkers, including miRNAs and tumor cells-related epigenetic status, may offer new promising alternatives to improve diagnostic accuracy. Nonetheless, standardized diagnostic protocols still need to be implemented. Finally, understanding the biological roles of hCG isoforms and their “canonical” (e.g., LHCGR) and “non-canonical” (e.g., TGF-βR) receptor interactions may help in understanding tumor biology and therapeutic targeting. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

28 pages, 2988 KiB  
Review
Circular RNAs as Targets for Developing Anticancer Therapeutics
by Jaewhoon Jeoung, Wonho Kim, Hyein Jo and Dooil Jeoung
Cells 2025, 14(14), 1106; https://doi.org/10.3390/cells14141106 - 18 Jul 2025
Viewed by 452
Abstract
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, [...] Read more.
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, circRNAs show exceptional stability and resistance to RNase degradation. CircRNAs exhibit dysregulated expression patterns in various cancers and influence cancer progression. Stability and regulatory roles in cancer progression make circRNAs reliable biomarkers and targets for the development of anticancer therapeutics. The dysregulated expression of circRNAs is associated with resistance to anticancer drugs. Enhanced glycolysis by circRNAs leads to resistance to anticancer drugs. CircRNAs have been known to regulate the response to chemotherapy drugs and immune checkpoint inhibitors. Exogenous circRNAs can encode antigens that can induce both innate and adaptive immunity. CircRNA vaccines on lipid nanoparticles have been shown to enhance the sensitivity of cancer patients to immune checkpoint inhibitors. In this review, we summarize the roles and mechanisms of circRNAs in anticancer drug resistance and glycolysis. This review discusses clinical applications of circRNA vaccines to overcome anticancer drug resistance and enhance the efficacy of immune checkpoint inhibitors. The advantages and disadvantages of circRNA vaccines are also discussed. Overall, this review stresses the potential value of circRNAs as new therapeutic targets and diagnostic/prognostic biomarkers for cancer Full article
Show Figures

Figure 1

25 pages, 3349 KiB  
Article
Upregulation of the Antioxidant Response-Related microRNAs miR-146a-5p and miR-21-5p in Gestational Diabetes: An Analysis of Matched Samples of Extracellular Vesicles and PBMCs
by Jovana Stevanović, Ninoslav Mitić, Ana Penezić, Ognjen Radojičić, Daniela Ardalić, Milica Mandić, Vesna Mandić-Marković, Željko Miković, Miloš Brkušanin, Olgica Nedić and Zorana Dobrijević
Int. J. Mol. Sci. 2025, 26(14), 6902; https://doi.org/10.3390/ijms26146902 - 18 Jul 2025
Viewed by 190
Abstract
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by [...] Read more.
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by using peripheral blood mononuclear cells (PBMCs) and serum-derived extracellular vesicles (EVs) as biological samples. We selected the known OS/IFM-associated microRNAs miR-146a-5p, miR-155-5p, and miR-21-5p as candidates for our GDM biomarker analysis. Quantitative RT-PCR was employed for relative quantification of the selected microRNAs from paired samples of PBMCs and EVs derived from patients with GDM and healthy controls (n = 50 per group). The expression levels were analyzed for correlations with lipid and glycemic status indicators; metal ion-related parameters; serum thiol content; protein carbonyl and thiobarbituric acid-reactive substances’ (TBARS) levels; glutathione reductase (GR), Superoxide dismutase (SOD), and catalase (CAT) activity; and NRF2 expression. MiR-146a-5p and miR-21-5p were significantly upregulated in both PBMCs and EVs obtained from GDM patients. EVs-miR-21-5p showed a positive correlation with glycemic status in GDM patients, while miR-155-5p from PBMCs demonstrated correlation with iron-related parameters. The expression of selected microRNAs was found to correlate with NRF2 expression and SOD activity. The level of miR-146a-5p negatively correlated with neonatal anthropometric characteristics, while a higher level of PBMCs-miR-21-5p expression was determined in GDM patients with adverse pregnancy outcomes (p = 0.012). Our data demonstrate a disturbance of OS/IFM-microRNAs in GDM and illustrate their potential to serve as indicators of the associated OS-related changes, neonatal characteristics, and adverse pregnancy outcomes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop