Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (498)

Search Parameters:
Keywords = dermal aging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1768 KiB  
Case Report
Direct-to-Implant Prepectoral Breast Reconstruction with a Novel Collagen Matrix Following Nipple-Sparing Mastectomy: A Case Report
by Josip Banović, Zrinka Pribudić, Mia Buljubašić Madir, Vedran Beara, Luka Perić, Marija Čandrlić and Željka Perić Kačarević
Reports 2025, 8(3), 120; https://doi.org/10.3390/reports8030120 - 24 Jul 2025
Viewed by 217
Abstract
Background and Clinical Significance: Breast reconstruction following mastectomy is a critical aspect of treatment for many patients, offering both physical and psychological benefits. Traditional methods include autologous tissue flaps and implants, with implant-based techniques being the most prevalent in the Western world. [...] Read more.
Background and Clinical Significance: Breast reconstruction following mastectomy is a critical aspect of treatment for many patients, offering both physical and psychological benefits. Traditional methods include autologous tissue flaps and implants, with implant-based techniques being the most prevalent in the Western world. However, complications such as capsular contracture remain a concern. Acellular dermal matrices (ADM) have emerged as a valuable alternative, improving outcomes by reducing capsular contracture rates and enhancing tissue integration. Case Presentation: This case report presents the first use of a novel ADM, biocade® (biotrics bioimplants AG, Berlin, Germany) in breast reconstruction following a mastectomy. A 55-year-old female patient underwent a left-sided nipple-sparing mastectomy, followed by prepectoral direct-to-implant reconstruction using an ADM-wrapped implant. The patient tolerated the procedure well, with no immediate complications observed. Postoperative monitoring focused on wound healing and assessing for signs of complications related to the implant. The use of the ADM resulted into satisfactory aesthetic and functional outcomes. Conclusions: The successful outcome of this case highlights the potential benefits of using collagen matrices in breast reconstruction, particularly in preserving mastectomy scenarios. The immediate results and improved aesthetics offered by prepectoral direct-to-implant reconstruction with ADM align well with patient expectations for a more natural appearance and faster recovery. However, this case report also highlights the need for ongoing research to fully explore the potential of these biomaterials and address associated challenges. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

13 pages, 1691 KiB  
Article
Early Structural Degradation of Dermal Elastic Fibers in Women with Mild Obesity Without Parallel Transcriptional Changes
by Hiroko Makihara, Kazusa Kaiga, Toshihiko Satake, Mayu Muto, Yui Tsunoda, Hideaki Mitsui, Kenichi Ohashi and Tomoko Akase
J. Clin. Med. 2025, 14(15), 5220; https://doi.org/10.3390/jcm14155220 - 23 Jul 2025
Viewed by 339
Abstract
Background/Objectives: Obesity is associated with various skin complications, yet its impact on dermal elastic fibers—key components maintaining skin elasticity—remains unclear, particularly in cases of mild obesity prevalent in East Asian populations. The aim of this study was to investigate whether mild obesity is [...] Read more.
Background/Objectives: Obesity is associated with various skin complications, yet its impact on dermal elastic fibers—key components maintaining skin elasticity—remains unclear, particularly in cases of mild obesity prevalent in East Asian populations. The aim of this study was to investigate whether mild obesity is associated with the early structural deterioration of dermal elastic fibers and alterations in elastin-related gene expression in Japanese individuals. Methods: Abdominal skin samples from 31 Japanese women (the mean body mass index [BMI] 23.9 ± 3.2 kg/m2, mean age 49.5 ± 4.8) undergoing breast reconstruction surgery were analyzed. Gene expression levels of elastin-regenerative and -degradative molecules were assessed by quantitative polymerase chain reaction in the epidermis, dermis, and subcutaneous fat. Dermal elastic fiber content was evaluated histologically using Elastica van Gieson staining. Results: No statistically significant correlations between the BMI and elastin-degrading gene expression (NE, MMP2, MMP9, and NEP) were observed. ELN expression in the dermis showed a significant positive correlation with the BMI (ρ = 0.517, p = 0.003), potentially reflecting a compensatory response. Histological analysis revealed a significant inverse correlation between dermal elastic fiber content and the BMI (r = −0.572, p = 0.001), independent of age or smoking history. Conclusions: Even mild obesity is associated with the early degradation of dermal elastic fibers despite limited transcriptional alterations. These findings underscore the need for early skin care interventions to mitigate obesity-related skin fragility, especially in populations with predominantly mild obesity. Full article
Show Figures

Figure 1

21 pages, 3048 KiB  
Article
Transfersome-Based Delivery of Optimized Black Tea Extract for the Prevention of UVB-Induced Skin Damage
by Nadia Benedetto, Maria Ponticelli, Ludovica Lela, Emanuele Rosa, Flavia Carriero, Immacolata Faraone, Carla Caddeo, Luigi Milella and Antonio Vassallo
Pharmaceutics 2025, 17(8), 952; https://doi.org/10.3390/pharmaceutics17080952 - 23 Jul 2025
Viewed by 255
Abstract
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize [...] Read more.
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize the extraction of theaflavins and thearubigins from black tea leaves and evaluate the efficacy of the extract against UVB-induced damage using a transfersome-based topical formulation. Methods: Extraction of theaflavins and thearubigins was optimized via response surface methodology (Box-Behnken Design), yielding an extract rich in active polyphenols. This extract was incorporated into transfersomes that were characterized for size, polydispersity, zeta potential, storage stability, and entrapment efficiency. Human dermal fibroblasts (NHDF) were used to assess cytotoxicity, protection against UVB-induced viability loss, collagen degradation, and expression of inflammatory (IL6, COX2, iNOS) and matrix-degrading (MMP1) markers. Cellular uptake of the extract’s bioactive marker compounds was measured via LC-MS/MS. Results: The transfersomes (~60 nm) showed a good stability and a high entrapment efficiency (>85%). The transfersomes significantly protected NHDF cells from UVB-induced cytotoxicity, restored collagen production, and reduced gene expression of MMP1, IL6, COX2, and iNOS. Cellular uptake of key extract’s polyphenols was markedly enhanced by the nanoformulation compared to the free extract. Conclusions: Black tea extract transfersomes effectively prevented UVB-induced oxidative and inflammatory damage in skin fibroblasts. This delivery system enhanced bioavailability of the extract and cellular protection, supporting the use of the optimized extract in cosmeceutical formulations targeting photoaging and UV-induced skin disorders. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

13 pages, 1228 KiB  
Brief Report
Lipopolysaccharide-Activated Macrophages Suppress Cellular Senescence and Promote Rejuvenation in Human Dermal Fibroblasts
by Hiroyuki Inagawa, Chie Kohchi, Miyuki Uehiro and Gen-Ichiro Soma
Int. J. Mol. Sci. 2025, 26(15), 7061; https://doi.org/10.3390/ijms26157061 - 22 Jul 2025
Viewed by 232
Abstract
Tissue-resident macrophages are essential for skin homeostasis. This study investigated whether lipopolysaccharide (LPS)-activated macrophages affect senescence and rejuvenation in human dermal fibroblasts. Human monocytic THP-1 cells were stimulated with Pantoea agglomerans–derived LPS (1–1000 ng/mL), and culture supernatants were collected. These were applied [...] Read more.
Tissue-resident macrophages are essential for skin homeostasis. This study investigated whether lipopolysaccharide (LPS)-activated macrophages affect senescence and rejuvenation in human dermal fibroblasts. Human monocytic THP-1 cells were stimulated with Pantoea agglomerans–derived LPS (1–1000 ng/mL), and culture supernatants were collected. These were applied to two NB1RGB fibroblast populations: young, actively dividing cells (Young cells) and senescent cells with high population doubling levels and reduced proliferation (Old cells). Senescence markers P16, P21, and Ki-67 were analyzed at gene and protein levels. Conditioned medium from Old cells induced senescence in Young cells, increasing P16 and P21 expression levels. This effect was suppressed by cotreatment with LPS-activated THP-1 supernatant. Old cells treated with the LPS-activated supernatant exhibited decreased P16 and P21 levels as well as increased Ki-67 expression, indicating partial rejuvenation. These effects were not observed following treatment with unstimulated THP-1 supernatants or LPS alone. Overall, these findings suggest that secretory factors from LPS-activated macrophages can suppress cellular senescence and promote human dermal fibroblast rejuvenation, highlighting the potential role of macrophage activation in regulating cellular aging and offering a promising strategy for skin aging intervention. Full article
(This article belongs to the Special Issue Lipopolysaccharide in the Health and Disease)
Show Figures

Figure 1

15 pages, 1669 KiB  
Article
Prospective Evaluation of a Thermogenic Topical Cream-Gel Containing Caffeine, Genistein, and Botanical Extracts for the Treatment of Moderate to Severe Cellulite
by Vittoria Giulia Bianchi, Matteo Riccardo Di Nicola, Anna Cerullo, Giovanni Paolino and Santo Raffaele Mercuri
Cosmetics 2025, 12(4), 155; https://doi.org/10.3390/cosmetics12040155 - 21 Jul 2025
Viewed by 595
Abstract
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a [...] Read more.
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a high demand for effective, non-invasive, and well-tolerated treatment options. This single-centre, in vivo, prospective study evaluated the efficacy of a non-pharmacological, thermogenic topical cream-gel combined with manual massage in women with symmetrical grade II or III cellulite (Nürnberger–Müller scale). A total of 56 female participants (aged 18–55 years) were enrolled and instructed to apply the product twice daily for eight weeks to the thighs and buttocks. Efficacy was assessed using instrumental skin profilometry (ANTERA® 3D CS imaging system), dermatological clinical grading, and patient self-assessment questionnaires. Quantitative analysis showed a mean reduction of 23.5% in skin indentation volume (p < 0.01) and a mean decrease of 1.1 points on the cellulite severity scale by week 8. Patient-reported outcomes revealed 85.7% satisfaction with visible results and 91% satisfaction with product texture and ease of application. Dermatological evaluation confirmed no clinically significant adverse reactions, and only 3.5% of participants reported mild and transient skin sensitivity. These findings suggest that this topical cream-gel formulation, when used in conjunction with manual massage, represents a well-tolerated and non-invasive option for the cosmetic improvement of moderate to severe cellulite. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

22 pages, 10009 KiB  
Article
Mimicking Senescence Factors to Characterize the Mechanisms Responsible for Hair Regression and Hair Loss: An In Vitro Study
by Giacomo Masi, Camilla Guiducci and Francesca Rescigno
Organoids 2025, 4(3), 17; https://doi.org/10.3390/organoids4030017 - 11 Jul 2025
Viewed by 269
Abstract
Background/Objectives: VitroScreenORA® (by VitroScreen srl) Dermo Papilla spheroids, based on two micro-physiological systems (non-vascularized DP and vascularized VASC-DP), were used to study the molecular mechanisms behind hair cycle regression. Methods: Dermal papilla cells (HFDPC) were cultured to develop both models. Hair cycle [...] Read more.
Background/Objectives: VitroScreenORA® (by VitroScreen srl) Dermo Papilla spheroids, based on two micro-physiological systems (non-vascularized DP and vascularized VASC-DP), were used to study the molecular mechanisms behind hair cycle regression. Methods: Dermal papilla cells (HFDPC) were cultured to develop both models. Hair cycle regression was induced by exposing DP spheroids to TGF-β1 for 72 h and/or FGF-18 for an additional 24 h. Catagen phase entrance was evaluated by modulating specific genes (FGF7, CCND1, and WNT5B). The VASC-DP model was obtained by sequentially co-culturing HFDPC and primary dermal microvascular endothelial cells (HMDEC), mimicking the surrounding capillary loop. The vascular system’s impact was assessed at 5 and 10 days using IF on CD31 (micro-vessels) and Fibronectin (FN). Nanostring nCounter® technology was applied to investigate the transcriptional signature based on the WNT pathway. Extended culture time up to 11 days simulated natural hair cycle regression, monitored by versican and FN expression (IF). Minoxidil, Doxorubicin, and Retinol-based products were used to modify physiological aging over time. Results: Data shows that the vascular system improves tissue physiology by modulating the associated genes. Extended culture time confirms progressive DP structure degeneration that is partially recoverable with Retinol-based treatments. Conclusions: Both models provide a reliable platform to investigate the hair cycle, paving the way for new testing systems for personalized therapies. Full article
Show Figures

Figure 1

12 pages, 1563 KiB  
Article
The Effectiveness and Safety of 1470 nm Non-Ablative Laser Therapy for the Treatment of Striae Distensae: A Pilot Study
by Paweł Kubik, Stefano Bighetti, Luca Bettolini, Wojciech Gruszczyński, Bartłomiej Łukasik, Stefania Guida, Giorgio Stabile, Giovanni Paolino, Elisa María Murillo Herrera, Andrea Carugno, Mario Valenti, Cristina Zane, Vincenzo Maione, Edoardo D’Este and Nicola Zerbinati
Cosmetics 2025, 12(4), 148; https://doi.org/10.3390/cosmetics12040148 - 11 Jul 2025
Viewed by 626
Abstract
Striae distensae (SD), or stretch marks, are a common aesthetic concern with limited effective treatment options. This prospective, single-center, open-label study aimed to evaluate the efficacy and safety of 1470 nm non-ablative laser therapy in improving skin texture and reducing SD dimensions. Twenty [...] Read more.
Striae distensae (SD), or stretch marks, are a common aesthetic concern with limited effective treatment options. This prospective, single-center, open-label study aimed to evaluate the efficacy and safety of 1470 nm non-ablative laser therapy in improving skin texture and reducing SD dimensions. Twenty healthy female volunteers (aged 19–56) with SD of varying stages underwent three laser sessions at three-week intervals. Treatments were delivered using energy densities of 28–35 mJ per point with spot spacing of 0.8–1.2 mm, uniformly delivered over the affected SD lesions. Assessments were performed at baseline, Day 14, Day 35, Day 56–70, and Day 118–132. SD depth and width were measured using high-frequency ultrasound; aesthetic improvement was assessed using the Global Aesthetic Improvement Scale (GAIS), alongside clinical and photographic evaluations. A statistically significant, progressive reduction in SD size was observed: mean depth decreased from 0.34 mm (SD = 0.16) to 0.18 mm (SD = 0.15), and width decreased from 6.58 mm (SD = 2.65) to 4.40 mm (SD = 2.52) by Day 118–132 (p < 0.01 for both). Most participants reported improvement on GAIS at each follow-up. No severe adverse events occurred; only mild, transient erythema and edema were noted. In conclusion, 1470 nm non-ablative laser therapy showed significant efficacy and a favorable safety profile in SD treatment, offering a promising non-invasive option based on fractional thermal stimulation and selective dermal absorption. Full article
(This article belongs to the Special Issue Laser Therapy and Phototherapy in Cosmetic Dermatology)
Show Figures

Figure 1

29 pages, 1189 KiB  
Review
Decoding Skin Aging: A Review of Mechanisms, Markers, and Modern Therapies
by Jorge Naharro-Rodriguez, Stefano Bacci, Maria Luisa Hernandez-Bule, Alfonso Perez-Gonzalez and Montserrat Fernandez-Guarino
Cosmetics 2025, 12(4), 144; https://doi.org/10.3390/cosmetics12040144 - 10 Jul 2025
Viewed by 1544
Abstract
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, [...] Read more.
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, manifesting as wrinkles, pigmentation disorders, thinning, and reduced elasticity. This review provides an integrative overview of the biological, molecular, and clinical dimensions of skin aging, emphasizing the interplay between inflammation, extracellular matrix degradation, and senescence-associated signaling pathways. We examine histopathological hallmarks and molecular markers and discuss the influence of genetic and ethnic variations on aging phenotypes. Current therapeutic strategies are explored, ranging from topical agents (e.g., retinoids, antioxidants, niacinamide) to procedural interventions such as lasers, intense pulsed light, photodynamic therapy, microneedling, and injectable biostimulators. Special attention is given to emerging approaches such as microneedle delivery systems, with mention of exosome-based therapies. The review underscores the importance of personalized anti-aging regimens based on biological age, phototype, and lifestyle factors. As the field advances, integrating mechanistic insights with individualized treatment selection will be key to optimizing skin rejuvenation and preserving long-term dermal health. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

18 pages, 2518 KiB  
Article
Injectable PEG-PCL-PEG Copolymers for Skin Rejuvenation: In Vitro Cell Studies to in Vivo Collagen Induction
by Seunghwa Lee, Aram Kim, Jimo Koo, Yunsik Kim, Sunglim Choi and Jin Cheol Cho
Polymers 2025, 17(14), 1892; https://doi.org/10.3390/polym17141892 - 8 Jul 2025
Viewed by 448
Abstract
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers [...] Read more.
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers were synthesized and structurally characterized using gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H-NMR), and Fourier transform infrared (FT-IR) spectroscopy. An optimized precipitation and drying protocol effectively reduced residual solvents, as confirmed by gas chromatography (GC). Idebenone was incorporated as an antioxidant to prevent skin aging, while hyaluronic acid (HA), L-arginine, and glycerin were included to promote collagen regeneration. In vitro assays demonstrated that idebenone-loaded samples exhibited prolonged intracellular antioxidant activity with low cytotoxicity. The collagen-promoting formulation, containing HA, glycerin, and L-arginine, enhanced the expression of transforming growth factor-β (TGF-β) and type III collagen (COL3) while suppressing inflammatory genes, suggesting a favorable environment for extracellular matrix remodeling. In vivo evaluation corroborated these outcomes, showing angiogenesis, collagen reorganization, and progressive dermal thickness. Histological analysis further confirmed sustained matrix regeneration and tissue integration. These results highlight the potential of PEG-PCL-PEG-based injectables as a multifunctional platform for collagen regeneration, offering a promising strategy for both cosmetic and clinical applications. Full article
(This article belongs to the Special Issue Polyester-Based Materials: 3rd Edition)
Show Figures

Figure 1

16 pages, 2791 KiB  
Article
Low-Molecular-Weight Collagen Peptide Improves Skin Dehydration and Barrier Dysfunction in Human Dermal Fibrosis Cells and UVB-Exposed SKH-1 Hairless Mice
by Eunjung Choi, Heeyeon Joo, Myunghee Kim, Do-Un Kim, Hee-Chul Chung and Jae Gon Kim
Int. J. Mol. Sci. 2025, 26(13), 6427; https://doi.org/10.3390/ijms26136427 - 3 Jul 2025
Viewed by 640
Abstract
Ultraviolet B (UVB), a component of solar ultraviolet light, is a major contributor to skin photodamage. UVB exposure primarily affects the epidermis, which leads to wrinkle formation, loss of skin elasticity, oxidative stress, and inflammation. Prolonged or intense UVB exposure can increase the [...] Read more.
Ultraviolet B (UVB), a component of solar ultraviolet light, is a major contributor to skin photodamage. UVB exposure primarily affects the epidermis, which leads to wrinkle formation, loss of skin elasticity, oxidative stress, and inflammation. Prolonged or intense UVB exposure can increase the risk of skin cancer. Collagen peptides are known as functional foods that improve skin dryness and wound healing. In this study, we aimed to investigate the protective and ameliorative effects of a low-molecular-weight collagen peptide (LMWCP) with a high absorption rate and photodamage. In vitro analysis using human dermal fibroblasts (HDFs) demonstrated that LMWCP promoted skin protection by increasing procollagen type I production, enhancing cell proliferation and migration, and inhibiting MMP-1 activity. Furthermore, LMWCP intake was indicated by improved skin hydration, reduced trans-epidermal water loss (TEWL), and changes in the clinical parameters, including skin elasticity, erythema, and scaling scores in UVB-exposed hairless mice. In the UVB-damaged tissues, an increase in skin elasticity-related enzymes was observed along with a decrease in aging-related and pro-inflammatory gene expression. Histological analysis revealed an increase in collagen content and restoration of dermal thickness. These findings suggested that LMWCP has significant benefits in preventing and improving UVB-induced skin damage. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

20 pages, 5017 KiB  
Article
Poly-L-Lactic Acid Filler Increases Adipogenesis and Adiponectin in Aged Subcutaneous Tissue
by Seyeon Oh, Nala Shin, Sang Ju Lee, Kuk Hui Son and Kyunghee Byun
Polymers 2025, 17(13), 1826; https://doi.org/10.3390/polym17131826 - 30 Jun 2025
Viewed by 519
Abstract
Poly-L-lactic acid (PLLA) filler, which increases volume and collagen synthesis, is used for skin rejuvenation. Subcutaneous adipose tissue (SAT) contains precursors that differentiate into mature adipocytes that secrete adiponectin, which modulates SAT function and increases adipogenesis. During aging, adiponectin and precursor cell functions [...] Read more.
Poly-L-lactic acid (PLLA) filler, which increases volume and collagen synthesis, is used for skin rejuvenation. Subcutaneous adipose tissue (SAT) contains precursors that differentiate into mature adipocytes that secrete adiponectin, which modulates SAT function and increases adipogenesis. During aging, adiponectin and precursor cell functions decrease, reducing adipogenesis and facial volume. Adiponectin also increases collagen synthesis by stimulating fibroblasts. After hydrogen peroxide treatment to induce senescent adipocytes (3T3-L1) and aged skin, follow-up PLLA treatment increased adipogenesis by stimulating the nuclear factor erythroid-2-related factor 2 (NRF2)/peroxisome proliferator-activated receptor gamma (PPARγ)/CCAAT/enhancer binding protein alpha (C/EBPα) pathway. This resulted in increased adiponectin secretion, which promoted collagen synthesis and mitigated the loss of SAT volume. In the senescent adipocyte, PLLA increased NRF2/PPARγ/C/EBPα, adipogenesis factors (fatty acid binding protein 4, lipoprotein lipase, and cluster of differentiation 36), lipogenesis factors (ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase), adiponectin, and lipid droplet size. Treatment of senescent fibroblasts with conditioned medium from PLLA-treated adipocytes increased collagen1 and 3 and decreased matrix metalloproteinase1 and 3 expressions. Similarly, PLLA increased NRF2/PPARγ/C/EBPα, adipogenesis, and lipogenesis factors in aged mouse SAT. Also, PLLA increased adiponectin and adipocyte numbers without hypertrophy and increased collagen accumulation and dermal thickness. In summary, PLLA increased adipogenesis and adiponectin, which increased the volume of SAT and collagen synthesis, thereby rejuvenating aged skin. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 4889 KiB  
Article
The Antioxidant and Skin-Brightening Effects of a Novel Caffeic Acid Derivative, Caffeic Acid-3,4-Dihydroxyphenylpropanolester
by Kyu-lim Kim, Ju-hee Jeon, Yeonjoon Kim and Kyung-Min Lim
Antioxidants 2025, 14(7), 806; https://doi.org/10.3390/antiox14070806 - 29 Jun 2025
Viewed by 532
Abstract
Caffeic acid (CA) is a naturally occurring polyphenol antioxidant found in coffee, tea, fruits, and vegetables, known for its strong antioxidant, anti-inflammatory, and anti-aging properties. However, its cosmetic application is limited because of poor dermal absorption due to its high polarity. This study [...] Read more.
Caffeic acid (CA) is a naturally occurring polyphenol antioxidant found in coffee, tea, fruits, and vegetables, known for its strong antioxidant, anti-inflammatory, and anti-aging properties. However, its cosmetic application is limited because of poor dermal absorption due to its high polarity. This study aimed to evaluate the antioxidant and skin-brightening effects of a novel lipophilic CA derivative, CAD (caffeic acid-3,4-dihydroxyphenylpropanolester). CAD was synthesized by conjugating CA with 3,4-DHPEA, a lipophilic antioxidant derived from olive oil. In both DPPH and ABTS assays, CAD exhibited more potent antioxidant activity than CA. In B16F10 melanoma cells, CAD significantly inhibited melanin production without cytotoxicity at concentrations lower than those required for CA. Cellular assays using DCF-DA staining demonstrated that CAD effectively reduced intracellular ROS levels. Mechanistic studies revealed that CAD inhibited tyrosinase activity and downregulated the expression of TYR, TRP-1, and TRP-2. Additionally, CAD suppressed MITF phosphorylation, along with reduced phosphorylation of ERK and JNK, elucidating its anti-melanogenic mechanism. Importantly, CAD showed dose-dependent skin-brightening effects in the 3D human skin model Melanoderm™, as evidenced by increased lightness and histological evaluation. In conclusion, CAD demonstrates strong potential as a safe and effective antioxidant and skin-brightening agent for cosmetic applications. Full article
(This article belongs to the Special Issue Methodologies for Improving Antioxidant Properties and Absorption)
Show Figures

Figure 1

11 pages, 1642 KiB  
Article
Overcoming Mohs Limitations in Treating DFSP: Retrospective Analysis of a Novel Excision Technique
by Rami Shoufani, Ariel Berl, Ofir Shir-az, Deborah Kidron, Din Mann, Noam Castel and Avshalom Shalom
Life 2025, 15(7), 1025; https://doi.org/10.3390/life15071025 - 27 Jun 2025
Viewed by 270
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a rare, soft-tissue sarcoma characterized by dermal, finger-like projections and high local recurrence rates. Complete surgical excision is the primary treatment goal and Mohs micrographic surgery (MMS) is the accepted approach for achieving disease-free margins. Despite the effectiveness of [...] Read more.
Dermatofibrosarcoma protuberans (DFSP) is a rare, soft-tissue sarcoma characterized by dermal, finger-like projections and high local recurrence rates. Complete surgical excision is the primary treatment goal and Mohs micrographic surgery (MMS) is the accepted approach for achieving disease-free margins. Despite the effectiveness of MMS, it has limitations when treating DFSP, with documented local recurrences. This paper presents our experience and treatment modality for DFSP, using MMS with an additional “safety margin”. This technique seeks to ensure free surgical margins and potentially lower recurrence rates. This is a retrospective analysis of patients treated for DFSP over a 10-year period. All patients underwent MMS, followed by an additional, circumferential excision of 2–5 mm. Twenty-two patients were treated surgically for DFSP from 2014 to 2023. The median age at presentation was 42.5 years. Four patients (18%) had positive disease margins on the additional safety marginal excision, two had negative MMS slides, and the other two were positive for DFSP. The mean follow-up time was 27 months, and no local recurrences were observed during that time. The surgical method presented here includes an additional excision of the surrounding margins following MMS for DFSP. This technique provides a tool to overcome the limitations of MMS in treating this tumor, aiming to reduce local recurrence. Full article
Show Figures

Figure 1

20 pages, 5399 KiB  
Article
Voghera Sweet Pepper Regulates Cell Death Pathways in an Aging In Vitro Model
by Federica Gola, Claudio Casali, Ludovica Gaiaschi, Elisa Roda, Gloria Milanesi, Fabrizio De Luca and Maria Grazia Bottone
Nutrients 2025, 17(13), 2147; https://doi.org/10.3390/nu17132147 - 27 Jun 2025
Viewed by 441
Abstract
Background/Objectives: Aging and its related disorders are important issues nowadays, and ROS overproduction is one of the primary contributors to this physio-pathological condition. In this regard, ascorbic acid is a strong antioxidant molecule and its anti-aging proprieties are well known. Our previous [...] Read more.
Background/Objectives: Aging and its related disorders are important issues nowadays, and ROS overproduction is one of the primary contributors to this physio-pathological condition. In this regard, ascorbic acid is a strong antioxidant molecule and its anti-aging proprieties are well known. Our previous data demonstrated that Voghera sweet pepper (VP), a peculiar type of pepper cultivated in Italy, is particularly rich in ascorbic acid and displayed a potential anti-aging effect in both young and aged in vitro models, regulating oxidative stress and senescence/proliferation. Based on these data, the anti-aging effect mediated by the extract of the edible part of VP, in terms of regulation of specific cell death mechanisms, was evaluated in an in vitro model of both young and old Normal Human Dermal Fibroblasts (NHDF). Methods: Immunofluorescence analyses were performed to assess the expression levels of specific markers related to autophagy (p62, LC3b) and mitophagy (Pink1, Parkin), as well as the apoptotic marker caspase-3. In addition, transmission electron microscopy (TEM) was used to analyze cellular ultrastructure and to provide further morphological evidence of the extract’s impact. Results: Immunofluorescence analyses revealed that VP extract led to modulated expression levels of p62, LC3b, Pink1, and Parkin, along with a reduction in caspase-3 activity, indicating decreased apoptosis. TEM ultrastructural analysis supported these findings, showing morphological changes consistent with the modulatory effects of VP extract during aging. Conclusions: Based on these results, we may suppose that Voghera pepper (VP) is able to modulate different mechanisms of regulated cell death (RCD) in our in vitro aging model. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Graphical abstract

15 pages, 807 KiB  
Article
Presence and Dermal Exposure to Benzene and Acetaldehyde in Hand Sanitizers Available in Taiwan
by Chieh-An Cheng and Shih-Wei Tsai
Toxics 2025, 13(7), 537; https://doi.org/10.3390/toxics13070537 - 26 Jun 2025
Viewed by 357
Abstract
The widespread use of alcohol-based hand sanitizers (ABHS) during and after the COVID-19 pandemic has raised concerns about potential exposure to harmful volatile organic compounds (VOCs), such as benzene, acetaldehyde, and other impurities, which may pose health risks. This study investigated the concentrations [...] Read more.
The widespread use of alcohol-based hand sanitizers (ABHS) during and after the COVID-19 pandemic has raised concerns about potential exposure to harmful volatile organic compounds (VOCs), such as benzene, acetaldehyde, and other impurities, which may pose health risks. This study investigated the concentrations of ethanol, isopropanol, and 12 impurities, including benzene, acetaldehyde, and methanol, in 85 commercially available ABHS products in Taiwan using gas chromatography-mass spectrometry (GC-MS). The results revealed that 12 samples contained alcohol concentrations below the recommended 60% (v/v) threshold. Benzene and acetaldehyde were identified as the primary impurities, with mean concentrations of 0.84 μg/g and 22.39 μg/g, respectively, exceeding the US FDA interim limits. For frequent ABHS users, the average dermal exposure doses (DEDs) to benzene ranged from 3.17 × 10−2 to 15.5 μg/kg-bw/day, with children aged 2–11 years showing the highest non-carcinogenic risk (Hazard Quotient > 1) and cancer risk (6.37 × 10−5 to 9.33 × 10−4). The findings emphasize the need for stringent quality control of ABHS products and caution in their selection and use. This study provides critical insights into the health risks associated with ABHS in Taiwan, underscoring the importance of regulatory oversight to ensure consumer safety. Full article
Show Figures

Graphical abstract

Back to TopTop