Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (992)

Search Parameters:
Keywords = demand substitution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 (registering DOI) - 2 Aug 2025
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

22 pages, 2702 KiB  
Article
Spatial Heterogeneity of Intra-Urban E-Commerce Demand and Its Retail-Delivery Interactions: Evidence from Waybill Big Data
by Yunnan Cai, Jiangmin Chen and Shijie Li
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 190; https://doi.org/10.3390/jtaer20030190 (registering DOI) - 1 Aug 2025
Abstract
E-commerce growth has reshaped consumer behavior and retail services, driving parcel demand and challenging last-mile logistics. Existing research predominantly relies on survey data and global regression models that overlook intra-urban spatial heterogeneity in shopping behaviors. This study bridges this gap by analyzing e-commerce [...] Read more.
E-commerce growth has reshaped consumer behavior and retail services, driving parcel demand and challenging last-mile logistics. Existing research predominantly relies on survey data and global regression models that overlook intra-urban spatial heterogeneity in shopping behaviors. This study bridges this gap by analyzing e-commerce demand’s spatial distribution from a retail service perspective, identifying key drivers, and evaluating implications for omnichannel strategies and logistics. Utilizing waybill big data, spatial analysis, and multiscale geographically weighted regression, we reveal: (1) High-density e-commerce demand areas are predominantly located in central districts, whereas peripheral regions exhibit statistically lower volumes. The spatial distribution pattern of e-commerce demand aligns with the urban development spatial structure. (2) Factors such as population density and education levels significantly influence e-commerce demand. (3) Convenience stores play a dual role as retail service providers and parcel collection points, reinforcing their importance in shaping consumer accessibility and service efficiency, particularly in underserved urban areas. (4) Supermarkets exert a substitution effect on online shopping by offering immediate product availability, highlighting their role in shaping consumer purchasing preferences and retail service strategies. These findings contribute to retail and consumer services research by demonstrating how spatial e-commerce demand patterns reflect consumer shopping preferences, the role of omnichannel retail strategies, and the competitive dynamics between e-commerce and physical retail formats. Full article
(This article belongs to the Topic Data Science and Intelligent Management)
Show Figures

Figure 1

12 pages, 7989 KiB  
Article
Microstructures and Magnetic Properties of Rare-Earth-Free Co-Zr-Mo-B Alloys
by Tetsuji Saito and Masaru Itakura
Crystals 2025, 15(8), 698; https://doi.org/10.3390/cryst15080698 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, [...] Read more.
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, one of the prospective candidates for rare-earth-free magnets, were produced by the melt-spinning technique and subsequent annealing. It was found that a small substitution of Mo for Zr in the Co-Zr-B alloys increased coercivity. The Co-Zr-Mo-B alloy with a Mo content of 2 at% showed a high coercivity of 6.2 kOe with a remanence of 40 emu/g. SEM studies showed that the annealed Co-Zr-Mo-B alloys had fine, uniform grains with an average diameter of about 0.6 μm. Further studies using STEM demonstrated that the ferromagnetic phase in the annealed Co-Zr-Mo-B alloys with high coercivity was composed of the Co5Zr phase and the long-period stacking ordered (LPSO) phase. That is, the fine grains observed in the SEM studies were found to be ferromagnetic dendrites containing numerous twin boundaries of the Co5Zr phase and its derived LPSO phase. Therefore, the high coercivity of the Co-Zr-Mo-B alloys can be attributed to the presence of ferromagnetic crystals of Co5Zr and the derived LPSO phase. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

35 pages, 6389 KiB  
Article
Towards Sustainable Construction: Experimental and Machine Learning-Based Analysis of Wastewater-Integrated Concrete Pavers
by Nosheen Blouch, Syed Noman Hussain Kazmi, Mohamed Metwaly, Nijah Akram, Jianchun Mi and Muhammad Farhan Hanif
Sustainability 2025, 17(15), 6811; https://doi.org/10.3390/su17156811 - 27 Jul 2025
Viewed by 347
Abstract
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has [...] Read more.
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has not been thoroughly investigated—especially in developing nations where treatment expenses frequently impede actual implementation, even for non-structural uses. While prior research has focused on treated wastewater, the potential of untreated or partially treated wastewater from diverse industrial sources remains underexplored. This study investigates the feasibility of incorporating wastewater from textile, sugar mill, service station, sewage, and fertilizer industries into concrete paver block production. The novelty lies in a dual approach, combining experimental analysis with XGBoost-based machine learning (ML) models to predict the impact of key physicochemical parameters—such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Hardness—on mechanical properties like compressive strength (CS), water absorption (WA), ultrasonic pulse velocity (UPV), and dynamic modulus of elasticity (DME). The ML models showed high predictive accuracy for CS (R2 = 0.92) and UPV (R2 = 0.97 direct, 0.99 indirect), aligning closely with experimental data. Notably, concrete pavers produced with textile (CP-TXW) and sugar mill wastewater (CP-SUW) attained 28-day compressive strengths of 47.95 MPa and exceeding 48 MPa, respectively, conforming to ASTM C936 standards and demonstrating the potential to substitute fresh water for non-structural applications. These findings demonstrate the viability of using untreated wastewater in concrete production with minimal treatment, offering a cost-effective, sustainable solution that reduces fresh water dependency while supporting environmentally responsible construction practices aligned with SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Additionally, the model serves as a practical screening tool for identifying and prioritizing viable wastewater sources in concrete production, complementing mandatory laboratory testing in industrial applications. Full article
Show Figures

Figure 1

27 pages, 516 KiB  
Article
How Does Migrant Workers’ Return Affect Land Transfer Prices? An Investigation Based on Factor Supply–Demand Theory
by Mengfei Gao, Rui Pan and Yueqing Ji
Land 2025, 14(8), 1528; https://doi.org/10.3390/land14081528 - 24 Jul 2025
Viewed by 248
Abstract
Given the significant shifts in rural labor mobility patterns and their continuous influence on the transformation of the land factor market, it is crucial to understand the relationship between labor factor prices and land factor prices. This understanding is essential to keep land [...] Read more.
Given the significant shifts in rural labor mobility patterns and their continuous influence on the transformation of the land factor market, it is crucial to understand the relationship between labor factor prices and land factor prices. This understanding is essential to keep land factor prices within a reasonable range. This study establishes a theoretical framework to investigate how migrant workers’ return shapes land price formation mechanisms. Using 2023 micro-level survey data from eight counties in Jiangsu Province, China, this study empirically examines how migrant workers’ return affects land transfer prices and its underlying mechanisms through OLS regression and instrumental variable approaches. The findings show that under the current pattern of labor mobility, the outflow factor alone is no longer sufficient to exert substantial downward pressure on land transfer prices. Instead, the localized return of labor has emerged as a key driver behind the rise in land transfer prices. This upward mechanism is primarily realized through the following pathways. First, factor substitution effect: this effect lowers labor prices and increases the relative marginal output value of land factors. Second, supply–demand effect: migrant workers’ return simultaneously increases land demand and reduces supply, intensifying market shortages and driving up transfer prices. Lastly, the results demonstrate that enhancing the stability of land tenure security or increasing local non-agricultural employment opportunities can mitigate the effect of rising land transfer prices caused by the migrant workers’ return. According to the study’s findings, stabilizing land factor prices depends on full non-agricultural employment for migrant workers. This underscores the significance of policies that encourage employment for returning rural labor. Full article
Show Figures

Figure 1

19 pages, 642 KiB  
Article
A Quantitative Study on the Interactive Changes Between China’s Final Demand Structure and Forestry Industry Production Structure
by Wenting Jia, Fuliang Cao and Xiaofeng Jia
Forests 2025, 16(8), 1212; https://doi.org/10.3390/f16081212 - 23 Jul 2025
Viewed by 170
Abstract
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s [...] Read more.
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s 153-sector input–output tables from the National Bureau of Statistics and applying a Leontief-based input–output model, we conducted scenario simulations through three distinct schemes, generating both quantitative and qualitative results. Our findings indicate that (1) For China’s forestry sector and its entire value chain to thrive, policymakers should boost consumer demand. This can better stimulate the development of forestry and the “agriculture-forestry-animal husbandry-fishery services” sector and related service industries; (2) Increased investment demand effectively stimulates the development of tertiary industries and secondary industries within the forestry supply chain and boosts the demand and production of intermediate products; (3) Changes in net exports have a significant impact on forestry and the forestry industry chain. To reduce dependence on foreign timber resources, China should strategically expand commercial plantation development; (4) Regarding intermediate product production, investment has a more pronounced effect on increasing total volume compared to consumption. Additionally, the Sino–US tariff disputes negatively impact the forestry industries of both countries. China needs to accelerate import substitution strategies for timber products, adjust international trade markets, and expand domestic consumption and investment to ensure the healthy and stable development of its forestry sector. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
17 pages, 1522 KiB  
Article
Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat
by Ingrid Contardo, Sonia Millao, Eduardo Morales, Mónica Rubilar and Marcela Quilaqueo
Gels 2025, 11(8), 571; https://doi.org/10.3390/gels11080571 - 23 Jul 2025
Viewed by 253
Abstract
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement [...] Read more.
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement strategies, the incorporation of bigels into food formulations has been studied; however, the impact of Arabic gum hydrogel-based bigels on microstructural properties and their correlation with the texture and quality of bakery products remains underexplored. In this study, cookies were formulated using a plant-based bigel (canola oil-carnauba wax oleogel mixed with Arabic gum hydrogel) as a fat substitute, and their microstructural, textural, and quality parameters were compared with those of commercial butter-based cookies. Compared to butter (firmness of 29,102 g, spreadability of 59,624 g∙s, and adhesiveness of 2282 g), bigel exhibited a softer (firmness of 576 g), more spreadable (spreadability of 457 g∙s), and less adhesive texture (adhesiveness of 136 g), while its rheological properties showed similar behavior but at a lower magnitude. Bigel exhibited high thermal stability and good elastic and thixotropic behaviors, indicating reversible structural breakdown and recovery. Cookies prepared with bigels instead of butter exhibited a similar proximate composition, with a slight increase in lipid content (11.7%). The physical dimensions and density were similar across the formulations. However, the microstructural analysis revealed differences when bigels were incorporated into cookies, reducing porosity (55%) and increasing the mean pore size (1781 µm); in contrast, mean wall thickness remained unaffected. Despite these structural modifications, the potential of bigels as viable and nutritionally enhanced substitutes for conventional fats in bakery products was demonstrated. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

22 pages, 2139 KiB  
Article
Nutritional and Technological Benefits of Pine Nut Oil Emulsion Gel in Processed Meat Products
by Berik Idyryshev, Almagul Nurgazezova, Zhanna Assirzhanova, Assiya Utegenova, Shyngys Amirkhanov, Madina Jumazhanova, Assemgul Baikadamova, Assel Dautova, Assem Spanova and Assel Serikova
Foods 2025, 14(15), 2553; https://doi.org/10.3390/foods14152553 - 22 Jul 2025
Viewed by 315
Abstract
A high intake of saturated fats and cholesterol from processed meats is associated with increased cardiovascular disease risk. This study aimed to develop a nutritionally enhanced Bologna-type sausage by partially replacing the beef content with a structured emulsion gel (EG) formulated from pine [...] Read more.
A high intake of saturated fats and cholesterol from processed meats is associated with increased cardiovascular disease risk. This study aimed to develop a nutritionally enhanced Bologna-type sausage by partially replacing the beef content with a structured emulsion gel (EG) formulated from pine nut oil, inulin, carrageenan, and whey protein concentrate. The objective was to improve its lipid quality and functional performance while maintaining product integrity and consumer acceptability. Three sausage formulations were prepared: a control and two variants with 7% and 10% EG, which substituted for the beef content. The emulsion gel was characterized regarding its physical and thermal stability. Sausages were evaluated for their proximate composition, fatty acid profile, cholesterol content, pH, cooking yield, water-holding capacity, emulsion stability, instrumental texture, microstructure (via SEM), oxidative stability (TBARSs), and sensory attributes. Data were analyzed using a one-way and two-way ANOVA with Duncan’s test (p < 0.05). The EG’s inclusion significantly reduced the total and saturated fat and cholesterol, while increasing protein and unsaturated fatty acids. The 10% EG sample achieved a PUFA/SFA ratio of 1.00 and an over 80% reduction in atherogenic and thrombogenic indices. Functional improvements were observed in emulsion stability, cooking yield, and water retention. Textural and visual characteristics remained within acceptable sensory thresholds. SEM images showed more homogenous matrix structures in the EG samples. TBARS values increased slightly over 18 days of refrigeration but remained below rancidity thresholds. This period was considered a pilot-scale evaluation of oxidative trends. Sensory testing confirmed that product acceptability was not negatively affected. The partial substitution of beef content with pine nut oil-based emulsion gel offers a clean-label strategy to enhance the nutritional quality of Bologna-type sausages while preserving functional and sensory performance. This approach may support the development of health-conscious processed meat products aligned with consumer and regulatory demands. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

20 pages, 2239 KiB  
Article
Synthesis of Biomass Polycarboxylate Superplasticizer and Its Performance on Cement-Based Materials
by Zefeng Kou, Kaijian Huang, Muhua Chen, Hongyan Chu, Linye Zhou and Tianqi Yin
Materials 2025, 18(14), 3416; https://doi.org/10.3390/ma18143416 - 21 Jul 2025
Viewed by 341
Abstract
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the [...] Read more.
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the demand for petrochemical resources required for synthetic water-reducing agents will increase rapidly. Therefore, there is an urgent need to transition the synthetic raw materials of PCE from petrochemicals to biomass materials to reduce the consumption of nonrenewable resources as well as the burden on the environment. Biomass materials are inexpensive, readily available and renewable. Utilizing biomass resources to develop good-performing water-reducing agents can reduce the consumption of fossil resources. This is conducive to carbon emission reduction in the concrete material industry. In addition, it promotes the high-value utilization of biomass resources. Therefore, in this study, a biomass polyether monomer, acryloyl hydroxyethyl cellulose (AHEC), was synthesized from cellulose via the reaction route of ethylene oxide (EO) etherification and acrylic acid (AA) esterification. Biomass polycarboxylate superplasticizers (PCE-Cs) were synthesized through free radical polymerization by substituting AHEC for a portion of the frequently utilized polyether monomer isopentenyl polyoxyethylene ether (TPEG). This study primarily focused on the properties of PCE-Cs in relation to cement. The findings of this study indicated that the synthesized PCE-C5 at a dosing of 0.4% (expressed as mass fraction of cement) when the AHEC substitution ratio was 5% achieved good water reduction properties and significant delays. With the same fluidity, PCE-C5 could enhance the mechanical strength of cement mortar by 30% to 40%. This study utilized green and low-carbon biomass resources to develop synthetic raw materials for water-reducing agents, which exhibited effective water-reducing performance and enhanced the utilization rate of biomass resources, demonstrating significant application value. Full article
Show Figures

Figure 1

16 pages, 1856 KiB  
Article
Gas in Transition: An ARDL Analysis of Economic and Fuel Drivers in the European Union
by Olena Pavlova, Kostiantyn Pavlov, Oksana Liashenko, Andrzej Jamróz and Sławomir Kopeć
Energies 2025, 18(14), 3876; https://doi.org/10.3390/en18143876 - 21 Jul 2025
Viewed by 523
Abstract
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed [...] Read more.
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed integration orders, allowing valid ARDL estimation. The results reveal a statistically significant long-run relationship (cointegration) between gas consumption and the energy–economic system. In the short run, the use of liquid fuel exerts a strong positive influence on gas demand, while the effects of GDP materialise only after a two-year lag. Solid fuels show a delayed substitutive impact, reflecting the ongoing transition from coal. An error correction model confirms rapid convergence to equilibrium, with 77% of deviations corrected within one period. Recursive residual and CUSUM tests indicate structural stability over time. These findings highlight the responsiveness of EU gas demand to both economic and policy signals, offering valuable insights for energy modelling and strategic planning under the European Green Deal. Full article
Show Figures

Figure 1

19 pages, 2340 KiB  
Article
Threitol, a Novel Functional Sugar Alcohol Biosynthesized by Engineered Yarrowia lipolytica, Has the Potential as a Low-Calorie Sugar-Reducing Sweetener
by Qing Li, Shuo Xu, Tong Li, Liyun Ji and Hairong Cheng
Foods 2025, 14(14), 2539; https://doi.org/10.3390/foods14142539 - 20 Jul 2025
Viewed by 334
Abstract
The global obesity and metabolic syndrome epidemic have accelerated demand for reduced-sugar food, prompting the food industry to adopt functional sugar alcohols as sucrose substitutes. Threitol is a four-carbon sugar alcohol and an isomer of erythritol. However, there is a scarcity of studies [...] Read more.
The global obesity and metabolic syndrome epidemic have accelerated demand for reduced-sugar food, prompting the food industry to adopt functional sugar alcohols as sucrose substitutes. Threitol is a four-carbon sugar alcohol and an isomer of erythritol. However, there is a scarcity of studies reporting on the edible safety of threitol. This study assessed threitol’s toxicological and metabolic properties. Acute oral administration (10 g/kg) caused no mortality or abnormalities in mice. Repeated 28-day exposure revealed no behavioral or histopathological alterations, with negative outcomes in three genotoxicity tests. Metabolic studies in rats demonstrated that the majority of ingested threitol is excreted in the urine within 24 h. Sensory evaluation indicated threitol’s sweetness equivalence to sucrose, exceeding erythritol and allulose. Notably, 16S rRNA sequencing revealed gut microbiota modulation in threitol-fed mice, indicating potential intestinal health benefits. These integrated findings establish threitol’s preclinical safety and support its development as a novel low-calorie sweetener. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

13 pages, 2340 KiB  
Article
The Microscopic Mechanism of High Temperature Resistant Core-Shell Nano-Blocking Agent: Molecular Dynamics Simulations
by Zhenghong Du, Jiaqi Xv, Jintang Wang, Juyuan Zhang, Ke Zhao, Qi Wang, Qian Zheng, Jianlong Wang, Jian Li and Bo Liao
Polymers 2025, 17(14), 1969; https://doi.org/10.3390/polym17141969 - 17 Jul 2025
Viewed by 309
Abstract
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and [...] Read more.
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and adapting to extreme wellbore environments. In response to the technical demands of nanoparticle-based plugging in shale reservoirs, this study systematically investigated the microscopic interaction mechanisms of nano-plugging agent shell polymers (Ployk) with various reservoir minerals under different temperature and salinity conditions using molecular simulation methods. Key parameters, including interfacial interaction energy, mean square displacement, and system density distribution, were calculated to thoroughly analyze the effects of temperature and salinity variations on adsorption stability and structural evolution. The results indicate that nano-plugging agent shell polymers exhibit pronounced mineral selectivity in their adsorption behavior, with particularly strong adsorption performance on SiO2 surfaces. Both elevated temperature and increased salinity were found to reduce the interaction strength between the shell polymers and mineral surfaces and significantly alter the spatial distribution and structural ordering of water molecules near the interface. These findings not only elucidate the fundamental interfacial mechanisms of nano-plugging agents in shale reservoirs but also provide theoretical guidance for the precise design of advanced nano-plugging agent materials, laying a scientific foundation for improving the engineering application performance of shale oil and gas wellbore-plugging technologies. Full article
Show Figures

Figure 1

16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 443
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

30 pages, 12494 KiB  
Article
Satellite-Based Approach for Crop Type Mapping and Assessment of Irrigation Performance in the Nile Delta
by Samar Saleh, Saher Ayyad and Lars Ribbe
Earth 2025, 6(3), 80; https://doi.org/10.3390/earth6030080 - 16 Jul 2025
Viewed by 430
Abstract
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations [...] Read more.
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations in ground data availability. Traditional assessment methods are often costly, labor-intensive, and reliant on field data, limiting their scalability, especially in data-scarce regions. This paper addresses this gap by presenting a comprehensive and scalable framework that employs publicly accessible satellite data to map crop types and subsequently assess irrigation performance without the need for ground truthing. The framework consists of two parts: First, crop mapping, which was conducted seasonally between 2015 and 2020 for the four primary crops in the Nile Delta (rice, maize, wheat, and clover). The WaPOR v2 Land Cover Classification layer was used as a substitute for ground truth data to label the Landsat-8 images for training the random forest algorithm. The crop maps generated at 30 m resolution had moderate to high accuracy, with overall accuracy ranging from 0.77 to 0.80 in summer and 0.87–0.95 in winter. The estimated crop areas aligned well with national agricultural statistics. Second, based on the mapped crops, three irrigation performance indicators—adequacy, reliability, and equity—were calculated and compared with their established standards. The results reveal a good level of equity, with values consistently below 10%, and a relatively reliable water supply, as indicated by the reliability indicator (0.02–0.08). Average summer adequacy ranged from 0.4 to 0.63, indicating insufficient supply, whereas winter values (1.3 to 1.7) reflected a surplus. A noticeable improvement gradient was observed for all indicators toward the north of the delta, while areas located in the delta’s new lands consistently displayed unfavorable conditions in all indicators. This approach facilitates the identification of regions where agricultural performance falls short of its potential, thereby offering valuable insights into where and how irrigation systems can be strategically improved to enhance overall performance sustainably. Full article
Show Figures

Figure 1

25 pages, 1429 KiB  
Article
A Contrastive Semantic Watermarking Framework for Large Language Models
by Jianxin Wang, Xiangze Chang, Chaoen Xiao and Lei Zhang
Symmetry 2025, 17(7), 1124; https://doi.org/10.3390/sym17071124 - 14 Jul 2025
Viewed by 402
Abstract
The widespread deployment of large language models (LLMs) has raised urgent demands for verifiable content attribution and misuse mitigation. Existing text watermarking techniques often struggle in black-box or sampling-based scenarios due to limitations in robustness, imperceptibility, and detection generality. These challenges are particularly [...] Read more.
The widespread deployment of large language models (LLMs) has raised urgent demands for verifiable content attribution and misuse mitigation. Existing text watermarking techniques often struggle in black-box or sampling-based scenarios due to limitations in robustness, imperceptibility, and detection generality. These challenges are particularly critical in open-access settings, where model internals and generation logits are unavailable for attribution. To address these limitations, we propose CWS (Contrastive Watermarking with Semantic Modeling)—a novel keyless watermarking framework that integrates contrastive semantic token selection and shared embedding space alignment. CWS enables context-aware, fluent watermark embedding while supporting robust detection via a dual-branch mechanism: a lightweight z-score statistical test for public verification and a GRU-based semantic decoder for black-box adversarial robustness. Experiments on GPT-2, OPT-1.3B, and LLaMA-7B over C4 and DBpedia datasets demonstrate that CWS achieves F1 scores up to 99.9% and maintains F1 ≥ 93% under semantic rewriting, token substitution, and lossy compression (ε ≤ 0.25, δ ≤ 0.2). The GRU-based detector offers a superior speed–accuracy trade-off (0.42 s/sample) over LSTM and Transformer baselines. These results highlight CWS as a lightweight, black-box-compatible, and semantically robust watermarking method suitable for practical content attribution across LLM architectures and decoding strategies. Furthermore, CWS maintains a symmetrical architecture between embedding and detection stages via shared semantic representations, ensuring structural consistency and robustness. This semantic symmetry helps preserve detection reliability across diverse decoding strategies and adversarial conditions. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

Back to TopTop