Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (170)

Search Parameters:
Keywords = dense built environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1153 KiB  
Review
Urban Heat Island Mitigation by LEED and BIM Integration—A Review
by Hafiz Saeed Ur Rehman, Sabahat Alamgir, Muhammad Arif Khan, Rehan Masood, Muhammad Hassan Sammad and Krishanu Roy
Buildings 2025, 15(14), 2523; https://doi.org/10.3390/buildings15142523 - 18 Jul 2025
Viewed by 332
Abstract
Rising temperatures are one of the most severe consequences of climate change, and the built environment plays a significant role in exacerbating heat, particularly in urban areas. In densely populated cities with hot climates, buildings release heat generated from cooling their interiors, contributing [...] Read more.
Rising temperatures are one of the most severe consequences of climate change, and the built environment plays a significant role in exacerbating heat, particularly in urban areas. In densely populated cities with hot climates, buildings release heat generated from cooling their interiors, contributing to the urban heat island (UHI) effect. Global research actively seeks ways to reduce UHI and promote a more sustainable built environment. Leadership in Energy and Environmental Design (LEED) is among the most widely used sustainability assessment systems. Additionally, digital technologies, especially Building Information Modelling (BIM), are increasingly used to assess and improve energy performance in buildings. While there are frameworks that apply LEED and BIM separately to address UHI strategies, there are potential LEED–BIM integrations which need to be investigated. This study investigates how LEED and BIM can be integrated to support UHI mitigation efforts. A systematic literature review was conducted to examine existing integrations, analyzing trends by publication year, country, and building type. The study identified approximately thirty examples of LEED–BIM integrations supporting ten UHI mitigation strategies. However, it also highlighted underutilized BIM technologies and gaps in addressing certain strategies. The study proposes a framework to help practitioners and policymakers apply LEED–BIM integrations more efficiently, reducing the effort required to implement UHI mitigation strategies while enhancing their practicality and effectiveness. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

14 pages, 5988 KiB  
Article
Thermal Environment Analysis of Kunming’s Micro-Scale Area Based on Mobile Observation Data
by Pengkun Zhu, Ziyang Ma, Cuiyun Ou and Zhihao Wang
Buildings 2025, 15(14), 2517; https://doi.org/10.3390/buildings15142517 - 17 Jul 2025
Viewed by 210
Abstract
This study compares high-frequency mobile observation data collected in the same area of Kunming under two different meteorological conditions—15 January 2020, and 8 January 2023—to analyze changes in the micro-scale urban thermal environment. Vehicle-mounted temperature and humidity sensors, combined with GPS tracking, were [...] Read more.
This study compares high-frequency mobile observation data collected in the same area of Kunming under two different meteorological conditions—15 January 2020, and 8 January 2023—to analyze changes in the micro-scale urban thermal environment. Vehicle-mounted temperature and humidity sensors, combined with GPS tracking, were used to conduct real-time, high-resolution data collection across various urban functional areas. The results show that in the two tests, the maximum temperature differences were 10.4 °C and 16.5 °C, respectively, and the maximum standard deviations were 0.34 °C and 2.43 °C, indicating a significant intensification in thermal fluctuations. Industrial and commercial zones experienced the most pronounced cooling, while green spaces and water bodies exhibited greater thermal stability. The study reveals the sensitivity of densely built-up areas to cold extremes and highlights the important role of green infrastructure in mitigating urban thermal instability. Furthermore, this research demonstrates the advantages of mobile observation over conventional remote sensing methods in capturing fine-scale, dynamic thermal distributions, offering valuable insights for climate-resilient urban planning. Full article
Show Figures

Figure 1

28 pages, 6503 KiB  
Article
Aging-in-Place Attachment Among Older Adults in Macau’s High-Density Community Spaces: A Multi-Dimensional Empirical Study
by Hongzhan Lai, Stephen Siu Yu Lau, Yuan Su and Chen-Yi Sun
World 2025, 6(3), 101; https://doi.org/10.3390/world6030101 - 17 Jul 2025
Viewed by 387
Abstract
This study explores key factors influencing Aging-in-Place Attachment (AiPA) among older adults in Macau’s high-density community spaces, emphasizing interactions between the built environment, behavior, and psychology. A multidimensional framework evaluates environmental, behavioral, human-factor, and psychological contributions. A mixed-methods, multisource approach was employed. This [...] Read more.
This study explores key factors influencing Aging-in-Place Attachment (AiPA) among older adults in Macau’s high-density community spaces, emphasizing interactions between the built environment, behavior, and psychology. A multidimensional framework evaluates environmental, behavioral, human-factor, and psychological contributions. A mixed-methods, multisource approach was employed. This study measured spatial characteristics of nine public spaces, conducted systematic behavioral observations, and collected questionnaire data on place attachment and aging intentions. Eye-tracking and galvanic skin response (GSR) captured visual attention and emotional arousal. Hierarchical regression analysis tested the explanatory power of each variable group, supplemented by semi-structured interviews for qualitative depth. The results showed that the physical environment had a limited direct impact but served as a critical foundation. Behavioral variables increased explanatory power (~15%), emphasizing community engagement. Human-factor data added ~4%, indicating that sensory and habitual interactions strengthen bonds. Psychological factors contributed most (~59%), confirming AiPA as a multidimensional construct shaped primarily by emotional and social connections, supported by physical and behavioral contexts. In Macau’s dense urban context, older adults’ desire to age in place is mainly driven by emotional connection and social participation, with spatial design serving as an enabler. Effective age-friendly strategies must extend beyond infrastructure upgrades to cultivate belonging and interaction. This study advances environmental gerontology and architecture theory by explaining the mechanisms of attachment in later life. Future work should explore how physical spaces foster psychological well-being and examine emerging factors such as digital and intergenerational engagement. Full article
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
Corrosion Behavior of Additively Manufactured GRX-810 Alloy in 3.5 wt.% NaCl
by Peter Omoniyi, Samuel Alfred, Kenneth Looby, Olu Bamiduro, Mehdi Amiri and Gbadebo Owolabi
Materials 2025, 18(14), 3252; https://doi.org/10.3390/ma18143252 - 10 Jul 2025
Viewed by 261
Abstract
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. [...] Read more.
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. Electrochemical characterization was performed using potentiodynamic polarization to determine critical corrosion parameters, including corrosion potential and current density, along with electrochemical impedance spectroscopy to assess the stability and protective qualities of the oxide film. Surface analytical techniques provided detailed microstructural and compositional insights, with scanning electron microscopy revealing the morphology of corrosion products, energy-dispersive X-ray spectroscopy identifying elemental distribution in the passive layer, and X-ray diffraction confirming the chemical composition and crystalline structure of surface oxide. The results demonstrated distinct corrosion resistance behavior between the different processing conditions of the alloy. The laser powder bed fused (LPBF) specimens in the as-built condition exhibited superior corrosion resistance compared to their hot isostatically pressed (HIPed) counterparts, as evidenced by higher corrosion potentials and lower current densities. Microscopic examination revealed the formation of a dense, continuous layer of corrosion products on the alloy surface, indicating effective barrier protection against chloride ion penetration. A compositional analysis of all samples identified oxide film enriched with chromium, nickel, cobalt, aluminum, titanium, and silicon. XRD characterization confirmed the presence of chromium oxide (Cr2O3) as the primary protective phase, with additional oxides contributing to the stability of the film. This oxide mixture demonstrated the alloy’s ability to maintain passivity and effective repassivation following film breakdown. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

25 pages, 9860 KiB  
Article
Indoor Dynamic Environment Mapping Based on Semantic Fusion and Hierarchical Filtering
by Yiming Li, Luying Na, Xianpu Liang and Qi An
ISPRS Int. J. Geo-Inf. 2025, 14(7), 236; https://doi.org/10.3390/ijgi14070236 - 21 Jun 2025
Viewed by 631
Abstract
To address the challenges of dynamic object interference and redundant information representation in map construction for indoor dynamic environments, this paper proposes an indoor dynamic environment mapping method based on semantic fusion and hierarchical filtering. First, prior dynamic object masks are obtained using [...] Read more.
To address the challenges of dynamic object interference and redundant information representation in map construction for indoor dynamic environments, this paper proposes an indoor dynamic environment mapping method based on semantic fusion and hierarchical filtering. First, prior dynamic object masks are obtained using the YOLOv8 model, and geometric constraints between prior static objects and dynamic regions are introduced to identify non-prior dynamic objects, thereby eliminating all dynamic features (both prior and non-prior). Second, an initial semantic point cloud map is constructed by integrating prior static features from a semantic segmentation network with pose estimates from an RGB-D camera. Dynamic noise is then removed using statistical outlier removal (SOR) filtering, while voxel filtering optimizes point cloud density, generating a compact yet texture-rich semantic dense point cloud map with minimal dynamic artifacts. Subsequently, a multi-resolution semantic octree map is built using a recursive spatial partitioning algorithm. Finally, point cloud poses are corrected via Transform Frame (TF) transformation, and a 2D traversability grid map is generated using passthrough filtering and grid projection. Experimental results demonstrate that the proposed method constructs multi-level semantic maps with rich information, clear structure, and high reliability in indoor dynamic scenarios. Additionally, the map file size is compressed by 50–80%, significantly enhancing the reliability of mobile robot navigation and the efficiency of path planning. Full article
(This article belongs to the Special Issue Indoor Mobile Mapping and Location-Based Knowledge Services)
Show Figures

Figure 1

25 pages, 21149 KiB  
Article
Enhancing Conventional Land Surveying for Cadastral Documentation in Romania with UAV Photogrammetry and SLAM
by Lucian O. Dragomir, Cosmin Alin Popescu, Mihai V. Herbei, George Popescu, Roxana Claudia Herbei, Tudor Salagean, Simion Bruma, Catalin Sabou and Paul Sestras
Remote Sens. 2025, 17(13), 2113; https://doi.org/10.3390/rs17132113 - 20 Jun 2025
Viewed by 584
Abstract
This study presents an integrated surveying methodology for efficient and accurate cadastral documentation, combining UAV photogrammetry, SLAM-based terrestrial and aerial scanning, and conventional geodetic measurements. Designed to be scalable across various cadastral and planning contexts, the workflow was tested in Charlottenburg, Romania’s only [...] Read more.
This study presents an integrated surveying methodology for efficient and accurate cadastral documentation, combining UAV photogrammetry, SLAM-based terrestrial and aerial scanning, and conventional geodetic measurements. Designed to be scalable across various cadastral and planning contexts, the workflow was tested in Charlottenburg, Romania’s only circular heritage village. The approach addresses challenges in built environments where traditional total station or GNSS techniques face limitations due to obstructed visibility and complex architectural geometries. The SLAM system was initially deployed in mobile scanning mode using a backpack configuration for ground-level data acquisition, and was later mounted on a UAV to capture building sides and areas inaccessible from the main road. The results demonstrate that the integration of aerial and terrestrial data acquisition enables precise building footprint extraction, with a reported RMSE of 0.109 m between the extracted contours and ground-truth total station measurements. The final cadastral outputs are fully compatible with GIS and CAD systems, supporting efficient land registration, urban planning, and historical site documentation. The findings highlight the method’s applicability for modernizing cadastral workflows, particularly in dense or irregularly structured areas, offering a practical, accurate, and time-saving solution adaptable to both national and international land administration needs. Beyond the combination of known technologies, the innovation lies in the practical integration of terrestrial and aerial SLAM (dual SLAM) with RTK UAV workflows under real-world constraints, offering a field-validated solution for complex cadastral scenarios where traditional methods are limited. Full article
Show Figures

Graphical abstract

17 pages, 1808 KiB  
Article
Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City
by Sinhyung Cho, Sinwon Cho, Seungkwon Jung and Jaekyoung Kim
Climate 2025, 13(6), 113; https://doi.org/10.3390/cli13060113 - 29 May 2025
Viewed by 639
Abstract
The intensification of extreme temperature events driven by climate change has heightened the vulnerability of urban areas to heatwaves, making it a critical environmental challenge. In this study, we investigate the spatial characteristics of urban heatwave vulnerability in Jungang-dong, Gangneung—a representative mid-sized coastal [...] Read more.
The intensification of extreme temperature events driven by climate change has heightened the vulnerability of urban areas to heatwaves, making it a critical environmental challenge. In this study, we investigate the spatial characteristics of urban heatwave vulnerability in Jungang-dong, Gangneung—a representative mid-sized coastal city in South Korea that experiences a strong urban heat island (UHI) effect due to the prevalent land–sea breeze dynamics, high building density, and low green-space ratio. A representative heatwave day (22 August 2024) was selected using AWS data from the Korea Meteorological Administration (KMA), and hourly meteorological conditions were applied to Computational Fluid Dynamics (CFD) simulations to model the urban microclimates. The thermal stress levels were quantitatively assessed using the Universal Thermal Climate Index (UTCI). The results indicated that, at 13:00, the surface temperatures reached 40 °C and the UTCI values peaked at 43 °C, corresponding to a “Very Strong Heat Stress” level. Approximately 17.4% of the study area was identified as being under extreme thermal stress, particularly in densely built-up zones, roadside corridors with high traffic, and pedestrian commercial areas. Based on these findings, we present spatial analysis results that reflect urban morphological characteristics to guide the optimal allocation of urban cooling strategies, including green (e.g., street trees, urban parks, and vegetated roofs), smart, and engineered infrastructure. These insights are expected to provide a practical foundation for climate adaptation planning and thermal environment improvement in mid-sized urban contexts. Full article
(This article belongs to the Special Issue Climate Adaptation and Mitigation in the Urban Environment)
Show Figures

Figure 1

26 pages, 3016 KiB  
Article
Towards a Regenerative and Climate-Resilient Built Environment: Greening Lessons from European Cities
by Francesco Sommese, Lorenzo Diana, Simona Colajanni, Marco Bellomo, Gaetano Sciuto and Grazia Lombardo
Buildings 2025, 15(11), 1878; https://doi.org/10.3390/buildings15111878 - 29 May 2025
Viewed by 453
Abstract
Nature-Based Solutions offer a concrete opportunity to integrate nature into cities and strengthen their resilience, in response to global challenges related to climate change, biodiversity loss, and water management, which are exacerbated by urban expansion and its impacts on the built environment. This [...] Read more.
Nature-Based Solutions offer a concrete opportunity to integrate nature into cities and strengthen their resilience, in response to global challenges related to climate change, biodiversity loss, and water management, which are exacerbated by urban expansion and its impacts on the built environment. This study aims to analyze various European policies and urban greening practices, considering not only some European Union member states but also other cities geographically located in Europe. The main goal is to explore how these solutions are used in various European cities to address environmental challenges and improve urban quality of life. The study highlights the growing role of greening strategies in EU urban policies as key tools to tackle global challenges. It finds that green interventions—such as green roofs, façades, and green urban spaces—offer multifunctional benefits, but their effectiveness relies on integrated planning, strong public–private cooperation, and active community involvement. Key challenges include the limited scalability of these solutions in dense or economically constrained areas and the need for long-term financial and institutional support. Overall, the study highlights that greening is not merely aesthetic but central to building regenerative and climate-resilient cities. Full article
Show Figures

Figure 1

26 pages, 5643 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Surface Urban Heat Island Effect in Nanjing, China (2000–2020)
by Quan An, Ge Shi, Jiahang Liu, Chuang Chen, Xinyu Li, Xiaoyu Tao, Zhuang Tian and Yunpeng Zhang
Remote Sens. 2025, 17(11), 1837; https://doi.org/10.3390/rs17111837 - 24 May 2025
Viewed by 673
Abstract
This study integrates the analysis of surface temperature data with natural and anthropogenic factors closely related to the urban thermal environment in Nanjing from 2000 to 2020, exploring the spatiotemporal variation characteristics of the urban heat island effect and the interactive relationships among [...] Read more.
This study integrates the analysis of surface temperature data with natural and anthropogenic factors closely related to the urban thermal environment in Nanjing from 2000 to 2020, exploring the spatiotemporal variation characteristics of the urban heat island effect and the interactive relationships among its influencing factors. The research findings are as follows: (1) Between 2000 and 2020, the urban heat island effect in Nanjing exhibited an expansion trend radiating from the city center to the periphery, with the heat island phenomenon primarily concentrated in the old urban areas characterized by developed commerce, industry, and dense populations. Surface temperatures gradually decreased from the city center to the suburbs, forming a distinct spatial distribution gradient. Both the standard deviation ellipse and the centroid of high-temperature areas showed a southward shift. (2) Significant differences in surface temperatures were observed across different land use types, with built-up areas and arable land maintaining relatively stable and higher surface temperatures, while water bodies and forests exhibited lower and stable surface temperatures. (3) Vegetation coverage, normalized water body index, elevation, dispersion, and the Shannon diversity index were negatively correlated with surface temperature, while the normalized difference bare land index, building index, dispersion index, and patch cohesion index were positively correlated with surface temperature. In Nanjing, the interactive effects of dual factors on the urban heat island effect were found to be greater than those of individual factors, with vegetation coverage identified as the most critical factor affecting surface temperature. Considering multidimensional factors together enhances the understanding of the spatial patterns and causes of the urban heat island effect, clarifies the interrelationships and degrees of influence among natural, socio-economic, and landscape pattern factors, and provides a scientific basis for improving the quality of the living environment in Nanjing. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Figure 1

23 pages, 4107 KiB  
Article
Assessing Recharge Zones for Groundwater Potential in Dera Ismail Khan (Pakistan): A GIS-Based Analytical Hierarchy Process Approach
by Anwaar Tabassum, Asif Sajjad, Ghayas Haider Sajid, Mahtab Ahmad, Mazhar Iqbal and Aqib Hassan Ali Khan
Water 2025, 17(11), 1586; https://doi.org/10.3390/w17111586 - 23 May 2025
Viewed by 970
Abstract
Groundwater constitutes the primary source of liquid freshwater on Earth and is essential for ecosystems, agriculture, and human consumption. However, rising demand, urbanization, and climate change have intensified groundwater depletion, particularly in semi-arid regions. Therefore, assessing groundwater recharge zones is essential for sustainable [...] Read more.
Groundwater constitutes the primary source of liquid freshwater on Earth and is essential for ecosystems, agriculture, and human consumption. However, rising demand, urbanization, and climate change have intensified groundwater depletion, particularly in semi-arid regions. Therefore, assessing groundwater recharge zones is essential for sustainable water resource management in vulnerable areas such as Dera Ismail Khan, Pakistan. This study aims to delineate groundwater potential zones (GWPZs), using an integrated approach combining the Geographic Information System (GIS), remote sensing (RS), and the analytical hierarchy process (AHP). Twelve factors were identified in a study conducted using GIS-based AHP to determine the groundwater recharge zones in the region. These include land use/land cover (LULC), rainfall, drainage density, soil type, slope, road density, water table depth, and remote sensing indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), Moisture Stress Index (MSI), Worldview Water Index (WVWI), and Land Surface Temperature (LST). The results show that 17.52% and 2.03% of the area have “good” and “very good” potential for groundwater recharge, respectively, while 48.63% of the area has “moderate” potential. Furthermore, gentle slopes (0–2.471°), high drainage density, shallow water depths (20–94 m), and densely vegetated areas (with a high NDVI) are considered important influencing factors for groundwater recharge. Conversely, areas with steep slopes, high temperatures, and dense built-up areas showed “poor” potential for recharge. This approach demonstrates the effectiveness of integrating advanced remote sensing indices with the AHP model in a semi-arid context, validated through high-accuracy field data (Kappa = 0.93). This methodology offers a cost-effective decision support tool for sustainable groundwater planning in similar environments. Full article
Show Figures

Graphical abstract

21 pages, 4062 KiB  
Article
Comprehensive Assessment and Obstacle Factor Recognition of Waterlogging Disaster Resilience in the Historic Urban Area
by Fangjie Cao, Qianxin Wang, Yun Qiu and Xinzhuo Wang
ISPRS Int. J. Geo-Inf. 2025, 14(6), 208; https://doi.org/10.3390/ijgi14060208 - 23 May 2025
Viewed by 414
Abstract
As climate change intensifies, cities are experiencing more severe rainfall and frequent waterlogging. When rainfall exceeds the carrying capacity of urban drainage networks, it poses a significant risk to urban facilities and public safety, seriously affecting sustainable urban development. Compared with general urban [...] Read more.
As climate change intensifies, cities are experiencing more severe rainfall and frequent waterlogging. When rainfall exceeds the carrying capacity of urban drainage networks, it poses a significant risk to urban facilities and public safety, seriously affecting sustainable urban development. Compared with general urban built-up areas, they demonstrate greater vulnerability to rainfall-induced waterlogging due to their obsolete infrastructure and high heritage value, making it imperative to comprehensively enhance their waterlogging resilience. In this study, Qingdao’s historic urban area is selected as a sample case to analyze the interaction between rainfall intensity, the built environment, and population and business characteristics and the mechanism of waterlogging disaster in the historic urban area by combining with the concept of resilience; then construct a resilience assessment system for waterlogging in the historic urban area in terms of dangerousness, vulnerability, and adaptability; and carry out a measurement study. Specifically, the CA model is used as the basic model for simulating the possibility of waterlogging, and the waterlogging resilience index is quantified by combining the traditional research data and the emerging open-source geographic data. Furthermore, the waterlogging resilience and obstacle factors of the 293 evaluation units were quantitatively evaluated by varying the rainfall characteristics. The study shows that the low flooding resilience in the historic city is found in the densely built-up areas within the historic districts, which are difficult to penetrate, because of the high vulnerability of the buildings themselves, their adaptive capacity to meet the high intensity of tourism and commercial activities, and the relatively weak resilience of the built environment to disasters. Based on the measurement results, targeted spatial optimization strategies and planning adjustments are proposed. Full article
Show Figures

Figure 1

23 pages, 13284 KiB  
Article
Reconstruction of a 3D Bedrock Model in an Urban Area Using Well Stratigraphy and Geophysical Data: A Case Study of the City of Palermo
by Alessandro Canzoneri, Raffaele Martorana, Mauro Agate, Maurizio Gasparo Morticelli, Patrizia Capizzi, Alessandra Carollo and Attilio Sulli
Geosciences 2025, 15(5), 174; https://doi.org/10.3390/geosciences15050174 - 14 May 2025
Viewed by 957
Abstract
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value [...] Read more.
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value of geophysical methods for enhancing subsurface understanding. In this sector, Numidian Flysch deposits constitute the geological bedrock of the plain. The morphology of the top surface of this unit was reconstructed by integrating borehole stratigraphic data with both passive and active seismic surveys. Ambient noise recordings were analyzed using the Horizontal-to-Vertical Spectral Ratio (HVSR) method to obtain spectral curves. These were then inverted into seismostratigraphic models using shear wave velocity profiles derived by Multichannel Analysis of Surface Waves (MASW) and lithostratigraphic information from borehole logs. Finally, the depth of the top of the Numidian Flysch, determined from both the borehole data and the inverted seismic models, was interpolated to generate a comprehensive 3D model of the bedrock top surface. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

31 pages, 7185 KiB  
Article
A Deep Reinforcement Learning Framework for Last-Mile Delivery with Public Transport and Traffic-Aware Integration: A Case Study in Casablanca
by Amine Mohamed El Amrani, Mouhsene Fri, Othmane Benmoussa and Naoufal Rouky
Infrastructures 2025, 10(5), 112; https://doi.org/10.3390/infrastructures10050112 - 3 May 2025
Viewed by 1030
Abstract
Optimizing last-mile delivery operations is an essential component in making a modern city livable, particularly in the face of rapid urbanization, increasing e-commerce activity, and the growing demand for fast deliveries. These factors contribute significantly to traffic congestion and pollution, especially in densely [...] Read more.
Optimizing last-mile delivery operations is an essential component in making a modern city livable, particularly in the face of rapid urbanization, increasing e-commerce activity, and the growing demand for fast deliveries. These factors contribute significantly to traffic congestion and pollution, especially in densely populated urban centers like Casablanca. This paper presents an innovative approach to optimizing last-mile delivery by integrating public transportation into the logistics network to address these challenges. A custom-built environment is developed, utilizing public transportation nodes as transshipment nodes for standardized packets of goods, combined with a realistic simulation of traffic conditions through the integration of the travel time index (TTI) for Casablanca. The pickup and delivery operations are optimized with the proximal policy optimization algorithm within this environment, and experiments are conducted to assess the effectiveness of public transportation integration and three different exploration strategies. The experiments show that scenarios integrating public transportation yield significantly higher mean rewards—up to 1.49 million—and more stable policy convergence, compared to negative outcomes when public transportation is absent. The highest-performing configuration, combining PPO with segmented training and public transport integration, achieves the best value loss (0.0129) and learning stability, albeit with a trade-off in task completion. This research introduces a novel, scalable reinforcement learning framework to optimize pickup and delivery with time windows by exploiting both public transportation and traditional delivery vehicles. Full article
Show Figures

Figure 1

24 pages, 5336 KiB  
Article
Influence of High-Density Community Spaces on the Walking Activity of Older Adults: A Case Study of Macau Peninsula
by Xiangyu Chen, Ning Wang and Hua Tang
Buildings 2025, 15(9), 1505; https://doi.org/10.3390/buildings15091505 - 30 Apr 2025
Viewed by 634
Abstract
Macau’s aging communities face growing challenges in meeting the needs of older residents due to rising population density and extremely limited land resources. The concentration of outdated residential buildings—home to a substantial older adult population—exacerbates issues related to age-associated physical decline. For seniors [...] Read more.
Macau’s aging communities face growing challenges in meeting the needs of older residents due to rising population density and extremely limited land resources. The concentration of outdated residential buildings—home to a substantial older adult population—exacerbates issues related to age-associated physical decline. For seniors who prefer familiar environments, the spatial constraints inherent in these densely built urban areas increasingly conflict with their specific gerontological needs, indicating the urgent need for urban renewal. This study employs a multi-methodological framework to examine aging populations in Macau’s high-density urban contexts. In Phase I, questionnaire surveys combined with SPSS 26.0-based cluster analysis are employed to (1) stratify older adults according to walking behavior patterns; (2) identify subgroup-specific needs and (3) establish key demographic correlates. Based on the socio-ecological framework, Phase II implements spatial analytics through ArcGIS demarcation of pedestrian catchment areas. This phase further integrates point-of-interest (POI) distribution analysis with space syntax-derived axial map evaluations to formulate typological mobility guidelines for different age cohorts. This study outlines the community walking space requirements of older adults in Macau and explores the influence of high-density community spaces on older adults. A practical evaluation method is proposed to assess age-friendly features of urban pathways, identifying the key environmental factors and their respective impacts. These preliminary findings may inform basic planning principles and adaptive design approaches for older adult-oriented pedestrian spaces. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 3969 KiB  
Article
Fast Dynamic P-RRT*-Based UAV Path Planning and Trajectory Tracking Control Under Dense Obstacles
by Xiangyu Zhu, Yufeng Gao, Yanyan Li and Bo Li
Actuators 2025, 14(5), 211; https://doi.org/10.3390/act14050211 - 25 Apr 2025
Cited by 1 | Viewed by 548
Abstract
This work develops an improved integrated planning and control framework for an unmanned aerial vehicle (UAV) in complex environments with dense obstacles to achieve fast and accurate path planning, trajectory generation, and tracking control. Utilizing the potential function-based rapid-exploration random tree star (P-RRT*), [...] Read more.
This work develops an improved integrated planning and control framework for an unmanned aerial vehicle (UAV) in complex environments with dense obstacles to achieve fast and accurate path planning, trajectory generation, and tracking control. Utilizing the potential function-based rapid-exploration random tree star (P-RRT*), a bidirectional dynamic informed P-RRT* (BDIP-RRT*) algorithm is first introduced to enhance sampling efficiency, facilitating swift path generation. To further optimize the initial path, a greedy algorithm is employed to minimize redundant segments within the generated path. Subsequently, trajectory control points are assigned based on the original path points using an adaptive distance interpolation strategy. A hybrid optimized trajectory generator considering jerk and snap is built to obtain a reference trajectory for the UAV. Moreover, two prescribed-time control laws are designed to ensure fast and accurate UAV position and attitude control. Finally, simulation results are performed to illustrate the effectiveness and superior performances of the developed path planning and control scheme. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

Back to TopTop