Lung Cancer with Isolated Pleural Dissemination as a Potential ctDNA Non-Shedding Tumor Type
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population and Clinical Data Collection
2.3. Sample Collection
2.4. Library Construction and Next Generation Sequencing
2.5. Raw Data Processing and Tumor Somatic Variant Calling
2.6. ctDNA-MRD Detection
2.7. CEA Test
2.8. Statistical Analysis
3. Results
3.1. Subsection
3.1.1. Baseline Characteristics
3.1.2. M1a Lung Cancer Is a Potential Non-Shedding Tumor
3.1.3. ctDNA Is Ineffective in Predicting Progression in Patients with M1a Disease
3.1.4. Early Serum CEA Response May Be a Cost-Effective Biomarker for M1a Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CEA | Carcinoembryonic antigen |
CT | Computed tomography |
ctDNA | Circulating tumor DNA |
NSCLC | Non-small cell lung cancer |
OS | Overall survival |
PET/CT | Positron emission computed tomography |
PFS | Progression-free survival |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, W.F.; Lin, H.; Bao, H.; Li, W.; Wang, A.; Wu, X.; Su, J.; Lin, J.S.; Shao, Y.W.; et al. Wait-and-See Treatment Strategy Could be Considered for Lung Adenocarcinoma with Special Pleural Dissemination Lesions, and Low Genomic Instability Correlates with Better Survival. Ann. Surg. Oncol. 2020, 27, 3808–3818. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Wang, G.; Zhang, C.; Liu, B. Survival of M1a Non-Small Cell Lung Cancer Treated Surgically: A Retrospective Single-Center Study. Thorac. Cardiovasc. Surg. 2015, 63, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kuo, S.W.; Hsu, H.H.; Lin, M.W.; Chen, J.S. Lung adenocarcinoma with intraoperatively diagnosed pleural seeding: Is main tumor resection beneficial for prognosis? J. Thorac. Cardiovasc. Surg. 2018, 155, 1238–1249.e1231. [Google Scholar] [CrossRef] [PubMed]
- Abbosh, C.; Birkbak, N.J.; Swanton, C. Early stage NSCLC—Challenges to implementing ctDNA-based screening and MRD detection. Nat. Rev. Clin. Oncol. 2018, 15, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Reichert, Z.R.; Morgan, T.M.; Li, G.; Castellanos, E.; Snow, T.; Dall’Olio, F.G.; Madison, R.W.; Fine, A.D.; Oxnard, G.R.; Graf, R.P.; et al. Prognostic value of plasma circulating tumor DNA fraction across four common cancer types: A real-world outcomes study. Ann. Oncol. 2023, 34, 111–120. [Google Scholar] [CrossRef]
- Qiu, B.; Guo, W.; Zhang, F.; Lv, F.; Ji, Y.; Peng, Y.; Chen, X.; Bao, H.; Xu, Y.; Shao, Y.; et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat. Commun. 2021, 12, 6770. [Google Scholar] [CrossRef]
- Zhang, J.T.; Liu, S.Y.; Gao, W.; Liu, S.M.; Yan, H.H.; Ji, L.; Chen, Y.; Gong, Y.; Lu, H.L.; Lin, J.T.; et al. Longitudinal Undetectable Molecular Residual Disease Defines Potentially Cured Population in Localized Non-Small Cell Lung Cancer. Cancer Discov. 2022, 12, 1690–1701. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef]
- Abbosh, C.; Frankell, A.M.; Harrison, T.; Kisistok, J.; Garnett, A.; Johnson, L.; Veeriah, S.; Moreau, M.; Chesh, A.; Chaunzwa, T.L.; et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 2023, 616, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Nam, T.K.; Jeong, J.U.; Kim, S.H.; Kim, K.; Jang, H.S.; Jeong, B.K.; Lee, J.H. Postoperative carcinoembryonic antigen level has a prognostic value for distant metastasis and survival in rectal cancer patients who receive preoperative chemoradiotherapy and curative surgery: A retrospective multi-institutional analysis. Clin. Exp. Metastasis 2016, 33, 809–816. [Google Scholar] [CrossRef]
- Konishi, T.; Shimada, Y.; Hsu, M.; Tufts, L.; Jimenez-Rodriguez, R.; Cercek, A.; Yaeger, R.; Saltz, L.; Smith, J.J.; Nash, G.M.; et al. Association of Preoperative and Postoperative Serum Carcinoembryonic Antigen and Colon Cancer Outcome. JAMA Oncol. 2018, 4, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.A.; Lee, K.Y.; Kim, N.K.; Baik, S.H.; Sohn, S.K.; Cho, C.W. Prognostic effect of perioperative change of serum carcinoembryonic antigen level: A useful tool for detection of systemic recurrence in rectal cancer. Ann. Surg. Oncol. 2006, 13, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhao, Y.; Zhou, Y.; He, Q.; Hao, H.; Qiu, X.; Zhao, G.; Xu, Y.; Xue, F.; Chen, J.; et al. Predictive Value of Combined Preoperative Carcinoembryonic Antigen Level and Ki-67 Index in Patients With Gastric Neuroendocrine Carcinoma After Radical Surgery. Front. Oncol. 2021, 11, 533039. [Google Scholar] [CrossRef]
- Xiao, J.; Ye, Z.S.; Wei, S.H.; Zeng, Y.; Lin, Z.M.; Wang, Y.; Teng, W.H.; Chen, L.C. Prognostic significance of pretreatment serum carcinoembryonic antigen levels in gastric cancer with pathological lymph node-negative: A large sample single-center retrospective study. World J. Gastroenterol. 2017, 23, 8562–8569. [Google Scholar] [CrossRef]
- Huang, G.; Chen, R.; Lu, N.; Chen, Q.; Lv, W.; Li, B. Combined Evaluation of Preoperative Serum CEA and CA125 as an Independent Prognostic Biomarker in Patients with Early-Stage Cervical Adenocarcinoma. OncoTargets Ther. 2020, 13, 5155–5164. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wu, C.H.; Fu, H.C.; Chen, Y.J.; Chen, Y.Y.; Ou, Y.C.; Lin, H. Prognostic significance of elevated pretreatment serum levels of CEA and CA-125 in epithelial ovarian cancer. Cancer Biomark. 2020, 28, 285–292. [Google Scholar] [CrossRef]
- Gan, L.; Ren, S.; Lang, M.; Li, G.; Fang, F.; Chen, L.; Liu, Y.; Han, R.; Zhu, K.; Song, T. Predictive Value of Preoperative Serum AFP, CEA, and CA19-9 Levels in Patients with Single Small Hepatocellular Carcinoma: Retrospective Study. J. Hepatocell. Carcinoma 2022, 9, 799–810. [Google Scholar] [CrossRef]
- Hsu, W.H.; Huang, C.S.; Hsu, H.S.; Huang, W.J.; Lee, H.C.; Huang, B.S.; Huang, M.H. Preoperative serum carcinoembryonic antigen level is a prognostic factor in women with early non-small-cell lung cancer. Ann. Thorac. Surg. 2007, 83, 419–424. [Google Scholar] [CrossRef]
- Sawabata, N.; Maeda, H.; Yokota, S.; Takeda, S.; Koma, M.; Tokunaga, T.; Ito, M. Postoperative serum carcinoembryonic antigen levels in patients with pathologic stage IA nonsmall cell lung carcinoma: Subnormal levels as an indicator of favorable prognosis. Cancer 2004, 101, 803–809. [Google Scholar] [CrossRef]
- Kashiwabara, K.; Saeki, S.; Sasaki, J.; Nomura, M.; Kohrogi, H. Combined evaluation of postoperative serum levels of carcinoembryonic antigen less than or equal to 2.5 ng/ml and absence of vascular invasion may predict no recurrence of stage I adenocarcinoma lung cancer. J. Thorac. Oncol. 2008, 3, 1416–1420. [Google Scholar] [CrossRef]
- Fukai, R.; Sakao, Y.; Sakuraba, M.; Oh, S.; Shiomi, K.; Sonobe, S.; Saitoh, Y.; Miyamoto, H. The prognostic value of carcinoembryonic antigen in T1N1M0 and T2N1M0 non-small cell carcinoma of the lung. Eur. J. Cardiothorac. Surg. 2007, 32, 440–444. [Google Scholar] [CrossRef]
- Ozeki, N.; Fukui, T.; Taniguchi, T.; Usami, N.; Kawaguchi, K.; Ito, S.; Sakao, Y.; Mitsudomi, T.; Hirakawa, A.; Yokoi, K. Significance of the serum carcinoembryonic antigen level during the follow-up of patients with completely resected non-small-cell lung cancer. Eur. J. Cardiothorac. Surg. 2014, 45, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Jee, J.; Lebow, E.S.; Yeh, R.; Das, J.P.; Namakydoust, A.; Paik, P.K.; Chaft, J.E.; Jayakumaran, G.; Rose Brannon, A.; Benayed, R.; et al. Overall survival with circulating tumor DNA-guided therapy in advanced non-small-cell lung cancer. Nat. Med. 2022, 28, 2353–2363. [Google Scholar] [CrossRef] [PubMed]
- Kraft, A.; Weindel, K.; Ochs, A.; Marth, C.; Zmija, J.; Schumacher, P.; Unger, C.; Marmé, D.; Gastl, G. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 1999, 85, 178–187. [Google Scholar] [CrossRef]
- Sack, U.; Hoffmann, M.; Zhao, X.J.; Chan, K.S.; Hui, D.S.; Gosse, H.; Engelmann, L.; Schauer, J.; Emmrich, F.; Hoheisel, G. Vascular endothelial growth factor in pleural effusions of different origin. Eur. Respir. J. 2005, 25, 600–604. [Google Scholar] [CrossRef]
- Zebrowski, B.K.; Yano, S.; Liu, W.; Shaheen, R.M.; Hicklin, D.J.; Putnam, J.B., Jr.; Ellis, L.M. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin. Cancer Res. 1999, 5, 3364–3368. [Google Scholar]
- Wang, M.; Zeng, Q.; Li, Y.; Imani, S.; Xie, D.; Li, Y.; Han, Y.; Fan, J. Bevacizumab combined with apatinib enhances antitumor and anti-angiogenesis effects in a lung cancer model in vitro and in vivo. J. Drug Target. 2020, 28, 961–969. [Google Scholar] [CrossRef]
- Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet 2016, 388, 518–529. [Google Scholar] [CrossRef]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef]
- Gold, P.; Freedman, S.O. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med. 1965, 122, 467–481. [Google Scholar] [CrossRef]
- Berinstein, N.L. Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: A review. J. Clin. Oncol. 2002, 20, 2197–2207. [Google Scholar] [CrossRef]
- Matsuoka, K.; Sumitomo, S.; Nakashima, N.; Nakajima, D.; Misaki, N. Prognostic value of carcinoembryonic antigen and CYFRA21-1 in patients with pathological stage I non-small cell lung cancer. Eur. J. Cardiothorac. Surg. 2007, 32, 435–439. [Google Scholar] [CrossRef]
- Baek, A.R.; Seo, H.J.; Lee, J.H.; Park, S.W.; Jang, A.S.; Paik, S.H.; Koh, E.S.; Shin, H.K.; Kim, D.J. Prognostic value of baseline carcinoembryonic antigen and cytokeratin 19 fragment levels in advanced non-small cell lung cancer. Cancer Biomark. 2018, 22, 55–62. [Google Scholar] [CrossRef]
M1a Patients n = 41 (%) | |
---|---|
PS score | |
0~1 | 41 (100%) |
2 | 0 (0) |
Age (median) | 60 (32–79) |
Gender | |
Male | 21 (51%) |
Female | 20 (49%) |
Smoking history | |
Never smoker | 23 (56%) |
Ever/Current smoker | 18 (44%) |
Histology | |
Adenocarcinoma | 39 (95%) |
Mucinous adenocarcinoma | 1 (2%) |
Adenosquamous carcinoma | 1 (2%) |
Tumor size (cm) (median) | 2.7 (0.7, 4.4) |
Lymph node status | |
N0 | 23 (56%) |
N1 | 5 (12%) |
N2 | 12 (29%) |
N3 | 1 (2%) |
Population | |
Group A | 18 (44%) |
Group B | 14 (34%) |
Group C | 9 (22%) |
First-line treatment | |
Targeted therapy | 23 (56%) |
Immunotherapy | 7 (17%) |
Chemotherapy | 2 (5%) |
Others | 9 (22%) |
Survival | |
Intrathoracic progression | 18 (44%) |
Extrathoracic progression | 9 (22%) |
Survival without progression | 14 (34%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.; Zhang, Y.; Song, M.; Gao, X.; Tang, W.; Li, H.; Cui, S.; Dong, S.; Wu, Y.; Zhong, W.; et al. Lung Cancer with Isolated Pleural Dissemination as a Potential ctDNA Non-Shedding Tumor Type. Cancers 2025, 17, 2525. https://doi.org/10.3390/cancers17152525
Hong H, Zhang Y, Song M, Gao X, Tang W, Li H, Cui S, Dong S, Wu Y, Zhong W, et al. Lung Cancer with Isolated Pleural Dissemination as a Potential ctDNA Non-Shedding Tumor Type. Cancers. 2025; 17(15):2525. https://doi.org/10.3390/cancers17152525
Chicago/Turabian StyleHong, Huizhao, Yingqian Zhang, Mengmeng Song, Xuan Gao, Wenfang Tang, Hongji Li, Shirong Cui, Song Dong, Yilong Wu, Wenzhao Zhong, and et al. 2025. "Lung Cancer with Isolated Pleural Dissemination as a Potential ctDNA Non-Shedding Tumor Type" Cancers 17, no. 15: 2525. https://doi.org/10.3390/cancers17152525
APA StyleHong, H., Zhang, Y., Song, M., Gao, X., Tang, W., Li, H., Cui, S., Dong, S., Wu, Y., Zhong, W., & Zhang, J. (2025). Lung Cancer with Isolated Pleural Dissemination as a Potential ctDNA Non-Shedding Tumor Type. Cancers, 17(15), 2525. https://doi.org/10.3390/cancers17152525