Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
- A precise assessment of heatwave vulnerability through quantitative, CFD-based simulations.
- The proposal of quantitative guidance for the optimal implementation of climate adaptation infrastructure.
- The derivation of simulation-based adaptation strategies applicable to Gangneung and other cities with similar climatic conditions.
2. Materials and Methods
2.1. Site Analysis
2.2. Selection of Analysis Software
2.3. Meteorological Data Analysis
2.4. Boundary Condition Setup
2.5. Evaluation Method: Air Temperature and UTCI
3. Results
3.1. Results of Air Temperature Analysis
3.2. Results of the Thermal Comfort Index (UTCI) Analysis
3.3. Characteristics of Heat Wave-Vulnerable Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 28 March 2025).
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.W.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Lee, N.Y.; Cho, Y.; Lim, J.Y. Effect of Climate Change on Mortality Rate Analysis of Vulnerable Populations. Health Soc. Welf. Rev. 2014, 34, 456–484. [Google Scholar] [CrossRef]
- Jo, H.; Ha, J.; Lee, S. An Analysis of Urban Heat Island Effect and Spatial Distribution of the Socially Vulnerable Class in Seoul, Korea. In Proceedings of the Korean Urban Administration Association Conference, Seoul, Republic of Korea, 4 December 2015; pp. 1–15. [Google Scholar]
- Yeo, W.; Oh, D. Actual condition analysis and mitigation measures of the urban heat island in Busan. Busan Dev. Inst. 2013. Available online: https://data.bdi.re.kr (accessed on 28 March 2025).
- Korea Meteorological Administration. Heat Wave Statistics and Chart Viewer. Available online: https://data.kma.go.kr/climate/heatWave/selectHeatWaveChart.do (accessed on 28 March 2025).
- Gangneung Culture Center. Jungang-dong. Gangneung City Local Culture Encyclopedia. Available online: https://gangneung.grandculture.net/gangneung/toc/GC00303324 (accessed on 28 March 2025).
- Gangneung City. The 2nd Gangneung Smart City Master Plan (2021–2025); Gangneung City Government: Gangneung, Republic of Korea, 2021. Available online: https://smartcity.go.kr (accessed on 2 April 2025).
- Chae, Y.; Park, J. Current Status and Implications of Local Government Heatwave Response: Focusing on the Detailed Implementation Plan for Climate Change Adaptation; Korea Research Institute for Human Settlements (KRIHS): Sejong, Republic of Korea, 2022; pp. 22–32. Available online: https://www.krihs.re.kr/gallery.es?act=view&bid=0025&list_no=29816&mid=a10103090000 (accessed on 28 March 2025).
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Lee, J.; Choi, J.; Kim, M.; Cho, Y.; Kim, J.; Cho, P. Verification of On-Site Applicability of Rainwater Road Surface Spraying for Promoting Rainwater Utilization and Analyzing the Fine Dust Reduction Effect. Sustainability 2024, 16, 8756. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Blocken, B. Computational Fluid Dynamics (CFD) for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.M.; Jun, H. A Study on the Effectiveness of Climate Adaptation Materials for Urban Heat Islands using Digital Twin and Computational Fluid Dynamics. J. Korean Soc. Hazard Mitig. 2024, 24, 9–17. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, J.; Kang, J. Development of an artificial intelligence model for CFD data augmentation and improvement of thermal environment in urban areas using nature-based solutions. Urban For. Urban Green. 2025, 104, 128629. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Voogt, J.A. A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound. Layer Meteorol. 2007, 123, 433–461. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. An integrated simulation method for building energy performance assessment in urban environments. Energy Build. 2012, 54, 243–251. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- Kántor, N.; Unger, J. The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Cent. Eur. J. Geosci. 2011, 3, 90–100. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.J.; Tenpierik, M.; van den Dobbelsteen, A. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef]
- Stone, B.; Hess, J.J.; Frumkin, H. Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities? Environ. Health Perspect. 2010, 118, 1425–1428. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Weng, Q.; Cho, D.; Kang, E.; Shin, Y. Diurnal urban heat risk assessment using extreme air temperatures and real-time population data in Seoul. iScience 2023, 26, 108123. [Google Scholar] [CrossRef]
- Nichol, J.E.; To, P.H. Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS J. Photogramm. Remote Sens. 2012, 74, 153–162. [Google Scholar] [CrossRef]
- Abrar, R.; Sarkar, S.K.; Nishtha, K.T.; Talukdar, S.; Shahfahad; Rahman, A.; Islam, A.R.M.T.; Mosavi, A. Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area. Sustainability 2022, 14, 4945. [Google Scholar] [CrossRef]
- Sidiqui, P.; Huete, A.; Devadas, R. Spatio-temporal mapping and monitoring of urban heat island patterns over Sydney, Australia using MODIS and Landsat-8. In Proceedings of the 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 217–221. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J. Evaluating the efficiency of fog cooling for climate change adaptation in vulnerable groups: A case study of Daegu Metropolitan City. Build. Environ. 2022, 217, 109120. [Google Scholar] [CrossRef]
- Diem, P.K.; Diem, N.K.; Nguyen, C.T.; Diep, N.T.H. Urbanisation and Urban Heat Island in a Mekong Delta City: From Monitoring to Dominant Factors. In Climate Change and Cooling Cities; Cheshmehzangi, A., He, B.-J., Sharifi, A., Matzarakis, A., Eds.; Springer Nature: Gateway East, Singapore, 2023; pp. 235–248. [Google Scholar] [CrossRef]
- Mane, A.; Lekurwale, N.; Maidamwar, P.; Khobragade, P.; Dongre, S. Artificial Intelligence Based Heatwave Intensity Prediction Model. In Proceedings of the 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), Nagpur, India, 4–5 August 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Buscail, C.; Upegui, E.; Viel, J.-F. Mapping heatwave health risk at the community level for public health action. Int. J. Health Geogr. 2012, 11, 38. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Huo, H.; Chen, F. A Study of Simulation of the Urban Space 3D Temperature Field at a Community Scale Based on High-Resolution Remote Sensing and CFD. Remote Sens. 2022, 14, 3174. [Google Scholar] [CrossRef]
- Cocci Grifoni, R.; Caprari, G.; Marchesani, G.E. Combinative Study of Urban Heat Island in Ascoli Piceno City with Remote Sensing and CFD Simulation—Climate Change and Urban Health Resilience—CCUHRE Project. Sustainability 2022, 14, 688. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Gangwon Gangneung: Climate Change Scenario Report. Available online: http://www.climate.go.kr/home/cc_data/scenario_web_report/Gangwon_Gangneung.pdf (accessed on 28 March 2025).
- Jusuf, S.K.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The influence of land use on the urban heat island in Singapore. Habitat. Int. 2007, 31, 232–242. [Google Scholar] [CrossRef]
- Kim, Y.H.; Baik, J.J. Spatial and Temporal Structure of the Urban Heat Island in Seoul. J. Appl. Meteorol. 2005, 44, 591–605. [Google Scholar] [CrossRef]
- Google Earth. Gangneung Jungang-dong, South Korea [Satellite Image]. 2025. Available online: https://earth.google.com/ (accessed on 21 March 2025).
- Siemens Digital Industries Software. Simcenter STAR-CCM+. Available online: https://plm.sw.siemens.com/ko-KR/simcenter/fluids-thermal-simulation/star-ccm/ (accessed on 28 March 2025).
- Baek, S.; Kim, J.; Kang, J. Impact of green infrastructure on PM10 in port-adjacent residential complexes: A finite volume method-based computational fluid dynamics study. Sustain. Cities Soc. 2024, 115, 105815. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: A summary. Int. J. Environ. Pollut. 2011, 44, 419–427. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent Theory Guide, Release 15.0; ANSYS Inc.: Canonsburg, PA, USA, 2013; Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 28 March 2025).
- Cho, H.; Lim, J. The Effect of Urban Road Vegetation on a Decrease of Road Surface Temperature. J. Korean Inst. Landsc. Archit. 2011, 39, 107–116. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Automatic Weather System (AWS) Data. Available online: https://data.kma.go.kr/data/grnd/selectAwsRltmList.do?pgmNo=56 (accessed on 28 March 2025).
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment. COST Action 732. 2007. Available online: https://www.researchgate.net/publication/257762102 (accessed on 28 March 2025).
- Kim, J.; Jeon, J. Study on JAVA-based Automated Urban Heat Island (UHI) Simulation—A Case Study of Jeonju Hanok Village. J. Korea Acad. Ind. Coop. Soc. 2024, 25, 164–171. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J. AI-based temperature reduction effect model of fog cooling for human thermal comfort: Climate adaptation technology. Sustain. Cities Soc. 2023, 95, 104574. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Havenith, G.; Tinz, B. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef]
- Ramsden, J. Calculate UTCI (Universal Thermal Climate Index) in C#. Available online: https://james-ramsden.com/calculate-utci-c-code/ (accessed on 26 March 2025).
- Wan, M.P.; Bozonnet, E. Simulation advances with EnviBatE: A case study on urban heat island mitigation in Singapore. Build. Environ. 2024, 258, 111966. [Google Scholar] [CrossRef]
- Emmanuel, R. An Urban Approach To Climate-Sensitive Design: Strategies for the Tropics; Routledge: London, UK, 2005. [Google Scholar]
- Okeil, A. A holistic approach to energy efficient building forms. Energy Build. 2010, 42, 1437–1444. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Zhou, D.; Wang, Y.; Zhang, Q.; Yang, Y. Influences of urban spatial factors on surface urban heat island effect and its spatial heterogeneity: A case study of Xi’an. Build. Environ. 2024, 248, 111072. [Google Scholar] [CrossRef]
- Bröde, P.; Krüger, E.L.; Rossi, F.A. Assessment of urban outdoor thermal comfort by the Universal Thermal Climate Index (UTCI). In Proceedings of the 14th International Conference on Environmental Ergonomics, Nafplio, Greece, 7–12 July 2011; pp. 338–341. Available online: https://www.researchgate.net/publication/322991510 (accessed on 28 March 2025).
- Ibrahim, S.H.; Ibrahim, N.I.A.; Wahid, J.; Goh, N.A.; Koesmeri, D.R.A.; Nawi, M.N.M. The impact of road pavement on Urban Heat Island (UHI) phenomenon. Int. J. Technol. 2018, 9, 1597–1608. [Google Scholar] [CrossRef]
- Druckenmiller, H. Urban Heat Islands 101. Resources for the Future. 2023. Available online: https://www.rff.org/publications/explainers/urban-heat-islands-101/ (accessed on 28 March 2025).
- Wonorahardjo, S.; Sutjahja, I.M.; Mardiyati, Y.; Andoni, H.; Thomas, D.; Achsani, R.A.; Steven, S. Characterising thermal behaviour of buildings and its effect on urban heat island in tropical areas. Int. J. Energy Environ. Eng. 2020, 11, 129–142. [Google Scholar] [CrossRef]
- Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res. 2012, 1, 197–228. [Google Scholar] [CrossRef]
- Kang, J.E.; Lee, M.J. Assessment of flood vulnerability to climate change using fuzzy model and GIS in Seoul. J. Korean Assoc. Geogr. Inf. Stud. 2012, 15, 119–136. [Google Scholar] [CrossRef]
- Kim, K.; Park, B.; Heo, J.; Kang, J.; Lee, I. Assessment of heat wave vulnerability in Busan using the IPCC climate change vulnerability assessment framework. Korea Spat. Plan. Rev. 2020, 104, 23–38. [Google Scholar] [CrossRef]
- Kang, M.; Kim, H. Prediction of heat wave based on LSTM considering urban-social characteristics of Busan. Korea Spat. Plan. Rev. 2021, 109, 23–36. [Google Scholar] [CrossRef]
- Sidiqui, P.; Roös, P.B.; Herron, M.; Jones, D.S.; Duncan, E.; Jalali, A.; Allam, Z.; Roberts, B.J.; Schmidt, A.; Tariq, M.A.U.R.; et al. Urban heat island vulnerability mapping using advanced GIS data and tools. J. Earth Syst. Sci. 2022, 131, 266. [Google Scholar] [CrossRef]
- Back, Y.; Kumar, P.; Bach, P.M.; Rauch, W.; Kleidorfer, M. Integrating CFD-GIS modelling to refine urban heat and thermal comfort assessment. Sci. Total Environ. 2023, 859, 159729. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Bou-Zeid, E.; Oppenheimer, M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett. 2014, 9, 055002. [Google Scholar] [CrossRef]
Time | Temperature (°C) | Humidity (%) | Wind Direction (°) | Wind Speed (m/s) |
---|---|---|---|---|
06:00 | 25.9 | 95 | 239.5 | 1.2 |
07:00 | 27.7 | 91 | 249 | 1.6 |
08:00 | 29 | 87 | 258.6 | 0.9 |
09:00 | 31.9 | 73 | 133.2 | 1.3 |
10:00 | 32.8 | 67 | 74.1 | 2.5 |
11:00 | 35.7 | 51 | 238.7 | 3.8 |
12:00 | 36 | 44 | 224.7 | 4.5 |
13:00 | 36.7 | 47 | 199.6 | 4.5 |
14:00 | 36.8 | 46 | 208.6 | 5 |
15:00 | 35.9 | 48 | 208.4 | 5.7 |
16:00 | 34.3 | 55 | 248.1 | 5.7 |
17:00 | 35.4 | 52 | 248.4 | 2 |
18:00 | 34.6 | 52 | 212.5 | 3.5 |
Default Controls | Building | Green | Road | Side | Sky | |
---|---|---|---|---|---|---|
Base Size | 20.0 m | |||||
Target Surface Size | 20.0 m | 2.0 m | 2.0 m | 2.0 m | 200.0 m | 200.0 m |
Minimum Surface Size | 2.0 m | 1.0 m | 1.0 m | 1.0 m | 20.0 m | 20.0 m |
Prism Layer Total Thickness | 2.0 m | 0.4 m | 0.4 m |
UTCI Range (°C) | Stress Category |
---|---|
>46 | Extreme Heat Stress |
38 to 46 | Very Strong Heat Stress |
32 to 38 | Strong Heat Stress |
26 to 32 | Moderate Heat Stress |
9 to 26 | No Thermal Stress |
0 to 9 | Slight Cold Stress |
−13 to 0 | Moderate Cold Stress |
−27 to 13 | Strong Cold Stress |
−40 to 27 | Very Strong Cold Stress |
<−40 | Extreme Cold Stress |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Cho, S.; Jung, S.; Kim, J. Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City. Climate 2025, 13, 113. https://doi.org/10.3390/cli13060113
Cho S, Cho S, Jung S, Kim J. Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City. Climate. 2025; 13(6):113. https://doi.org/10.3390/cli13060113
Chicago/Turabian StyleCho, Sinhyung, Sinwon Cho, Seungkwon Jung, and Jaekyoung Kim. 2025. "Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City" Climate 13, no. 6: 113. https://doi.org/10.3390/cli13060113
APA StyleCho, S., Cho, S., Jung, S., & Kim, J. (2025). Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City. Climate, 13(6), 113. https://doi.org/10.3390/cli13060113